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EGFR alterations in glioblastoma
play a role in antitumor
immunity regulation
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Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
The epidermal growth factor receptor (EGFR) is the most frequently altered gene

in glioblastoma (GBM), which plays an important role in tumor development and

anti-tumor immune response. While current molecular targeted therapies

against the EGFR signaling pathway and its downstream key molecules have

not demonstrated favorable clinical outcomes in GBM. Whereas tumor

immunotherapies, especially immune checkpoint inhibitors, have shown

durable antitumor responses in many cancers. However, the clinical efficacy is

limited in patients carrying EGFR alterations, indicating that EGFR signaling may

involve tumor immune response. Recent studies reveal that EGFR alterations not

only promote GBM cell proliferation but also influence immune components in

the tumor microenvironment (TME), leading to the recruitment of

immunosuppressive cells (e.g., M2-like TAMs, MDSCs, and Tregs), and

inhibition of T and NK cell activation. Moreover, EGFR alterations upregulate

the expression of immunosuppressive molecules or cytokines (such as PD-L1,

CD73, TGF-b). This review explores the role of EGFR alterations in establishing an

immunosuppressive TME and hopes to provide a theoretical basis for combining

targeted EGFR inhibitors with immunotherapy for GBM.

KEYWORDS
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1 Introduction

Glioblastoma (GBM) is the most prevalent primary malignant tumor in the central

nervous system (CNS) (1). The current standard treatment for newly diagnosed GBM

involves maximal safe resection surgery, followed by temozolomide and adjuvant

radiotherapy (2). Despite these interventions, only 6.9% of patients survive beyond five

years post-diagnosis, based on the data from 2015 to 2019 in the United States (1).

According to the 2021 World Health Organization (WHO) classification of tumors of the

CNS, GBM is diagnosed based on the presence of necrosis, microvascular proliferation, and

1 or more of 3 specific genetic parameters [telomerase reverse transcriptase (TERT)
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promoter mutation, epidermal growth factor receptor (EGFR) gene

amplification, combined gain of chromosome 7 and loss of

chromosome 10 (+7/-10)] with wild-type forms of isocitrate

dehydrogenase (IDH) 1/2 (3). Among these aberrances, EGFR is

one of the most common oncogenic alterations (including gene

amplification, mutation, rearrangement, and splicing site changes),

occurring in approximately 50% of GBM samples (4, 5). After

binding to ligands, EFGR forms a dimer that phosphorylates its C-

terminal tail, regulating downstream physiological and pathological

processes (5). Apart from this, EGFR variant III (EGFRvIII), a

tumor-specific deletion of exons 2-7 which occurs in approximately

30% of GBM patients, consistently activates the EGFR signal even

without ligands binding, contributing to intra-tumoral

heterogeneity and resistance to targeted therapies (5–7). Aberrant

activation of the EGFR and its downstream signaling pathways

promotes GBM tumorigenesis and progression. Specifically, the

phosphatidylinositol-3 kinase (PI3K)-AKT-mammalian target of

rapamycin (mTOR) pathway and RAS-RAF-MEK-ERK pathway

regulates tumor growth, survival, angiogenesis, and metabolism (7–

9); the Janus kinase 2 (JAK2)-signal transducer and activator of

transcription 3 (STAT3) pathway contributes to tumor growth,

survival, stemness maintenance, and angiogenesis (7, 10), and the

activated phospholipase C (PLC)-PKC pathway promotes tumor

growth, survival, and invasiveness (11). Therefore, EGFR and its

downstream signaling pathways are potential therapeutic targets for

GBM. Notably, these pathways may contribute to establishing an

immunosuppressive TME in EGFR-altered tumors (12–14). A

bioinformatics study in glioma has revealed that EGFR mutation

indicates poor prognosis and potential immune suppression within

the TME (15). In terms of immunotherapy, EGFR amplification has

been suggested as a biomarker of resistance to immune checkpoint

inhibitors (ICIs) in GBM patients (16). In this review, we endeavor

to compare the treatment targeted EGFR in GBM and discuss the
Frontiers in Oncology 02
mechanisms underlying the immunosuppressive TME regulated by

the aberrant EGFR signaling pathway. The identified mechanisms

in the EGFR pathway in GBM are illustrated in Figure 1.
2 Current strategies for targeting
EGFR in GBM

