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Introduction: Accurate delineation of tumor targets is crucial for stereotactic body

radiation therapy (SBRT) for non-small cell lung cancer (NSCLC). This study aims to

develop a deep learning-based segmentation approach to accurately and efficiently

delineate NSCLC targets using diagnostic PET-CT and SBRT planning CT (pCT).

Methods: The diagnostic PET was registered to pCT using the transform matrix

from registering diagnostic CT to the pCT. We proposed a 3D-UNet-based

segmentation method to segment NSCLC tumor targets on dual-modality PET-

pCT images. This network contained squeeze-and-excitation and Residual

blocks in each convolutional block to perform dynamic channel-wise feature

recalibration. Furthermore, up-sampling paths were added to supplement low-

resolution features to the model and also to compute the overall loss function.

The dice similarity coefficient (DSC), precision, recall, and the average symmetric

surface distances were used to assess the performance of the proposed

approach on 86 pairs of diagnostic PET and pCT images. The proposed model

using dual-modality images was compared with both conventional 3D-UNet

architecture and single-modality image input.

Results: The average DSC of the proposed model with both PET and pCT images

was 0.844, compared to 0.795 and 0.827, when using 3D-UNet and nnUnet. It

also outperformed using either pCT or PET alone with the same network, which

had DSC of 0.823 and 0.732, respectively.

Discussion: Therefore, our proposed segmentation approach is able to outperform

the current 3D-UNet network with diagnostic PET and pCT images. The integration

of two image modalities helps improve segmentation accuracy.

KEYWORDS

deep learning approach, dual-modality segmentation, automatic tumor delineation,

stereotactic radiotherapy, non-small-cell lung cancer (NLSCLC)
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Introduction

Lung cancer is a leading cause of global cancer incidence and

mortality (1). Stereotactic body radiation therapy (SBRT) has been

recommended by the European Society for Medical Oncology and

the National Comprehensive Cancer Network as a standard clinical

treatment for patients with non-small cell lung cancer (NSCLC) who

cannot undergo surgical resection and has negative lymph nodes (2).

Accurate delineation of the target area is crucial to ensure high-dose

irradiation of the lesion while minimizing the dose to normal lung

tissue (3). This process is difficult due to the distortion of normal

structures caused by pneumonia, atelectasis, and pulmonary fibrosis

in lung cancer patients. For adequate tumor tissue visualization and

staging, multi-modality 18F-fluorodeoxyglucose (FDG) positron

emission tomography (PET) and computed tomography (CT)

images are emerging as important oncologic imaging techniques (4,

5). PET-CT combines the sensitivity of PET in detecting areas of

abnormal function and anatomical localization from CT. Tumors

usually exhibit higher FDG uptake than surrounding normal tissues

in PET images. However, the low spatial resolution cannot accurately

determine the spatial extent. CT provides detailed anatomical

information with high resolution. However, CT has limited

physiological information, and sometimes, there is a similar

contrast between the tumor and surrounding soft tissue (4, 6, 7). It

is essential to enrich standard anatomical imaging, i.e., CT, with the

information on tumor biology gained by PET to better select and

delineate SBRT target volumes.

With the steady increase in clinical indications for PET-CT

imaging, the delineation of target volumes in radiotherapy planning

relies more on PET and CT images for complementary information.

However, in many cases, this is still a manual process by the

oncologist on a slice-by-slice basis, with limited support from

automated techniques. This can be labor-intensive, time-

consuming, and prone to errors and inconsistency (8).

PET-CT images have a great impact on tumor visualization and

staging; however, an integrated PET-CT system has not become the

standard of care in SBRT planning for NSCLC. Until recently,

anatomical imaging with CT or MRI scan was the only information

available in the treatment planning process in many sites (9).

