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PLC-b is widely distributed in eukaryotic cells and is the key enzyme in

phosphatidylinositol signal transduction pathway. The cellular functions

regulated by its four subtypes (PLC-b1, PLC-b2, PLC-b3, PLC-b4) play an

important role in maintaining homeostasis of organism. PLC-b and its related

signals can promote or inhibit the occurrence and development of cancer by

affecting the growth, differentiation and metastasis of cells, while targeted

intervention of PLC-b1-PI3K-AKT, PLC-b2/CD133, CXCR2-NHERF1-PLC-b3,
Gaq-PLC-b4-PKC-MAPK and so on can provide new strategies for the precise

prevention and treatment of malignant tumors. This paper reviews the mechanism

of PLC-b in various tumor cells from four aspects: proliferation and differentiation,

invasion and metastasis, angiogenesis and protective measures.
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1 Introduction

PLC-b is widely distributed on the cytoplasmic membrane of eukaryotes. It belongs to b-
isoenzyme of phospholipase C, which is the key enzyme in the signal transduction pathway of

phosphatidylinositol. Its regulated cellular function plays an important role in maintaining

homeostasis of the organism. It is an effector enzyme of G protein-coupled receptors, GPCRs,

with seven transmembrane hydrophobic regions, and molecules such as bradykinin, histamine,

angiotensin II, M1muscarinic-like receptors anda1 adrenergic receptors activate PLC-b viaGaq
of the pertussis toxin (PTX)-sensitive Gq subfamily, while M2 and M4 muscarinic-like receptors
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activate PLC-b viaGbg of the PTX-sensitive Go/Gi subfamily (1). In the

process of recognizing different subunits of G-protein, the C-terminal

andN-terminal PH domain of PLC-b play an important role. The action

point of PLC-b and Gaq extends at the C-terminal of the enzyme to

form the tailer sequence, while the action point of PLC-b and bg dimer is

located at the N-terminal PH domain, which is the key step of exerting

PLC-b’s biological effect. The basic signal pathwaymediated by PLC-b is:
transmembrane receptor→G-protein→PLC-b→DAG and IP3 (2). In

cell signal transduction, phosphatidylinositol-4,5-bisphosphate (PIP2)

can be hydrolyzed by the activated PLC-b to generate the second

messenger diglyceride (DAG) and inositol-1,4,5-triphosphate (IP3).

Among them, IP3 diffuses freely and binds to IP3-specific receptors,

which leads to the release of intracellular Ca2+, while DAG activates

protein kinase C (PKC) together with Ca2+ (Figure 1) (3).

PLC-b is not only distributed on the cytoplasmic membrane, but

also in the nucleus and cytoplasm. PLC-b1 consist of two subtypes,

150-kDa PLC-b1a and 140-kDa PLC-b1b, which are detectable both

in cytosolic and nuclear fractions (4, 5). Several studies have revealed

that nuclear PLC-b1 signaling played a direct role in G1 progression

by means of a specific target, i.e. cyclin D3/cdk4 (4, 6). There’s also

research suggesting that nuclear PLC-b1 is a positive regulator in

process of myoblast differentiation (7). Besides nuclear function,

PLC-b1 has a cytosolic population that can drive the differentiation

of rat pheochromocytoma cells (PC12 cells) by regulating component

3 of RISC activity (C3PO). Studies suggest that we can control the
Frontiers in Oncology 02
differentiation of cultured neuronal cells by down-regulating the

levels of cytosolic PLC-b1 or by driving it to the membrane with

stimulation of Gaq (8). Additionally, we found that reducing PLC-b1
levels increases the rate of proliferation in cells of neuronal lineage. In

the early stages of differentiation, PLC-b1 binds and inhibits cyclin-

dependent kinase 16 (CDK16) to promote proliferation. The

bifunctional effects of PLC-b1 on differentiation and proliferation is

also seen in the cultured human neuronal line SK-N-SH (9).

There are four subtypes of PLC-b, namely PLC-b1, PLC-b2,
PLC-b3 and PLC-b4. They are widely distributed in human brain,

breast, liver, pancreas and vascular smooth muscle tissues, and their

regulated cellular functions play an important role in maintaining

homeostasis (1, 2). PLC-b is involved in the process of cell

proliferation, differentiation and apoptosis, and is closely related

to various biological activities of tumors. In this paper, the role of

PLC-b in several aspects of tumor proliferation, metastasis,

angiogenesis and protective measures will be discussed separately.
2 Proliferation and differentiation

2.1 ERK/MAPK signal

Mitogen activated protein kinases (MAPKs) is a kind of serine/

threonine protein kinases. Its related pathways can be activated by
FIGURE 1

PLC-b-related signal transduction involves the regulation of biological activity of tumor cells.
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extracellular stimuli such as growth factors, inflammation,

hormones, neurotransmitters, environment and cell stress, and

then induce a wide range of intracellular reactions (10).