Various treatments targeting EGFR have been explored for

GBM. Three generations of EGFR tyrosine kinase inhibitors

(TKIs) are approved for clinical use. First-generation TKIs

(Erlotinib, Gefitinib, Lapatinib, etc.) inhibit the receptor by

competitive binding with adenosine triphosphate (ATP) and

second-generation TKIs (Afatinib, Dacomitinib, Tesevatinib)

irreversibly inhibit all four ERBB receptors. Despite the preclinical

data suggesting they affect tumor proliferation, all of them have

poor responses in clinical trials on newly diagnosed and recurrent

GBM due to insufficient delivery or resistance to inhibition (4–6, 17,

18). While a third-generation TKI, Osimertinib, is specifically

designed to target the canonical EGFR activating mutations and

the T790M resistance mutation with a good ability to cross the

blood-brain barrier (BBB). It can overcome resistance to first- and

second-generation TKIs by continuously blocking ERK signaling in

GBM (4, 19), which may bring hope to GBM patients, but further

clinical trials are needed to validate its potential. Novel methods,

such as nanoparticles developed in preclinical animal models

deliver and protect small interfering RNAs, allowing them to pass

the BBB and knock down EGFR signaling, although their feasibility

need to be verified before clinical application (20).

Immunotherapies targeting EGFR also face challenges in GBM.

Rindopepimut, a vaccine against the EGFRvIII, prolonged

progression-free survival (PFS) of patients with recurrent GBM

but failed to increase overall survival (OS) in phase III clinical trial
FIGURE 1

The identified mechanisms in the EGFR pathway in GBM.
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(21). In addition, EGFRvIII chimeric antigen receptor (CAR) T

therapy has been tested in GBM. The engineered lymphocytes were

detectable in both peripheral blood and tumor samples from

patients after CAR T infusion, but no satisfactory results were

obtained in phase I study and there was one treatment-related death

due to the severe toxicity (22). ICIs in preclinical GBM mouse

models confirmed the safety and efficiency of monoclonal

antibodies targeting the PD-1/PD-L1 axis (23), but have little

clinical benefit in GBM, especially in patients harboring EGFR

amplification. A recent clinical study showed that after initiation of

PD-1 inhibitor (pembrolizumab or nivolumab) for recurrent GBM

patients with EGFR amplification, the median OS was 7 months

compared to 18 months for those without EGFR amplification (16).

Despite achieving encouraging progress in various cancers,

these treatments have not achieved the expected effectiveness in

GBM patients with EGFR alterations. Factors such as complex

regulatory networks, high heterogeneity of tumor cells, BBB

blockage, and altered TME contribute the less therapeutic

improvements against GBM (24). On the other hand, both the

EGFR targeting therapy and immunotherapy demonstrate

favorable results in preclinical models but fail in clinical trials,

suggesting that mice still have significant limitations in modeling

human cancer and immunity.
3 EGFR signaling in GBM regulates the
infiltration of immune cells

The TME infiltrates various non-cancerous cells, including

astrocytes, pericytes, endothelial cells, fibroblasts, and immune

cells. It has long been considered that the normal brain is one of

the “immune privileged” organs (25). However, the disruption of

the BBB in GBM leads to immune cells infiltrating to the tumor

mass from blood flow. Immunosuppressive cells include tumor-

associated microglia and macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs), regulatory T cells (Tregs), and regulatory

B cells (Bregs), while the anti-tumor immune cells include T cells

(CD4+ helper T cells, CD8+ cytotoxic T cells) and natural killer

(NK) cells, etc. Infiltration or dysfunction of these cells is one of the

causes of the highly immunosuppressive and “cold” TME

phenotype of the GBM (26).
3.1 Microglia and myeloid-derived cells

TAMs, comprising microglia and macrophages, are the

dominant infiltrating immune cells in GBM and account for 30-

50% of the tumor mass (27, 28). Microglia are yolk sac–derived and

have limited self-renewal capacity, while macrophages are

monocyte-derived from the bone marrow and peripheral

circulation and constituted approximately 85% of the total TAM

population (29, 30). Despite different origins, they both play a vital

role in tumor progression. The activated TAMs in GBM can be

simply divided into tumor-suppressing M1-like phenotype and

tumor-promoting M2-like phenotype with great plasticity and

heterogeneity. The main TAMs in GBM present possess an M2-
Frontiers in Oncology 03
like phenotype, promoting tumor invasion, proliferation,