Several automatic delineation methods on PET-CT have been

reported for NSCLC (6, 10–13), but all methods work on images

from an integrated PET-CT scanner, which has been registered

through the hardware in the scanner. Song et al. designed an

adaptive context term for the objective function to achieve

consistent segmentation results between PET and CT (14). Ju

et al. used a random walk method as an initial preprocessor to

obtain object seeds, and a graph cut method was then used for lung

tumor segmentation on PET-CT images (11). Li et al. proposed a

two-stage segmentation approach, in which a fully convolutional

network (FCN) was first used to generate a rough segmentation

based on CT, and then a fuzzy variational model was utilized for the

accurate segment on PET images and the input from the first stage

(15). Zhong et al. adopted FCN co-segmentation for NSCLC in

PET-CT images with two independent contours based on PET

and CT images (10). In addition to lung cancer, for other cancer

diseases, convolutional neural network (CNN)-based segmentation
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methods using co-registered PET-CT images have also been

reported (16, 17). There are few works investigating the capability

of automatic delineation based on diagnostic PET-CT and planning

CT (pCT), which offers tumor metabolic information to CT with

existing medical imaging resources. Note that when used for SBRT

planning, no surgery or noticeable weight change should occur

between the two scan times.

In this study, we propose a scheme for the automatic

segmentation of the gross tumor volume (GTV) in NSCLC

patients who undergo SBRT based on diagnostic PET-CT and

pCT. The first step involves registering diagnostic CT taken with

PET to pCT, and a transform matrix is obtained that permits

directly registering PET to pCT. The 3D-UNet network is adopted

as the backbone and supplemented with residual blocks, squeeze-

and-excitation (SE) blocks (18), and auxiliary up-sampling paths to

form the CNN-based segmentation model. The features from all

levels of the network are merged into a single probability map as

output. A comparison with dual-modality 3D-UNet is carried out to

demonstrate the efficacy of our model. A single-modality image set

from either PET or CT is used as the input to the proposed network

to evaluate the contribution of each imaging modality and illustrate

the superiority of using both modalities in the segmentation task. In

total, the research suggests that the combined diagnostic PET-CT

and pCT dual-modality segmentation approach should enable

improved GTV segmentation accuracy for SBRT planning.
Materials and methods

A total of 86 lung cancer patients who received SBRT were

analyzed in this study following institutional review board approval.

All patients had CT images (CT scanner; Philips Brilliance Big Bore

CT, Amsterdam, Netherlands) for simulation and PET-CT images

(PET-CT scanner; Discovery MI, GE Healthcare, Milwaukee, WI,

USA) taken within 1 month (14.8 ± 10.3 days) before the simulation

CT scans. The data collection spanned from January 2012 to

January 2022. According to the GTV manual delineation results,

the tumor size ranged from 0.33 to 57.90 cm3 with a mean volume

of 12.15 ± 11.99 cm3. For all recruited patients, no surgery or

treatment occurred between the two scans, so the tumor volume

was considered the same. The fused PET-CT images were printed

out as guidance when delineating the GTV on the pCT images. All

contouring was completed using Precision (version 1.1.1.1;

Accuray, Sunnyvale, CA, USA). In this study, while physicians

referred to the fused PET-CT images to define the GTV contours on

pCT images, the PET images and pCT images were not fused since

they were not registered.
Overview of the segmentation workflow

Figure 1 illustrates the segmentation framework used in our

study. The workflow consists of three main stages. In the first stage,

the diagnostic CT images taken with the PET images are registered

around the tumor region to the pCT images to generate the

transform matrix, which allows for direct registering PET images
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to the pCT images. Then, patches are generated with the image pre-

processing step, which includes resampling, cropping, and

normalization. In the second stage, a 3D-UNet-based architecture

with residual layers, SE normalization (SE Norm), and auxiliary

paths is trained with PET-CT images to segment the GTV region. In

the last stage, the weights from the best-trained model are selected

to generate GTV contours on the testing set. The contours are

compared with the manual delineation results to calculate the

evaluation metrics.
pCT and PET image registration

The registration is performed with the 3D Slicer 5.0.2 software

landmark registration module (https://www.slicer.org/). For each

data set, 8 to 10 pairs of landmarks in diagnostic CT and pCT are

manually selected for rigid registration by an experienced clinician.