Extracellular signal regulated kinase (ERK) was first discovered

and widely studied in MAPK pathway. Mutation or abnormal

activation of MAPK/ERK signaling pathway was found in more

than half of cancers. ERK mainly includes five subtypes

ERK1~ERK5. Among them, ERK1 and ERK2 are the two

subtypes that have been deeply studied at present, and ERK1/2

plays a key role in cancer proliferation and metastasis (11, 12).

The expression of PLC-b1 in hepatocellular carcinoma (HCC) is

significantly higher than that in adjacent tissues, and it is closely related

to tumor stage. The results show that the high expression of PLC-b1 in
cells can stimulate the phosphorylation of ERK1/2 pathway, while ERK

inhibitor can inhibit the promotion effect of PLC-b1 on the growth of

hepatocellular carcinoma cells. Therefore, PLC-b1 can exert

carcinogenic activity by activating ERK signal in HCC cells (13). In

addition, insulin-like growth factor 1 (IGF-1) induces the

phosphorylation of nuclear PLC-b1 while activating nuclear ERK,

and then starts the inositol phosphate cycle, which may be the loop

mechanism of regulation between PLC-b1 and ERK (14, 15). miRNA-

205 can also activate liver cancer stem cell subsets and maintain the

characteristics of liver cancer stem cells by regulating the upstream

target PLC-b1, which is closely related to the recurrence and metastasis

of liver cancer (16). The expression of PLC-b1 in HCC tissues is

significantly higher than that in paracancer tissues and is closely related

to tumor staging. There was a positive correlation between PLC-b1
expression and advanced tumor stage, that is, PLC-b1 expression was

significantly correlated with tumor T stage, and had no significant

correlation with other clinical features. This suggests that high PLC-b1
expression contributes to the progression of HCC. At the same time,

patients with positive tumor PLC-b1 expression had a lower OS rate

than the patients with negative PLC-b1 expression. According to the

above, the expression of PLC-b1 in HCC is an important prognostic

factor for survival and T stage (17).

Melanoma is one of the highly malignant epidermal cancers. It

was found that PLC-b2 was highly expressed in melanoma tissues,

and its level was significantly up-regulated in human melanoma cell

lines. This can affect the related biological functions of melanoma,

while interfering with PLC-b2 can significantly inhibit cell viability

and promote cell apoptosis (18). Ras-Raf-ERK pathway can promote

cell growth, division and differentiation, and participate in cell cycle

regulation, wound healing, tissue repair, cell migration and integrin

signal transduction. Ras mutations are the oncogenic form in more

than 15% of cancers, and the B-Raf gene (which is a member of the

Raf family) is mutated in 66% of malignant melanomas. Ras can

activate Raf/MEK signal in turn to up-regulate the phosphorylation

level of ERK1/2, and induce the development of cancer cells (19). The

mutual regulation of Ras and antioncogene p53 can affect the process

of cell proliferation, apoptosis, movement, inflammatory reaction and

angiogenesis, while the overexpression of PLC-b2 can significantly

reduce the mRNA and protein level of p53. MAPK signal can regulate

the expression of Bax, Bcl-2 and caspase-3 genes, among which Bax

protein promotes apoptosis while Bcl-2 protein inhibits apoptosis,

and caspase-3 is the key executor of apoptosis. It can significantly

enhance the expression of caspase-3 and Bax genes and reduce the
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activity of Bcl-2 by interfering with PLC-b2. Therefore, down-
regulation of PLC-b2 can inhibit the activation of Ras/Raf/MAPK

pathway and promote the apoptosis of melanoma cells, so it is

considered that PLC-b2 may be a potential target gene for

controlling the proliferation of melanoma cells (Figure 2) (18).
2.2 CSF1-P2RY6 and Stat5/SHP-1 pathways

PLC-b3 is related to a specific subgroup of leukemia, namely

chronic myelomonocytic leukemia (CMML). It is found that PLC-b3
(-/-) mice can cause CMML-like diseases (20), which are characterized

by immature and stunted granulocytes. Generally, after colony

stimulating factor 1 (CSF1) binds to the receptor in hematopoietic

cells, CSF1 receptor (CSF1R) triggers the activation of P2Y6 receptor

(P2RY6, a GPCR in P2 receptor family), which in turn activates PLC-b3
and induces autophagy and monocyte differentiation. However, in

CMML cells, the synthesis and secretion of a large number of

defensin a1 (DEFA1) and defensin a3 (DEFA3) can antagonize

P2RY6, thus inhibiting the monocyte differentiation induced by CSF1

and PLC-b3. Therefore, PLC-b3 knockout in hematopoietic cells can

effectively repress CSF1-mediated monocyte differentiation through

calcium signaling pathway (21).