angiogenesis, and immune evasion through the expression and

secretion of matrix-degrading enzymes, angiogenic factors, and

immunosuppressive cytokines/chemokines (28, 31). However, it

should be noted that dichotomously classified M1 and M2

phenotypes were fitted well in vitro under optimal conditions, as

it does not fully reflect the complexity of TAMs activation.

Additional states (such as M2a, M2b, M2c, and M2d states) have

also been identified, suggesting that TAMs in vivo likely have more

functions along the M1/M2 spectrum. Several studies have shown

that EGFR alterations associated with TAMs infiltration in GBM,

and inhibiting EGFR by pharmacy strongly decreased microglia-

stimulated invasion in GL261 GBM cells (32). Another study using

GBM cell lines U87 and A172 in vitro and in vivo shows that EGFR

cooperates with EGFRvIII to induce macrophage infiltration by

upregulation of chemokine C-C motif ligand 2 (CCL2) through the

KRAS pathway, one of the major downstream pathways of the

EGFR (33). In addition, dual targeting of EGFR and mTOR

pathways has also been demonstrated to inhibit tumor growth

and macrophage infi l t ra t ion on GBM xenograf ts by

downregulation of CCL2 (34), an immunosuppressive cytokine

that shapes the macrophage polarization toward a tumor-

promoting, immunosuppressive phenotype, and significantly

shortened the survival of GBM-bearing mice (30, 35).

Furthermore, a recent single-cell RNA sequencing study focused

on the immune landscape during GBM progression found that

subsets of pro-inflammatory microglia in developing GBMs, while

anti-inflammatory macrophages are observed in end-stage tumors.

This evolution parallels the extensive growth of EGFR+ GBM cells

(36). Another single-cell level study reveals that GBM samples with

EGFR and cyclin-dependent kinase 4 (CDK4) co-amplifications in

the same cel l exhibi t higher infi l t rat ion of CD163+

immunosuppressive macrophages (37).

MDSCs are a heterogeneous population of immature bone

marrow cells consisting of two cell subsets: granulocytic or

polymorphonuclear MDSCs (PMN-MDSCs) and monocytic

MDSCs (M-MDSCs). MDSCs exert their immunosuppressive

effects in GBM by inhibiting cytotoxic T cell activity, suppressing

the function of NK cells, macrophages, and dendritic cells, and

augmenting the effect of Tregs (38, 39). The density of MDSCs also

correlates with tumor stages, chemotherapy response, and patient

prognosis in GBM (39). According to two recent studies using GBM

animal models, it has been observed that, similar to TAMs, MDSCs

accumulation is more pronounced in EGFR (+) GBM, when

compared to the EGFR-wild type (EGFR-WT) (36, 40). These

studies also found that EGFRvIII GBM highly expressed

chemokine C-X-C motif ligand 1/2/3 (CXCL1/2/3) and PMN-

MDSCs-expressed chemokine C-X-C motif receptor 2 (CXCR2)

constitute an axis that regulates the output of PMN-MDSCs from

the bone marrow, leading to increased systemic levels of these cells.

Interestingly, pharmacological inhibition of this axis benefitted for

response to ICIs and prolonged survival in EGFRvIII-driven GBM

mice (40). In summary, the immunosuppressive TME of EGFRvIII

GBM may be due to the greater infiltration by MDSCs, targeting

this cell is a potential therapeutic strategy for GBM, but further

research is needed in this area.
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3.2 Tumor-infiltrating lymphocytes

TILs are a group of tumor-infiltrating and antigenic cell

populations that exist in TME, and their amount and subtypes

determine the clinical outcomes and treatment responses in glioma

patients (41, 42). CD4+ helper T cells stimulate an anti-tumor

response by activating CD8+ cytotoxic T cells and promoting B cell

proliferation and differentiation. CD8+ cytotoxic T cells induce

tumor apoptosis through T cell receptor activation or lyse tumor

cells by releasing interferon-g, perforin, and granzyme (43).