In this process, the pCT image set is considered the fixed image, and

the CT image set is the moving image. Note that only the volume

centered around the tumor region (≥150 × 150 × 150 mm3) is

considered as registration volume since the respiratory motion and

patient positioning difference between two scan times make

registration of the whole lung volume challenging. If multiple

targets exist, a larger volume should be registered. A transform

matrix from rigid registration is then generated and exported from

the 3D Slicer and used to translate and rotate the PET image arrays.

This process is automated by a Python script (Python 3.7). To this

end, PET and pCT images are believed to be registered given the

diagnostic PET and CT images are already registered by

the scanner.
Image pre-processing

Once pCT and PET images are registered, they are first

resampled to a common resolution of 1 × 1 × 1 mm3 with

trilinear interpolation. The PET and pCT images are then

cropped to a patch of 144 × 144 × 144 voxels to ensure the lesion

is included in the 3D volume. To remove the unrelated image
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details, the pCT intensities are clipped in the range of [−800, 800]

Hounsfield Units and then mapped to [−1, 1]. The PET images are

transformed independently with Z-score normalization for

each patch.
Network architecture

The proposed segmentation model is built upon a 3D-UNet

architecture as illustrated in Figure 2. This is a single-path model

where PET and pCT are concatenated into a single matrix for

input. The basic module of the encoder and decoder was a

convolutional block with rectified linear unit (ReLU) activation

function and SE Norm. The operation of down-sampling in the

encoder is achieved by max pooling with a 2 × 2 × 2 kernel size.

Residual blocks with convolutional blocks, SE Norm blocks, and

shortcut connections (Figure 2) are employed in the encoder. The

up-sampling operation in the decoder is achieved by using a 3 × 3

× 3 transposed convolution. Initially, 24 feature maps are

extracted in this network, which are doubled along each down-

sampling operation in the encoder. The number of feature maps is

halved by each transposed convolution in the decoder. At the end

of the decoder, the spatial size achieved is the same as the initial

input size. A 1 × 1 × 1 convolutional block is applied with a

softmax classifier to generate a voxel-level probability map and the

final prediction.

In the decoder, three up-sampling paths are used to transfer

low-resolution features by applying a 1 × 1 × 1 convolutional block

to reduce the number of channels and utilizing trilinear

interpolation to increase the spatial size of the feature maps. We

also obtain label probability maps from the three paths and

compute the weighted sum of all loss functions to the overall loss

function. For each loss function, the sum of Dice loss and focal loss

is used:

L = L1 +o
4

i=2
wi · Li, (1)

where Li= LDice + LFocal is the loss function from each layer in

the network architecture and wi is the weight for each layer.
FIGURE 1

Overview of the segmentation workflow.
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Network training

Of the total 86 pairs of PET-CT scans, 54 pairs were used as the

training set, 18 pairs as the validation set, and 14 pairs as the testing

set. The selection procedure began by sorting all scan pairs

according to tumor volume (GTV voxel number). The whole

patient group was divided into 18 groups with group 1 patients

having the smallest GTV volumes and group 18 having the largest

GTV volumes. Three scan pairs in each group were selected to be

included in the training set, and the rest of the patients were

randomly assigned to validation and testing sets. This stratified

strategy ensured that the training set is representative of the whole

data set in terms of tumor volume. All parameters were tuned on

the training set. All reported results were obtained on the test set.

The best model on the validation set is selected and used to evaluate

the performance of the testing set.

Several data augmentation methods were adopted to enhance

the training set. For each pair of co-registered PET-CT scans in the

training set, rotation from 0 to 45 flip operation and random

rotation were performed to obtain additional training sets.
Compared methods

Experiments were designed to evaluate the performance of the

proposed model and the contribution of dual-modality input. We

compared the performance of our proposed model with 3D-UNet

and nnUNet as baseline models (19, 20) using both PET and pCT as

input. The single-modality data set of either PET or pCT was then

used as input to the proposed model. Those experiments were

carried out with the same data set from 86 patients and the same

hyper-parameters for the network, and the results were compared

with those of our proposed model. For nnUNet, a 3D full-resolution

UNet configuration was selected, and registered pCT and PET
Frontiers in Oncology 04
images were cropped to patches of 144 × 144 × 144 mm3 for

the network.