In addition, the over-activation of signal transducer and

activator of transcription 5 (Stat5) can also lead to CMML. Src

homology region 2 domain-containing phosphatase 1 (SHP-1) is a

non-receptor protein tyrosine phosphatase mainly expressed in

hematopoietic cells and epithelial cells. It can dephosphorylate

Stat5 to inhibit the activity of Stat5, and the existence of PLC-b3
can inhibit the malignant reaction related to Stat5 by enhancing the

function of SHP-1. The same transformation mechanism has been

found in other human lymphoid and myeloid malignancies (20, 22).
2.3 Wnt/Ca2+ signal

Cutaneous squamous cell carcinoma (CSCC) is a malignant

tumor originating from epidermal keratinocytes or adnexal cells,

which has a high incidence. Once CSCC metastasizes, it is difficult

to treat and its prognosis is poor. Wnt5a (a member of Wnt protein

family) can participate in the non-classical Wnt pathway through

Wnt/Ca2+ pathway. It was found that the expression of PLC-b4
gene in this pathway decreased in cancer, but there was no

significant difference in Wnt5a mRNA level. WNT5a may activate

PLC-b4 by binding frizzled 4 (FZD4), and initiate the non-classical

Wnt pathway to play an antioncogene-like role in CSCC. Therefore,

PLC-b4 can inhibit the proliferation and invasion of CSCC cells,

and its high expression can also repress the growth of tumor cells

and CSCC formation in nude mice (23).
2.4 WNK1-PI4KIIIa and TRPC6-NFATc1
pathways

The imbalance of Ca2+ signal is one of the important

characteristics of cancer progression. Lysine-deficient protein
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kinase 1 (WNK1) is the main regulator of renal ion transport, and

regulates Ca2+ signal by stimulating phosphatidylinositol 4-kinase

IIIa (PI4KIIIa) to activate Gaq coupled receptor and PLC-b signal

pathway. The expression of WNK1 is directly related to the nuclear

grade of clear cell carcinoma of kidney (ccRCC). Studies have

shown that tumor tissues with higher Fuhrman nuclear grade

express a high level of WNK1, while WNK1 protein is rarely

detected in lower grade tumors. This indicates that the

overexpression of WNK1 may be closely related to the

pathological development of ccRCC. Functional experiments

showed that WNK1 combined with PI4KIIIa activated Ca2+

influx mediated by transient receptor potential channel 6

(TRPC6), and Gaq coupled receptor and PLC-b signal played an

important role in it (24, 25). Both the functional acquired mutation

and overexpression of TRPC6 can lead to kidney diseases, such as

focal and segmental glomerulosclerosis, fibrosis and renal cell

carcinoma (26–29). The nuclear factor of activated T-cells

cytoplasmic 1 (NFATc1) can be repressed by inhibiting the

activation of TRPC6 mediated by WNK1, thus reducing the

proliferation and migration activity of ccRCC cells. Therefore,

TRPC6-NFATc1 pathway mediated by WNK1-PI4KIIIa through

PLC-b signal may play a key role in the tumor growth of ccRCC

(30), and this mechanism can provide a potential new target for the

treatment of renal cell carcinoma in the future.
2.5 LPA

Lysophosphatidic acid (LPA) regulates PLC-b1 and PLC-b2 in

different ways to enhance the proliferation and migration of

intestinal epithelial cell (IEC), thus promoting wound healing and
Frontiers in Oncology 04
the recovery of intestinal epithelial barrier. The interaction between

Gaq and PLC-b2 induced by LPA binding to LPA receptor 1

accelerated the migration of IEC cells. While LPA’s activity of

promoting IEC cell proliferation is PLC-b1-dependent, involving
the translocation of Gaq to the nucleus, where it interacts with

PLC-b1 to change the process of cell cycle (31). In addition, LPA,

through its homologous receptors (LPAR1-LPAR6), can produce a

variety of cellular responses with the cooperation of PLC-b signals

(32, 33), for example, LPAR2 stimulates the proliferation and

migration of colon cancer cells, while the deletion of LPAR2 can

inhibit the progress of colon cancer (34, 35).
2.6 CXC chemokine/CXCR2
and CXCL5 signals

CXC chemokine and its homologous receptor CXC chemokine

receptor 2 (CXCR2) play a key role in tumor growth and

angiogenesis. It has been proved that blocking the biological axis

of CXC chemokine/CXCR2 can reduce the risk of malignant

tumors (36–39). CXCR2 is expressed in many pancreatic ductal

adenocarcinoma (PDAC) cell lines (40–43), and it is mainly

involved in enhancing the proliferation and viability of cancer

cells through autocrine or paracrine action (40, 43, 44). CXCR2,

PLC-b3 and Na+/H+ exchanger regulatory factor-1 (NHERF1) form

macromolecular complexes on the plasma membrane of pancreatic

cancer cells, which functionally couples the signal cascade mediated

by CXC chemokine and PLC-b3 (45). The formation of CXCR2-

NHERF1-PLC-b3 complex is mediated by PDZ domain in

NHERF1. Interruption of PDZ-mediated interaction can

eliminate CXCR2 and PLC-b3 signals, thus inhibiting the
FIGURE 2

PLC-b-related ERK/MAPK and other signaling pathways are involved in regulating the proliferation and differentiation activities of tumor cells.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1231875
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1231875
proliferation of PANC-1 cells (human pancreatic cancer cells). This

result has also been found in animal models of PDAC

xenotransplantation. In addition, it was found that the

destruction of CXCR2-NHERF1-PLC-b3 complex can

significantly inhibit the progression of pancreatic malignant

tumors in vitro and in vivo (45). Therefore, CXC chemokine/

CXCR2 signaling is an important mechanism for the occurrence

and development of many malignant tumors including pancreatic

cancer (46–50).