However, T cells are rare in the GBM TME, accounting for less

than 0.25% of total isolated cells from GBM biopsies. The majority

of samples exhibit a “lymphocyte depletion” phenotype with few

CD8+ cytotoxic T cells but increased infiltration of Tregs,

particularly in cases with EGFR amplification (44, 45). On the

other hand, dysfunction of T cells (such as senescence, tolerance,

anergy, exhaustion, and ignorance) is a hallmark of GBM, leading to

ineffective anti-tumor immune responses (28, 43, 46). It has been

suggested that the efficacy of EGFR-TKIs depends mainly on the

presence of CD4+ and CD8+ T cells, as treatment significantly

enhances the immune responses against the tumor (47). In contrast

to conventional CD4+ and CD8+ T cells, the FOXP3+Tregs, a

subset of CD4+ T cells, play an opposite role in the GBM

microenvironment. Tregs inhibit the activation of effective T cells

through the interactions with cytotoxic T lymphocyte antigen-4

(CTLA-4) and CD80/86 on antigen-presenting cells (APCs). They

also secrete immunosuppressive cytokines that promote tumor

progression and polarization of macrophages toward an M2-like

phenotype (48). How the aberrant EGFR signaling pathway

regulates these T cells in the GBM microenvironment may be

related to the expression of some immunosuppressive molecules

or cytokines, such as programmed death-ligand 1 (PD-L1) (23),

extracellular-5’-nucleotidase (CD73) (49), and transforming growth

factor (TGF)-b (50), which will be discussed in detail in the

next section.

NK cells are innate lymphoid cells that account for a small

proportion of tumor-infiltrating cells, which exert anti-tumor

effects through lytic granules secretion and recruiting other

immune cells (51). However, some GBM patients show reduced

NK cell activation due to decreased levels of the natural killer group

2 member D (NKG2D) receptor on the NK cell surface (28).

Additionally, NKG2D ligands in cancer cells correlated positively

with the activation of EGFR and its downstream MEK pathway,

which is commonly hyperactivated in those tumors and reduced by

EGFR inhibitors (52). However, different NKG2D ligands can

func t ion as targe t molecu le s for NK ce l l -media ted

immunosurveillance or tumor immune escape. NKG2D ligands

expressed on the cell surface of tumor cells can be recognized by NK

cells through NKG2D and promote a cytotoxic response that leads

to tumor cell elimination (53). However, soluble NKG2D ligands

generated by a disintegrin and metalloproteinase 10 (ADAM10),

ADAM17, and matrix metalloproteinase 14 (MMP14), can promote

NKG2D down-regulation, impairing NK cell-effector functions and

facilitating tumor immune escape (54, 55). Therefore, to determine

the mechanism of EGFR signaling pathway regulation of NK cells in
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GBM, further studies are needed to focus on whether GBM with

EGFR alterations express higher levels of NKG2D ligands or which

form of the ligands are expressed in EGFR-altered GBM.

Tumor infiltrating B cells also play a role in shaping tumor

development. Activated B cells display antitumor activity by

producing immunoglobulins, promoting T cell responses, and

killing tumor cells directly. Other B cells with tumor-promoting

effects are defined as Bregs, upregulate PD-L1, CTLA-4 and secrete

immunosuppressive cytokines such as IL-10 and TGF-b,
attenuating the response of T and NK cells while facilitating the

activation of Tregs, MDSCs, and TAMs (56). However, no relevant

studies have yet shown the association between altered EGFR

signaling pathways in tumor cells and the infiltration and

activation of Bregs, especially in GBM. Further investigations are

needed to explore this field.
4 Immunosuppressive molecules and
cytokines regulated by EFGR signaling
in GBM