The segmentation accuracy of the proposed method and other

comparison algorithms was evaluated by the following criteria:

1. Dice similarity coefficient (DSC), which measures the volume

overlap of two segmentations (21, 22):

DSC =  
2 A ∩ Bj j
Aj j ∪ Bj j (2)

where A and B denote the manual and automatic segmentation

results, respectively. Therefore, a higher DSC indicates a more

precise segmentation performance.

2. Recall and precision scores, which show the true positive rate

and positive prediction value:

recall =  
TP

TP + FN
, (3)

precision =  
TP

TP + FP
, (4)

where TP, FP, and FN are true positive, false positive, and false

negative, respectively.

3. Average symmetric surface distance (ASSD), which is defined

as follows:

ASSD(A, B) =  o
a ∈ Amin

b∈Bd(a,b) +ob ∈ Bmin
a∈Ad(a,b)

S(A)j j + S(B)j j , (5)

where S() indicates the set of pixels on the surface, d() means

Euclidean distance between two points, and | | represents the

number of pixels in the set. Therefore, lower ASSD means a

shorter distance between two surfaces.

Based on the abovementioned metrics, paired t-test is

conducted (Python 3.9 scipy.stats package) to verify if there is a

statistical difference between the proposed and comparison
A

B

FIGURE 2

(A) The proposed 3D-UNet-based network architecture with SE Norm layer and residual layer with identity and projection shortcuts. (B) The detailed
structure of the SE Norm layer. SE Norm, squeeze-and-excitation normalization.
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methods. A p-value smaller than 0.05 is considered significantly

different. The training and inference time, as well as the GPU

memory consumption for each method, were also quantified to

better evaluate the performance of the proposed algorithm.
Experiment setting

For the deep learning environment, we built Python with

version 3.9.12 and PyTorch with version 1.11.0 on the Ubuntu

16.04.2 LTS. All networks ran on one Quadro P6000 GPU with 24

GB of memory. All models were trained by the Adam optimization

method with a batch size of 1 for 600 epochs. The cosine annealing

schedule was applied to reduce the learning rate from 1e−3 to 1e−6

within every 25 epochs.
Results

Table 1 shows the mean and standard deviation of the

evaluation metrics, i.e., DSC, precision, recall, and ASSD, for the

proposed and comparison models with single and dual image

modalities as input. It was observed that the proposed model with

dual image modalities has a superior or comparable performance in

all evaluation metrics. When using two image modalities as input,

the proposed model outperforms the 3D-UNet in all evaluation

metrics. It also outperforms nnUNet for the majority of the metrics,

though no significant difference was found. Moreover, there were

significant differences in terms of DSC and ASSD between the

proposed model and the 3D-UNet model (p-values were 0.011

and 0.021). This demonstrates that the proposed network has more

advanced and perceptive learning ability than the conventional 3D-

UNet. Table 1 also shows higher segmentation accuracy based on

dual image modalities than single modality using either pCT or PET

alone. There are significant differences in all evaluation metrics
Frontiers in Oncology 05
between PET and dual image modalities as input (p-values are

0.0007, 0.035, 0.027, and 0.0003 for DSC, precision, recall, and

ASSD, respectively), while no significant difference is observed

between pCT and dual modalities.

Table 2 reports the training and inference time as well as the

GPU memory usage during model training for all dual-modality

segmentation methods. Compared with 3D-UNet, the training and

inference time taken by the proposed model increased by 8% and

27%, respectively, while the GPU memory usage increased by 40%.

This is not surprising since the scaling operation in the excitation

stage in the SE Norm block generated a weighted channel vector

with the same size as the input, which was subsequently applied

element-wise to the input. This rendered the training process slower

and more memory intensive. However, this additional time and

space overhead were justified by its contribution to model

performance. The nnUNet was trained with the fixed parameter

for 1,000 epochs, while the proposed model was trained for 600

epochs in this study. For the average training time taken per epoch,

the proposed model requires one-fourth of the time cost by nnUnet,

which presents a similar ratio in inference time between the two

models for each patient. This is due to the factor that the sliding

window approach leads to a longer prediction time for nnUNet,

which exists in both training, i.e., validation stage and inference.