Pancreatic intraepithelial neoplasia (PanIN) is considered to be

the precursor of pancreatic cancer. Pathologically, PanIN lesions are

classified as dysregulated ductal epithelium progressing from

PanIN-1 to PanIN-3 (51, 52). Both PanIN-2 and PanIN-3 are

high-grade lesions that represent the initial steps toward invasive

cancer. The expression of CXCL5 in PanIN-2 and PanIN-3 was

significantly higher than that of PanIN-1, indicating that CXCL5

gradually increased in the progression of precancerous PanIN

lesions to invasive cancer. Patients with pancreatic cancer and

high CXCL5 expression who also underwent cancerectomy had

significantly lower survival rates than those without overexpression.

These results indicated that CXCL5 expression was negatively

correlated with tumor differentiation, clinical stage and survival

rate (44).
2.7 Gaq-PIP2-PKC pathway

Gaq-PIP2-PKC is the core signal pathway of uveal melanoma

(UM), in which PLC-b plays a key role (53). After PLC-b is

activated by Gaq, phosphatidylinositol 4,5- bisphosphate (PIP2)

is hydrolyzed into diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP3) (54). DAG binds to and activates a variety of

proteins including protein kinase C (PKC) and Ras guanyl

nucleotide releasing proteins (RasGRPs) through its C1 domain

(55). IP3 can increase intracellular Ca2+ level and activate Ca2+-

related signal pathways such as PKC signal . In UM

microenvironment, PKC and Ras protein activator RasGRPs

together activate MAPK signal, which is an important mechanism

of inducing tumor cell growth. At present, it has been found that

more than 90% UMs have mutations in Gaq structure, and PLC-b4
activation is the central node of carcinogenic signaling in Gaq
mutated UMs (53).
3 Invasion and metastasis

3.1 Ang II/AT1R/CaM signal

Angiotensin II (Ang II), angiotensin II type 1 receptor (AT1R)

and calmodulin (CaM) are important bioactive molecules that affect

the formation and prognosis of HCC. Ang II can generate and up-

regulate the expression of AT1R in liver cancer tissues. After AT1R is

coupled with PLC-b1, it activates and promotes the change of CaM

expression and conformation, thus regulating intracellular Ca2+

concentration and calcium-regulated kinase activity, resulting in a

series of biological effects. Furthermore, PLC-b1 siRNA was used to
Frontiers in Oncology 05
transfect hepatocellular carcinoma cell lines, and it was found that the

role of the above signal pathway was obviously weakened during the

metastasis of HCC cells with low expression of PLC-b1. Similar

experimental results have also been confirmed in the mouse model of

hepatocellular carcinoma, which indicates that PLC-b1-related Ang

II/AT1R/CaM signal is an important mechanism to promote the

migration and invasion of HCC cells (3).
3.2 CD133, EMT markers and miR-146a

PLC-b2 is expressed in most breast tumors, and its level can

affect the prognosis of patients (56). The role of PLC-b2 in different

invasive breast tumors is related to molecules such as CD133

(glycosylated transmembrane protein), EMT markers and miR-

146a (56–61). The expression of CD133 in breast cancer is

significantly related to tumor stage, size, lymph node metastasis

and sensitivity to neoadjuvant chemotherapy (60). EMT is the

process of epithelial cells transforming into mesenchymal cells

under certain physiological and pathological conditions, which

can enhance the migration and invasion activity of cancer cells

(62). MiR-146a is an antioncogene, which can inhibit the metastasis

of tumor cells.

Triple-negative breast cancer (TNBC), which accounts for

about 20% of all breast tumors, is a highly malignant tumor with

a particularly poor prognosis. At present, there is no effective

targeted therapy. In TNBC tumor-derived cells, the level of PLC-

b2 is positively correlated with the motility of tumor cells (61). It

was found that TNBC cells with high CD133 expression have

stronger metastatic potential, while PLC-b2 level in highly

invasive breast tumor-derived cells is negatively correlated with

CD133 expression. That is to say, although PLC-b2 can maintain

the movement of breast tumor cells, it may also down-regulate the

expression of CD133 and reduce the invasiveness of cells. Therefore,

PLC-b2 played a two-way regulating role in the transfer of TNBC

(57, 61).

PLC-b2 in low-invasive breast tumor-derived cells can inhibit

tumor development, but this protective mechanism is usually

affected by hypoxia (57). Under hypoxia, the down-regulation of

PLC-b2 is mainly related to the decrease of EMTmarker E-cadherin

or the up-regulation of CD133. However, the high expression of

PLC-b2 in low-invasive tumor cells can also prevent the malignant

progression related to hypoxia (59), that is, PLC-b2 can increase the

level of E-cadherin in cells, block the up-regulation of CD133, and

induce the adhesion of tumor cells to reduce their metastasis and

invasion activity, thus preventing the progression of breast

malignant tumors (Figure 3) (57).

