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The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for

members of the tropomyosin receptor kinase (TRK) family. Rearrangements

involving NTRK1/2/3 are rare oncogenic factors reported with variable

frequencies in an extensive range of cancers in pediatrics and adult

populations, although they are more common in the former than in the latter.

The alterations in these genes are causative of the constitutive activation of TRKs

that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi)

larotrectinib was granted accelerated approval from the FDA, having

demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since

this new era has begun, resistance to first-generation TRKi has been described

and has opened the development of second-generation molecules, such as

selitrectinib and repotrectinib. In this review, we provide a brief overview of the

studies on NTRK alterations found in pediatric central nervous system tumors

and first and second-generation TRKi useful in clinical practice.
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1 Introduction

Central nervous system (CNS) tumors are the commonest solid neoplasm in children

aged 0-14 (1).

In CNS tumors, which commonly have no effective therapies, significant frequencies of

neurotrophic tyrosine receptor kinase (NTRK) fusions have been revealed and their

detection has become a cornerstone in the diagnostic evaluation of these cancers and
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treatment through specific therapies (2, 3). NTRKs are a family of

tyrosine kinases receptors of neurotrophins implicated in neuronal

development, among them the development of memory and the

growth and function of neuronal synapses (4). The NTRK1/2/3

genes produce three members of the tropomyosin receptor kinases

(TRKs) called tropomyosin receptor kinases TRKA, TRKB and

TRKC, respectively, and are characterized by an extracellular

binding domain, a transmembrane region and an intracellular

kinase domain (4, 5).

TRK is usually activated in tumors via fusions involving

NTRK1/2/3, caused by rearrangements of chromosomes between

NTRK genes, which include the kinase domain, with several partner

genes. The fusion products are chimeras with a constitutively

activated TRK, regardless of the ligand they bound (6, 7).

The rearrangement between tropomyosin 3 (TPM3) and

NTRK1 in colorectal cancer was the first detected NTRK fusion

(8). Afterward, NTRK fusions were found with several partners in a

wide diversity of cancer typologies: among the fusions involving

NTRK1 are known the fusions with ROS Proto-Oncogene 1,

Receptor Tyrosine Kinase (ROS1) and Lamin A/C (LMNA),

involved in spitzoid neoplasms and in soft tissue sarcomas (STS),

respectively (9). The LMNA-NTRK1 is involved also carcinoma of

lung and colorectal (10). Translocated promoter region (TPR) with

NTRK1 was found in thyroid cancer, and sequestosome 1

(SQSTM1)-NTRK1 fusion in STS and non-small cell lung cancer

(NSCLC) (11–15). The fusion that involved ETS variant of

transcription factor 6 (ETV6) and NTRK3 was found, for

example, in congenital fibrosarcoma, congenital mesoblastic

nephroma, PTCs and colorectal cancer (9, 16–18). Regardless of
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this review, NTRK gene fusions occur in more than 2.5% of low-

grade gliomas (LGGs) and 5.3% of high-grade gliomas (HGGs) in

children (19), and contribute to defining infant-type hemispheric

gliomas, a new type of HGG, in the 2021 WHO classification of

CNS tumors (20).

In this review, we explain a brief overview of the studies on

NTRK alterations found in pediatric CNS tumors and first- and

second-generation TRKi targeted therapy.
2 NTRK fusions: from detection
to treatment

2.1 Tropomyosin receptor kinase and
cell cycle

Briefly, neurotrophin growth factors bind and activate TRKs in

a specific manner: nerve growth factor neurotrophin (NGF) to

TRKA; brain-derived neurotrophic factor (BDNF) and

neurotrophin 4 (NT-4) that bins to TRKB; and neurotrophin 3

(NT-3) to all three TRK proteins, although it has a higher kinship

for TRKC (21–26).

The RAS/MAPK, PI3K/AKT, and PLC/PKC signaling pathway

is triggered by the bond between ligand to the extracellular domain

that causes the homodimerization and transactivation of TRK

receptors via autophosphorylation of tyrosine residues (Figure 1).