GBM cells also express cell surface molecules or secrete various

chemokines, cytokines, and growth factors that regulate immune

cell infiltration or function in GBM. Some of them are modulated by

EGFR and its downstream signaling.
4.1 PD-L1

The expression of PD-L1 in GBM correlates with the patient

prognosis (57, 58). However, the PD-L1 positivity rate in GBM

specimens ranges from 61.0% to 88% in different studies (59). Such

inconsistent results might be associated with different PD-L1

detection techniques, tumor heterogeneity, and different specimen

sources. PD-L1 binding to PD-1 on T cells restrains the anti-tumor

response, inducing apoptosis or anergy in activated T cells and

promoting the infiltration of Tregs, leading to tumor immune

escape (23). Recent studies have found that PD-L1 expression in

GBM cells is associated with EGFR and its downstream signaling

pathways (23). Among them, EGFR-dependent PI3K activation,

phosphatase and tensin homolog deleted on chromosome ten

(PTEN) loss, and AKT activation induce the b-catenin binding to

the CD274 gene (encode PD-L1) promoter region, resulting in

increased PD-L1 expression (60, 61). Another study found that the

activated EGFR-ERK signaling pathway in GBM upregulates COP9

signalosome subunit 6 (CSN6) and PD-L1 protein expression,

stabilizing PD-L1 and inhibiting its degradation (62).

Radiotherapy has also been shown to increase PD-L1 expression

in glioma cells. In a vitro study, irradiated human GBM cell lines

U87 and U251 show significant upregulation of PD-L1 expression

at the protein and mRNA levels via phosphorylation of EGFR and

its downstream signaling molecule JAK2 (63). A single-center

retrospective study has found that GBM patients with EGFR

amplification exhibit shorter median OS after receiving ICIs (16).

Therefore, targeting EGFR and its downstream signaling, in
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combination with PD-1/PD-L1 ICIs, may hold the potential in

restoring the T-lymphocyte killing capacity and improving the

sensitivity to immunotherapy and targeted therapy in tumor

patients (47, 64, 65).
4.2 CD73/adenosine

CD73 is anchored to cell membrane lipid rafts and highly

expressed in various tumors including GBM and plays a role in

immune regulation by generating adenosine in the TME. Adenosine

is a component of adenine nucleotides that regulates immune cell

function by the ectonucleoside triphosphate diphosphohydrolase

(NTPDase1, CD39)-CD73 synergic effect in glioma TME (66). ATP

and adenosine diphosphate (ADP) released from tumor cells are

hydrolyzed by CD39 to adenosine monophosphate (AMP), which is

then further dephosphorylated to adenosine by CD73 (67, 68). In

cancer patients, alterations in adenosine deaminase (ADA) activity

can lead to increased levels of adenosine as ADA normally

deactivates adenosine by converting it to inosine (68). Adenosine

mediates its regulatory functions by binding to adenosine receptors

(A2AR and A2BR) on the tumor-infiltrating immune cells,

triggering the accumulation of intracellular cyclic adenosine

monophosphate (cAMP). This signaling molecule is associated

with the establishment of an immunosuppressive TME

characterized by the polarization of TAMs into a tumor-

promoting M2-like phenotype, increased infiltration and

immunosuppressive activity of Tregs and MDSCs, and suppressed
Frontiers in Oncology 05
activity of dendritic cells, CD8+ T cells, and NK cells (67–69).

Overexpression of CD73 promotes immunosuppression and is

associated with poor prognosis in multiple cancers (66, 70). A

Recent in vivo study has revealed that blocking CD73 expression in

the tumor cells can potentially regulate the GBM immune

microenvironment and inhibit tumor growth by inducing

apoptosis (71). Another study based on single-cell RNA

sequencing found a correlation between high CD73 expression

and EFGR amplification as well as hypoxia in GBM (49). These

findings suggest that EGFR alterations signaling shape an

immunosuppressive TME in GBM by promoting CD73

expression. Targeting the CD73-adenosine axis may hold promise

as a therapeutic strategy in combination with EGFR-TKIs.
4.3 TGF-b

TGF-b is a pro-tumorigenic cytokine overexpressed and

produced by various cells in GBM, contributes to tumor growth,

angiogenesis, maintenance of glioma stem cell stemness, and the

establishment of an immunosuppressive TME (72, 73). TGF-b
exerts its antitumor immune response on immune cells within the

TME. For innate immunity, TGF-b promotes TAMs recruitment

and M2-like polarization, monocyte differentiation into MDSCs,

and attenuating the tumor killing efficiency of NK cells. For

adaptive immunity, it facilitates Tregs persistence, inhibiting the

function of effector T cells and antigen-presenting dendritic cells

(12, 50, 74). In addition, high-level TGF-b also contributes to poor
FIGURE 2

Diagram of EGFR alterations in GBM that promote an immunosuppressive tumor microenvironment. (By Figdraw).
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response to PD-L1 immune therapy (75). Recent studies have

revealed that the activation of TGF-b may be related to EGFR

singling and its downstream molecules. The activation PLCg-PKC
pathway leads to intragin-avb activation and contributes to local

TGF-b activate from its latent to its bioactive form (12, 76).