The cancer cells of ductal carcinoma in situ (DCIS) are confined

in the mammary duct and have not spread to the surrounding

normal breast tissues. If they invade the surrounding matrix, they

will develop into invasive ductal carcinoma (IDC). Up-regulation of

PLC-b2 expression in DCIS can counteract the increased metastatic

potential of DCIS cells caused by hypoxia. Therefore, the expression

level of PLC-b2 may affect the malignant potential of DCIS, that is,

the low expression of PLC-b2 makes DCIS-derived cells easy to

acquire invasion characteristics. MiR-146a is a tumor suppressor
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miRNA in DCIS and IDC, which can reduce the migration and

invasion activity of cancer cells. The expression of PLC-b2 in DCIS-

derived cells is closely related to the imbalance of miR-146a.

Considering that the down-regulation of miR-146a may be the

basis for the ectopic appearance of PLC-b2 in tumor cells (57).

Upregulated expression levels of PLC-b2 were detected in

different types of breast tumors. In addition, breast cancer cell

lines with high invasive potential showed higher PLC-b2 expression
levels compared to less invasive breast cancer cell lines. The

expression of PLC-b2 was closely related to tumor grade, and the

staining intensity increased from grade 1 to grade 3, among which

grade 3 tumors showed the highest expression level of PLC-b1, and
the survival rate was lower than that of other grades. This suggests

that PLC-b levels are strongly correlated with poor prognosis of

breast cancer (56, 63).
3.3 PI(4,5)P2/Cofilin

The migration of tumor cells is the key step to complete the

metastasis, and phosphatidylinositol-4,5-diphosphate (PI(4,5)P2) has

been proved to be an important regulator of tumor cell migration,

which affects the movement ability of cells by regulating actin (64). The

expression of PLC-b1 is up-regulated in highly invasive breast cancer

cells, and it is related to metastasis and recurrence of breast cancer

patients. It was found that PLC-b1 could hydrolyze PI(4,5)P2 to

produce IP3 and DAG, which targeted to reduce the level of PI(4,5)

P2 in plasmamembrane, which made PI(4,5)P2 binding protein cofilin

released into cytoplasm from its inactive membrane association state,

thereby increasing actin in breast cancer cells to promote cell migration

activity. This suggests that the PI(4,5)P2/cofilin pathway is an

important mode of PLC-b1-induced cell metastasis (64).
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3.4 PABPC1-PI3K-AKT pathway

Cholangiocarcinoma (CAA) is an epithelial malignant tumor

originating from bile duct. High levels of PLC-b1 were expressed in

human CCA tissues and cell lines. PLC-b1 can promote the

proliferation activity of CCA cells by enhancing G1/S transition

of cell cycle, and affect the movement and invasion ability of CCA

cells. PLC-b1 can regulate the phosphorylation of ERK and serine/

threonine kinase (AKT), and then activate phosphoinositide-3

kinase (PI3K)/AKT signal to induce CCA cells to undergo EMT.

In addition, polyadenylation binding protein 1 (PABPC1) interacts

with PLC-b1 can further enhance the EMT process mediated by

PI3K-AKT pathway, which is an important mechanism of early

metastasis of tumor cells. While PLC-b1 is the direct target of miR-

26b-5p (antioncogene), which can act on PLC-b1 and prevent CCA

metastasis (65).
3.5 WNK1-TRPC6-NFATc1 pathway

WNK1 in ccRCC cells regulates Ca2+ signal by activating Gaq-
coupled receptor/PLC-b pathway, further mediates the activation of

transient receptor potential cation channel 6 (TRPC6) and up-

regulates the level of NFATc1. This is related to the metastatic

potential of ccRCC cells. It was found that inhibition of TRPC6/

NFATc1 signaling by cyclosporin A (CsA) or SKF96365 (calcium

channel blocker) could reduce the migration activity of ccRCC cells.

In addition, the invasiveness of ccRCC cells is inhibited by siRNA of

WNK1 or TRPC6, while the transient overexpression of WNK1 or

TRPC6 promotes cell invasion. Therefore, PLC-b related WNK1-

TRPC6-NFATc1 pathway is the key mechanism to promote ccRCC

transfer (30).
FIGURE 3

PLC-b-related signaling molecules such as CD133, E-cadherin and miR-146a affect the metastasis and invasion of tumor cells.
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3.6 PI3K, mTOR and MAPK signals