The performance of our proposed dual-modality segmentation

method was also compared with that of other models and input

image modalities for all 14 test data sets. Figure 3 shows that our

proposed segmentation model achieved overall improvement for all

evaluation metrics and also gave the most stable segmentation

performance in the entire test data set. The curves from the PET-

only method show the highest fluctuations for all evaluation

metrics, which suggests for some testing data the PET-only

method has failed. However, the pCT-only method achieved

performance very close to the dual image modality method,

which demonstrates a big contribution to segmentation. When

incorporating two image modalities as input, the proposed
TABLE 1 Statistics of our proposed method and the compared methods on the testing set.

Image Model DSC Precision Recall ASSD

pCT Proposed 0.823 ± 0.093 0.794 ± 0.153 0.877 ± 0.052 0.988 ± 0.557

PET Proposed 0.732 ± 0.111 0.763 ± 0.153 0.749 ± 0.155 1.674 ± 0.691

pCT-PET Proposed 0.844 ± 0.058 0.840 ± 0.100 0.859 ± 0.071 0.887 ± 0.384

pCT-PET 3D-UNet 0.795 ± 0.102 0.822 ± 0.158 0.798 ± 0.110 1.312 ± 0.618

pCT-PET nnUNet 0.827 ± 0.082 0.863 ± 0.128 0.789 ± 0.045 0.994 ± 0.580
DSC, Dice similarity coefficient; ASSD, average symmetric surface distance; pCT, planning computed tomography; PET, positron emission tomography.
TABLE 2 Time and memory usage comparison across dual-modality segmentation methods.

3D-UNet nnUNet Proposed

Training time (hour) 9.3 66.8 10.0

Inference time (sec per patient) 1.5 7.9 1.9

GPU memory usage (MB) 8,969 8,801 12,543
f
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network architecture provides more accurate and consistent

segmentation over the 3D-UNet and nnUNet models, which is

due to the improved representational power from the SE block.

Figure 4 shows a typical tumor delineation with different input

image modalities and segmentation models on pCT and PET

images. In this example, methods with SE Norm blocks and

auxiliary paths, i.e., shown in Figures 4A, D, F, I, present closer
Frontiers in Oncology 06
boundaries to the manual delineation than 3D-UNet and nnUNet

with dual-modality input. This indicates the proposed network is

able to increase its sensitivity to informative features so that they

can be exploited by subsequent transformations and suppress less

useful ones. For the PET-only method, the blurry boundary is the

main reason for the inadequate performance compared with the

proposed method.
A B

DC

FIGURE 3

Comparison across different models and input image modalities from 14 test data sets based on (A) DSC, (B) precision, (C) recall, and (D) ASSD. DSC,
Dice similarity coefficient; ASSD, average symmetric surface distance.
FIGURE 4

The performance of GTV segmentation by proposed model, compared with different input modalities and 3D-UNet model. (A–E) Segmentation
results (red) on pCT images by pCT image only with the proposed model, dual-modality input with 3D-UNet model, nnUNet model, the proposed
model, and the manual delineation. (F–H) Segmentation results (red) on PET images by PET image only with proposed model, dual-modality input
with 3D-UNet model, nnUNet model, the proposed model, and the manual delineation. GTV, gross tumor volume; pCT, planning computed
tomography; PET, positron emission tomography.
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Discussions

The precision of the GTV delineation is crucial for accurate

treatment and dose assessment in lung cancer SBRT. Automated

segmentation techniques, such as deep learning, have the potential

to reduce intra- and inter-observer variabilities in manual GTV

delineations and are in high demand in clinical SBRT practices.