Although it is well known that the correlation between EGFR

signaling and TGF-b expression in many cancers. Further studies

specific to GBM are needed to verify this finding.

Overall, EGFR and its downstream signaling pathways

modulate immune-related molecules and cytokines in GBM,

influencing the immune cell landscape and establishing an

immunosuppressive TME. Targeting these interactions may hold

promise for improving the effectiveness of immunotherapy and

targeted therapy in GBM treatment.
5 The roles of EGFR in immune cells

A variety of immune cells express EGFR, which plays a significant

role in the TME of tumors without EGFR alterations. Recently, some

studies have identified the function of EGFR in macrophages and T

cells. In both human and mouse tumors (hepatocellular carcinoma

and colorectal carcinoma), EGFR expression in macrophages

promotes tumor development (77, 78). Myeloid-specific EGFR

knockout mice exhibited less carcinogenesis, possibly associated

with decreased IL-6 production via the STAT3 pathway. This

suggests a pro-tumorigenic role of EGFR signaling in myeloid cells

(77, 78). Similarly, in a colitis-associated carcinogenesis model, EGFR

signaling in macrophages plays a critical role in tumor development

by activating macrophages and inducing polarization toward a

tumor-promoting M2-like phenotype (79). EGFR expression has

also been detected in Tregs. Amphiregulin (AREG), an EGF-like

growth factor derived from mast cells, enhances the suppressive

function of Tregs by activating the MAPK pathway through binding

to EGFR on Tregs (80). In the central nervous system, EGFR

phosphorylation and subsequent activation of ERK mediate

microglia migration during inflammatory states. This process may

be mediated by the lipopolysaccharide (LPS)-triggered intracellular

calcium mobilization. And the calcium activity is decisive for EGFR

phosphorylation initiated by its ligands (81). All these cells play key

roles in the immunosuppressive microenvironment of GBM, which

predicts that targeting the EGFR signaling pathway and its

downstream key molecules in immune cells may be a new

therapeutic strategy that should be explored in future studies.
6 Conclusion

Aberrant EGFR signaling pathways in GBM contribute to

tumor progression by directly promoting tumor cell proliferation
Frontiers in Oncology 06
and survival, as well as establishing an immunosuppressive TME

that allows for tumor immune escape. The EGFR signaling pathway

recruits TAMs and MDSCs, converting M1-like TAMs to tumor-

promoting M2-like phenotype, which further induce T cell and NK

cell dysfunction. EGFR alterations in GBM also contribute to the

upregulation of immunosuppressive molecules and cytokines, such

as PD-L1, CD73, TGF-b, etc. (Figure 2). It also should be noted that
the downstream signaling described in this review is very similar to

other receptor tyrosine kinases (RTKs), EGFR-targeted therapies

face the challenge of resistance due to the upregulation of redundant

RTKs and activation of compensatory signaling pathways.

Understanding how these redundant RTKs modulate the TME in

GBM requires further investigation. On the other hand, to enhance

the efficacy of immunotherapy in GBM patients with EGFR

alteration, it is necessary to develop new therapeutic strategies

targeting the immunosuppression TME associated with EGFR

alterations. Future approaches could involve combining

molecularly targeted therapies and immunotherapy to stimulate

both the immunogenic response of GBM and the anti-tumor

immune response. For example, the combination of a PD-L1

inhibitor (Atezolizumab) and EGFR-TKI (Erlotinib) has shown

promising prospects in EGFR-mutant non-small cell cancer (82,

83). Implementing a similar integrated approach in GBM could

improve treatment outcomes and benefit a larger number

of patients.
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