Human colorectal tumors can express C-kit protooncogene,

which has an important role in biological behaviors such as cell

survival, proliferation, adhesion and chemotaxis (66). The

pleiotropic function of C-kit is mainly mediated by molecular

cascade of PI3K, PLC and MAPK (67–70). Existing studies have

confirmed that PLC-b, mammalian target of rapamycin (mTOR)

and MAPK-related signaling pathways are potential therapeutic

targets for metastatic tumors (71, 72). In kidney and colon cancer

cells, tumor invasion mediated by trefoil peptide family,

thromboxane A2 and PAR-1 (thrombin receptor) is PLC-b or

mTOR dependent (73–75). Therefore, PI3K, PLC-b, mTOR and

MAPK signals affect the metastatic potential of cancer cells through

their correlation with each other (76).
3.7 LPA/AMPK/RhoA pathway

AMP-activated protein kinase (AMPK) is an energy-sensing

kinase, which can regulate the motor activity of cells. LPA induced

the activation of RAS homologous gene family member A (RhoA)

through AMPK, and further activated ezrin-radixin-moesin (ERM)

protein to restructure the cytoskeleton, which played an important

role in accelerating the migration of ovarian cancer cells. The

biological function of AMPK is regulated by Ca2+ signal related to

PLC-b3, and the ability of AMPK to promote cell migration in PLC-

b3 knockout cells decreases obviously. In addition, the application

of PLC inhibitor (U73122) or specific CaMKK inhibitor (STO-609)

can inhibit LPA-activated phosphorylated AMPK (77). Therefore,

LPA/AMPK/RhoA signaling pathway is Ca2+-dependent in

promoting tumor metastasis.
3.8 PLC-b1a, PLC-b1b and ERBB4 signals

PLC-b1 is abundantly expressed in many parts of the brain,

including cerebral cortex, hippocampus, amygdala, lateral septum,

olfactory bulb and other regions. The signal transduction pathway

mediated by PLC-b1 is related to brain development and various

neurological diseases (2, 78). PLC-b1 also exists in glioma cells (4, 79),

which is divided into PLC-b1a and PLC-b1b. PLC-b1a is mainly

located in the cytoplasm, while PLC-b1b is mainly located in the

nucleus of the cells. There is evidence that when stimulated, PLC-b1 in
glioma cells will translocate into the nucleus (80). Glioma is the most

common primary brain tumor, and pathological grade is the most

important factor in determining the prognosis of patients. Glioma

grade I was defined as the lowest invasive glioma, and grade IV was

defined as the most invasive glioma type. Grades I/II and III/IV are

also known as low-grade (LGG) and high-grade gliomas (HGG).

Grade IV glioma, also known as glioblastoma multiforme (GBM), is

the most common and malignant primary brain tumor type,

accounting for 50-60% of all gliomas (81). Due to the complexity

and heterogeneity of the tumor, this tumor will develop resistance to

treatment and relapse quickly, and PLC-b1 is a potential prognostic

factor. The expression of PLC-b1 is negatively correlated with the
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pathological grade of glioma, and it is a new characteristic gene in the

molecular classification of high-grade glioma. Studies have confirmed

that PLC-b1 gene expression is significantly reduced in all type IV

gliomas (glioblastoma) compared to grade II and grade III gliomas.

The data showed that the survival time of glioma patients with

medium level of PLC-b1 expression was significantly longer than

that of PLC-b1 down-regulated group. Compared with low-grade

gliomas and healthy patients, the expression of PLC-b1 in

glioblastoma samples was decreased. The experiment also confirmed

that down-regulation of PLC-b1 expression in cells leads to an

increase in cell migration and invasion, indicating the potential role

of PLC-b1 in maintaining a normal or less invasive glioma phenotype.

In addition, there is also a correlation between the expression of PLC-

b1 and glioma PN signature gene ERBB4. ERBB4 protein is a tyrosine

protein kinase and a member of the epidermal growth factor receptor

subfamily, which will promote the pathogenesis of glioma. In the

central nervous system, typical ERBB4 signaling was associated with

downstream PLC and PI3K-AKT activation. In the developing brain,

cleaved ERBB4 protein plays an cricial role in regulating the timing of

astrogenesis. Moreover, experiments showed that PLC-b1 signal

intensity was consistent with ERBB4 in low-grade and high-grade

glioma tumors (78, 81).
4 Angiogenesis

4.1 VEGF and GPCR signals

Endothelial cells are the key components of neovascularization.

Therefore, the proliferation and migration ability of endothelial

cells is very important for angiogenesis. The proliferation and

chemotaxis of endothelial cells are driven by vascular endothelial

growth factor (VEGF) and basic fibroblast growth factor (bFGF).

VEGF exerts its biological activity mainly by coupling VEGF

receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2). VEGF,

especially VEGFR2, can induce phosphorylation of two serine

residues on PLC-b3, and then enhance intracellular Ca2+ signal

(82). It is found that cell division cycle protein 42 (CDC42) may be

the downstream target molecule of VEGFR2-PLC-b3 axis to

promote endothelial cell migration. In PLC-b3 knock-down cells,

the expression and activity of CDC42 decreased obviously, and it

could inhibit the production of endothelial cells stimulated by

VEGF, resulting in abnormal development and delayed growth of

tumor blood vessels (82, 83). These results suggest that PLC-b3 can
be used as a therapeutic target to inhibit tumor angiogenesis.