Activation of the above pathways promotes cell proliferation,

differentiation, and survival (5, 6, 27, 28).
FIGURE 1

Graphical representation of the main intracellular signaling pathways associated with TRK family members. Tropomyosin receptor kinase A (TRKA);
tropomyosin receptor kinase B (TRKB); tropomyosin receptor kinase C (TRKC); nerve growth factor neurotrophin (NGF); brain-derived neurotrophic
factor (BDNF); neurotrophin 4 (NT-4); neurotrophin 3 (NT-3); PhosphatidylInositol 3-Kinase (PI3K); Pyruvate Dehydrogenase Kinase 1 (PDK1); AKT
Serine/Threonine Kinase (AKT); B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF); Mitogen-activated protein kinase kinase (MEK); extracellular
signal-regulated kinase (ERK); Phospholipase C y (PLCy); diacylglycerol (DAG); Protein Kinase C (PKC).
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2.2 NTRK fusions in pediatric central
nervous system tumors

In CNS tumors, significant frequencies of NTRK fusions have

been identified and their detection has become a cornerstone in the

diagnostic evaluation of these cancers (3).

Several studies including large cohorts of pediatric CNS tumors

found that NRTK1-3 alterations occur mostly in very young

children and tumors localized to the hemispheric lobs (29, 30).

These results converged in the 2021 WHO Classification of CNS

Tumors, in which NTRK alterations contribute to defining novel

entities among both HGGs and LGGs in children, namely infant-

type hemispheric glioma and diffuse LGG, MAPK pathway‐altered,

respectively (20). Despite the high-grade histology, the first

subgroup benefits from a better outcome compared to its

counterpart without tyrosine kinase fusions (29, 30).

NTRK fusions found in several studies are depicted in Figure 2.
2.3 NTRK inhibitors

There have been only limited in vitro or preclinical studies of

signaling performed to illuminate the effect of TRKi on downstream

cascade signaling or the time span of inhibition, but meaningful

clinical responsiveness to these drugs has been shown in several

types of tumors such as soft tissue sarcomas, childhood

fibrosarcoma, lung cancer, colon cancer, melanoma (40–45).

First-generation TRKi were developed in 2015 that included

larotrectinib and entrectinib. The recruiting clinical trials of either

larotrectinib or entrectinib are listed in Supplementary Table 1.

Larotrectinib, developed simultaneously for pediatric and adult

cancer, is the first oral treatment with a “tumor-agnostic”

indication: discovered in 2015, it obtained accelerated approval

from FDA in 2017. It is a small-sized competitive inhibitor of ATP

and selective pan-TRK, with a 50% inhibitory concentration (IC50)

of 5-11 nm in vitro and a specificity >100 times for TRK (46, 47).

Inhibition of RAF-MEK-ERK or PI3K-AKT pathways, caused by
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larotrectinib, inhibits the growth of some cell lines that contained

targeted NTRK fusions, as well TPM3-NTRK1, TRIM24-NTRK2,

and ETV6-NTRK3 (48, 49). An awesome overall response rate

(ORR - the percentage of patients who experienced a complete or

partial response) of 79% and a well-tolerated profile of toxicity were

found in phase I/II clinical trials enrolling both adult and pediatric

patients (50). In brain tumors, ORR was 30% and in particular, a

retrospective study showed the results on the efficacy and safety for

patients (n=33) with progressive or refractory CNS tumors enrolled

in the SCOUT (NCT02637687) and NAVIGATE (NCT02576431)

trials; among the 26 pediatric patients (79%), 13 pediatric HGGs

and 7 pediatric LGGs were included. The observed ORR was 38%

(38% in HGGs and 43% in LGGs, respectively), with three complete

responses and seven partial responses. Importantly, the disease

control rate at 24 weeks was 77% for pediatric HGGs and 100%

for pediatric LGGs (43). In Supplementary Table 2 are reported

results on patents with CNS tumor and treated with Larotectinb.

The Food and Drug Administration approved entrectinib in

August 2019 to treat adult and pediatric populations with NTRK

fusion tumors (51).