Jordan Wong et al. proposed a deep learning-based auto-

segmentation model for lung stereotactic ablative radiotherapy,

and the DSC and 95% Hausdorff distance (HD) of the GTV were

0.71 and 5.23 mm, respectively (23). Dense V-networks (DVNs)

were used to develop a GTV automated segmentation for planning

lung cancer SBRT, and 3D DSC and HD were 0.832 ± 0.074 and

4.57 ± 2.44 mm, respectively (24). PET-CT image modalities hold

a special place for disease characterization since they contain

complementary information about the metabolism and the

anatomy of cancer (25). Therefore, PET-CT can be used to

develop a dual-modality segmentation approach to the GTV for

lung cancer SBRT. Several previous studies have shown that

segmentation based on CT and PET images can improve

accuracy in lung tumor segmentation compared with using

single-modality images (10, 11, 14, 15). Many of the published

works require two probability maps to be generated for each

imaging modality, which results in extra clinical workflow. In this

paper, we determine the tumor region effectively and accurately

with only one probability map, which is estimated by taking

advantage of both PET and pCT images. The novelty of this

model lies in the SE blocks (18) to dynamically enhance the

important feature and the up-sampling paths to supplement

low-resolution features in the model. Additionally, the up-

sampling paths are included in the overall loss function

calculation to supervise the training of lower-layer parameters,

which can further improve the discriminative capability of the

network. The new components brought to the proposed model

have significantly improved the accuracy and consistency for GTV

segmentation in SBRT when comparing the evaluation metrics

(Table 1, Figure 3) between the proposed model and 3D-UNet

and nnUNet.

This study overcomes the weakness that the integrated PET-CT

scanner is not routinely used in RT planning, while functional

contrast from PET is always desired to provide adequate tumor

visualization. Compared with previously published studies, it is

more challenging to fuse diagnostic PET and pCT image features

since the two sets of images may have different patient positions and

breathing phases. Here, we use a semi-automatic approach for

registration and ensure at least 150 × 150 × 150 mm3 around the

tumor region to be well-registered, which requires an estimation of

tumor location before registration. One recently published work

also demonstrates the capability of segmenting lung tumors on

diagnostic PET and pCT using a stratified method based on tumor

volume [28]. Rather than knowing the tumor volume in advance,

our model copes with tumors of varied sizes, which brings

convenience to clinical deployment.

The DSC of our proposed network with dual image modalities is

0.844, which is better than the average values []. Evaluation metrics
Frontiers in Oncology 07
from the CT-only approach presented very close results to the dual-

modality approach (DSC: 0.823 vs. 0.844), and no significant

difference was found, which indicates the contribution from CT

image in dual-modality segmentation is very remarkable. Regarding

the PET-only approach, even though the contribution is small in

this work, it still improves the segmentation. We notice that in some

cases there are displacements between PET and CT images around

the tumor region, which can be caused by imperfect PET image

registration due to subject motion between PET and CT scans. This

can be one reason that induces lower segmentation performance in

the PET-only approach. Some studies reported a deep learning-

based motion correction image registration model to solve this

problem (26, 27), which is a future direction for us to improve the

PET images’ contribution to segmentation.

Although the proposed network with dual image modalities

has achieved improvement over the single-modality method,

there is still much improvement needed in terms of performance

and workflow. Manual registration between diagnostic PET and

pCT is the most significant limitation for obtaining efficient GTV

segmentation. Note that this limitation does not alter the paper’s

findings and conclusion about segmentation accuracy.

Previously published work suggests the capability of inter-

modality image registration with a deep learning-based

method (28, 29). Our promising approach is the use of a deep

learning-based network to directly register diagnostic PET to

pCT. The automatic delineation of the target area not only can

reduce contouring time and decrease interobserver variability

but also can improve dose consistency and accuracy. Future

work should look into a dosimetric calculation based on auto-

segmented and manually-segmented GTV contours to assess

clinical validity.
Conclusions

In this study, we proposed a novel dual-modality, 3D-UNet-

based network for the segmentation of tumors in diagnostic PET

and pCT images. The proposed neural network can make full use

of the advantages from both modalities, i.e., the metabolic

information from PET and anatomical information from pCT.

The proposed neural network was validated on clinic images of 86

patients with lung cancer, including one set of PET-CT images

and another set of pCT images. The results showed that the

proposed network is effective and robust and achieved

significant improvement over the original 3D-UNet model and

is superior or comparable to nnUNet in most evaluation metrics

when using two modalities. It also demonstrated that dual

modality outperformed single-modality for automatic GTV

delineation in SBRT.
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