PLC-b3 can also be activated by GPCRs, and participates in the

regulation of angiogenesis of various malignant tumors. Endothelial

differentiation G-protein coupled receptor 1 (EDG1) is a functional

sphingosine-1-phosphate (S1P) receptor, which plays a vital role in

the formation of vascular endothelial cells and the activation of

PLC. It was found that EDG1 can simultaneously regulate several

downstream signal pathways through Gi/o protein, including

adenylate cyclase (AC) inhibition, Ca2+ mobilization, Ras-MAPK

and PLC-b3 activation (84, 85). However, the precise molecular

mechanism of PLC-b3 regulating tumor angiogenesis still needs

further research and exploration (86, 87).
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4.2 IGF2 signal

The entry of endothelial progenitor cells (EPCs) into the

neovascular region is considered to be an important step in

the formation of vascular network during embryonic development.

In the pathological state of tumor, the effect of EPCs on

neovascularization has been generally accepted (88, 89). Insulin-like

growth factor 2 (IGF2) can promote tumor angiogenesis and

lymphangiogenesis by increasing EPCs recruitment (90–92). In

addition, IGF2 induced by ischemia and hypoxia participates in

angiogenesis of human hepatocellular carcinoma (93), and

significantly increases VEGF mRNA and protein levels in tumor

tissues in a time-dependent manner (90). The biological function of

IGF2 is mainly realized by signal transduction of G(i) protein coupled

with IGF-2 receptor (IGF2R), and intracellular Ca2+ mobilization

induced by PLC-b2 needs to be involved (Figure 4) (90). Therefore,

controlling the IGF-2/IGF2R signal associated with PLC-b2 can be

used as a new method to treat angiogenesis-dependent tumors.
5 Protective measures

5.1 PLC-b1-related PI3K-AKT signal
inhibition and PKCa signal activation

PLC-b1 can promote the proliferation and motility of CCA

cells, and the CCA patients with high expression of PLC-b1 do not

perform well in TNM staging, distant metastasis and survival
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prognosis. PLC-b1 also induced the resistance of CCA to

gemcitabine combined with cisplatin, but this could be reversed

by AKT inhibitor MK2206. It was found that PLC-b1-PI3K-AKT
signal axis was very important for CCA development and EMT, and

AKT can be used as a therapeutic target to overcome the

chemotherapy resistance of CCA patients with high PLC-b1
expression, thus inhibiting the growth of tumor and obviously

improving the postoperative survival of patients (65).

The pathogenesis of myelodysplastic syndrome (MDS) and

erythropoiesis involve PLC-b1/protein kinase Ca (PKCa) signal

transduction, especially nuclear PLC-b1 gene (21). PLC-b1 gene is

located on the short arm of chromosome 20, and two splicing variants

can be identified: PLC-b1a and PLC-b1b. Both subtypes have a nuclear

localization sequence, but PLC-b1a also has a nuclear export sequence

(NES). Therefore, PLC-b1a also exists in the cytoplasm, while PLC-b1b
mainly exists in the nucleus (94).PLC-b1a is a negative regulator of

erythroid differentiation, and which is reduced in erythropoietin-

responder MDS patients and in normal hematopoietic stem cell

progenitors induced to erythroid differentiation (95). Nuclear PLC-b1
specifically targets PKCa, which is related to the proliferation and

differentiation of human erythroleukemia cells and primitive human

erythroid cells.MDS patients with low evolutionary risk of acutemyeloid

leukemia (AML) and 5q chromosome deletion can be treated with

lenalidomide. Lenalidomide is an immunomodulatory drug that can

induce erythroid differentiation. It specifically increases the expression of

PLC-b1 in cytoplasm, but it can also induce PKCa translocation to

nucleus, thereby stimulating erythropoiesis (21). However,MDS patients

with high risk of AML evolution usually need epigenetic therapy, which
FIGURE 4

PLC-b-related VEGF and IGF2 signals regulate tumor angiogenesis.
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aims to inhibit the proliferation of hematopoietic stem cells. The nuclear

PLC-b1 of hematopoietic cells is related to epigenetics of MDS. MDS

patients can show a specific single allele deletion of the PLC-b1 gene,

which can lead to a higher probability of evolution into AML, and also

lead to a decrease in nuclear PLC-b1 expression levels in MDS patients.

PLC-b1 is a specific molecular target of azacytidine (AZA). AZA is a

demethylating drug that can accelerate tumor cell division and death by

producing cytotoxicity. The cells of MDS patients showed a high level of

recruitment of specific myeloid transcription factors (MZF-1) associated

with the PLC-b1 promoter during azacitidine treatment. In this case,

both high-risk and low-risk MDS patients who responded positively to

treatment showed an early increase in the expression of nuclear PLC-b1
and PKCa, accompanied by a decrease in the specificity of PLC-b1
promoter methylation and induction of normal myeloid differentiation,

leading to the improvement of clinical symptoms and the differentiation

of normal bone marrow (Figure 5) (21).