Robinson and colleagues published the first interim results

based on 29 enrolled patients, aged 5 months to 20 years. The

ORR was 100% in 11 pts [(high-grade CNS tumors (n=5) and

extracranial solid tumors (n=6)] (52). In 2020, an expanded cohort

of 39 patients confirmed an ORR of 77%. CNS tumors were in 14

patients, of which 11 displayed NTRK fusions. Notably, the ORR in

this subgroup reached 64% (53). Desai et al. demonstrated that

entrectinib had a rapid and durable responses in pediatric patients

with solid tumors harboring NTRK1/2/3 or ROS1 fusions (54). In

Supplementary Table 2 are reported results on patents with CNS

tumor and treated with entrectinib. In addition, Liu et al. reported

weight gain, dizziness and withdrawal pain in a several patients who

were treated with TRKi (55).

Usually, both Larotrectinib and Entrectinib are administered

until disease progression or unacceptable toxicity occurs (42, 43,

54). Treatment discontinuation is reported in extracranial tumors

in which tumor size reduction has made complete resection
FIGURE 2

The major NTRK partner fusion genes in pediatric CNS tumor (7, 19, 28, 31–39). Neurotrophic tyrosine kinase receptor 1 (NTRK1), neurotrophic
tyrosine kinase receptor 2 (NTRK2), neurotrophic tyrosine kinase receptor 3 (NTRK3), Tropomyosin 3 (TPM3); QKI, KH Domain Containing RNA
Binding (QKI); NACC Family Member 2 (NACC2); Neuron Navigator 1 (NAV1); KN Motif And Ankyrin Repeat Domains 1 (KANK1); actin-binding protein
vinculin (VCL); ATP/GTP-binding protein (AGBL4); TLE Family Member 4, Transcriptional Corepressor (TLE4); ETS variant transcription factor 6 (ETV6).
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possible; interestingly, patients who discontinued treatment

following an initial response and subsequently experienced

disease progression may still benefit from restart of therapy (41).

Mutations called on target and off target, respectively, on the

NTRK gene or in genes associated with the MAPK pathway, are

responsible for resistance to those drugs in several type of cancers

(5, 56–59). In the NTRK3 gene, acquired variants p.G623E and

p.G623R have been identified to confer resistance to either

larotrectinib or entrectinib (48, 57, 59, 60). Additionally, acquired

variants p.F617L and p.G696A specifically confer resistance to

larotrectinib (50, 57, 61). In the NTRK1 gene, acquired variants

p.V573M and p.G667S have been found to induce resistance to both

larotrectinib and entrectinib, whereas the acquired variant p.F589L

in the same gene only confers resistance to larotrectinib (50, 57,

62–64).

As a result, the need for second-generation TRKi, such as

selitrectinib (loxo-195), taletrectinib (DS-6051b, AB-106), and

repotrectinib (tpx-0005), has arisen (5, 30, 56). Taletrectinib

works as a multi-kinase inhibitor that can overcome resistance

from solvent-front replacements involving TRKA, TRKB and

TRKC such as others involving ROS1 (65). Selitrectinib is a

selective TRKi studied in a phase I trial involving both children

and adults with tumors that have developed resistance mediated by

TRK kinase mutations, in which a preliminary efficacy was found

(66). Repotrectinib functions as a kinase inhibitor encoded by the

NTRK, ROS1, and ALK genes. It effectively binds to the ATP-

binding pocket of the kinase, preventing steric hindrance caused by

various clinically resistant mutations (57). A clinical trial

investigating its use in pediatric patients with solid tumors that

include CNS neoplasms is currently ongoing (NCT04094610).

On the other hand, mutations that involved other RTKs or

downstream pathway mediators can result in off-target resistance to

TRKi. Specifically, MET amplification, BRAFV600E mutation, or

KRAS alterations have been found in patients with TRK fusion

and who show a progression of the tumor during the treatment of

TRKi (56). Of note, the TRKi monotherapy was not effective for

resistance mediated to overcome the mutational pathway, while a

dual blockade of TRK and other pathways involved in the resistance

mechanism could effectively control tumor growth (67). For

instance, the combination of the inhibitors of TRK and MET has

been found to be effective in a patient carried a TRK fusion and

MET amplification that drives the resistance to the TRKi alone (56).
3 Conclusions

Tropomyosin receptor kinase inhibitors, such as larotrectinib

and entrectinib, have showed high efficacy in pediatric patients,

also in CNS tumors carrying alterations in NTRK genes. To date,

additional research is necessary to help us to understand better
Frontiers in Oncology 04
the mechanism of action of these drugs and to identify

biomarkers that can help identify patients who will benefit

most from therapy.
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