The expression level of phosphoinositide-specific phospholipase

Cb1(PI-PLCb1) in MDS was lower than that in normal tissue. The

expression level of PI-PLCb1 in high-risk group was lower than that in

low-risk group in different types of MDS. The results indicated that the

down-regulated expression of PI-PLCb1 reflected the progression of

MDS disease and could be used as a prognostic indicator of MDS (96).
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5.2 PLC-b2/CD133 and PLC-b2/miR-146a
signals

Tumor stem cell marker CD133 can predict the sensitivity of

breast cancer to neoadjuvant chemotherapy drugs (61), and its level

is closely related to the invasiveness of TNBC. Therefore, targeting

this surface antigen may be beneficial to the treatment of TNBC

(60). The regulation mechanism of PLC-b2 and CD133 in TNBC

has been described above, which proves that PLC-b2 can down-

regulate the expression of CD133 and reduce the metastatic

potential of cells. Therefore, the intervention of PLC-b2/CD133
signal can be used as a new therapy to prevent the progression of

invasive breast tumors (60). It is found that the negative correlation

between PLC-b2 and miR-146a in primary DCIS cannot be

detected in IDC, which indicates that the change of PLC-b2/miR-

146a expression level in DCIS may constitute a molecular risk factor

for IDC. Generally speaking, the down-regulation of miR-146a in

DCIS without the increase of PLC-b2 will lead to the risk of

malignant progression of DCIS. Evaluating the change of its level

is helpful to identify whether patients have relapse tendency.

Therefore, this signal pathway may become an important target

for the prevention and treatment of DCIS in the future (57).
FIGURE 5

Signaling pathways such as PI3K-AKT and PKCa associated with PLC-b can be targeted for tumor intervention.
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5.3 ORP4L/Gaq/11/PLC-b3 complex and
CXCR2-NHERF1-PLC-b3 complex

AML is characterized by the rapid growth of abnormal cells

accumulated in bone marrow and blood. Leukemia patients often

contain leukemia stem cells (LSCs), which can produce leukemia

cells and are the main cause of AML recurrence. ORP4L belongs to

the oxysterol binding protein-related protein family (ORPs). It is

selectively expressed in LSCs and is essential for the survival of

LSCs. It was found that ORP4L transported PLC-b3 out of the

nucleus of leukemia cells, and regulated PIP2 metabolism and

downstream Ca2+ balance by forming ORP4L/Gaq/11/PLC-b3
complex, further regulating pyruvate dehydrogenase activity on

mitochondria to provide oxidative phosphorylation energy for

leukemia cells. This signal mechanism provided a potential

intervention target for the treatment of leukemia such as AML (97).

NHERF1-mediated functional coupling of CXCR2 and PLC-b3
will form a macromolecular complex, which is essential for CXCR2

signal transduction and malignant progression of pancreatic cancer.

Studies have confirmed that the decomposition of CXCR2-

NHERF1-PLC-b3 macromolecules in vitro and in vivo can inhibit

the growth and metastasis of pancreatic tumors. Therefore,

destroying this CXCR2 complex may become an effective

treatment strategy for pancreatic cancer (45).
5.4 Gaq-PLC-b4-PKC-MAPK
and Wnt5a-PLC-b4-Ca2+ pathways

Gaq-PLC-b4-PKC-MAPK pathway is the core signal that

affects the occurrence and development of UM (53). IP1 is a

stable metabolite of the second messenger IP3, which is produced

when PLC-b is activated by Gaq (98). The output intensity of PLC-
b signal can be detected by the content of IP1 in cells. YM-254890

(Gaq/11 protein inhibitor) can selectively inhibit IP1 production in

a dose-dependent manner, and then block PLC-b4 and downstream
PKC/MAPK pathway, which inhibits the proliferation of UM cells

(53). Therefore, it is possible to improve the prognosis of UM

patients by selecting molecules in Gaq-PLC-b4-PKC-MAPK

signaling pathway for targeted therapy.

The non-classical Wnt pathway composed of Wnt5a-PLC-b4-
Ca2+ can reduce the proliferation and migration activity of CSCC

cells, and inhibit the tumorigenicity of nude mice. Therefore,

initiating the non-classical Wnt pathway is considered to play an

antioncogene-like role in CSCC (23). Wnt5a can activate PLC-b4 by
binding FZD4, which is the key to the activation of this signal

pathway, and it also provides a new exploration direction for

CSCC therapy.
6 Conclusion

In recent years, the regulation mechanism of PLC-b related

signal pathways and its role in malignant tumors have been widely

studied. They believe that PLC-b is a promising new target for the

treatment of malignant tumors, and may be an important enzyme
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related to the diagnosis and prognosis of malignant tumors. In this

paper, the regulation modes of PLC-b and its upstream and

downstream signals are summarized from the aspects of

proliferation and differentiation, metastasis and invasion,

angiogenesis and protective measures of malignant tumors. It is

found that PLC-b plays a dual regulatory role in promoting and

inhibiting the development of tumors through corresponding

subtypes associated with ERK/MAPK, Wnt/Ca2+, Gaq-PIP2-PKC,
Ang II/AT1R/CaM and so on. Therefore, on the one hand, we

optimistically predict that targeted intervention based on precision

can open up a new clinical application direction for tumor

treatment. However, on the other hand, we must realize that the

safety and reliability of this treatment still depend on the

accumulation of knowledge and the progress of technology.
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