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Combined deep-learning MRI-
based radiomic models for
preoperative risk classification
of endometrial endometrioid
adenocarcinoma

Jin Yang †, Yuying Cao †, Fangzhu Zhou †, Chengyao Li,
Jiabei Lv and Pu Li*

Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
Background: Differences exist between high- and low-risk endometrial cancer

(EC) in terms of whether lymph node dissection is performed. Factors such as

tumor grade, myometrial invasion (MDI), and lymphovascular space invasion (LVSI)

in the European Society for Medical Oncology (ESMO), European SocieTy for

Radiotherapy & Oncology (ESTRO) and European Society of Gynaecological

Oncology (ESGO) guidelines risk classification can often only be accurately

assessed postoperatively. The aim of our study was to estimate the risk

classification of patients with endometrial endometrioid adenocarcinoma before

surgery and offer individualized treatment plans based on their risk classification.

Methods: Clinical information and last preoperative pelvic magnetic resonance

imaging (MRI) of patients with postoperative pathologically determined endometrial

endometrioid adenocarcinomawere collected retrospectively. The region of interest

(ROI) was subsequently plotted in T1-weighted imaging (T1WI), T2-weighted imaging

(T2WI), anddiffusion-weighted imaging (DWI)MRI scans, and the traditional radiomics

features and deep-learning image features were extracted. A final radiomics

nomogram model integrating traditional radiomics features, deep learning image

features, and clinical information was constructed to distinguish between low- and

high-risk patients (based on the 2020 ESMO-ESGO-ESTRO guidelines). The efficacy

of the model was evaluated in the training and validation sets of the model.

Results: We finally included 168 patients from January 1, 2020 to July 29, 2021,

of which 95 patients in 2021 were classified as the training set and 73 patients in

2020 were classified as the validation set. In the training set, the area under the

curve (AUC) of the radiomics nomogram was 0.923 (95%CI: 0.865–0.980) and in

the validation set, the AUC of the radiomics nomogram was 0.842 (95%CI:

0.762–0.923). The nomogram had better predictions than both the traditional

radiomics model and the deep-learning radiomics model.

Conclusion: MRI-based radiomics models can be useful for preoperative risk

classification of patients with endometrial endometrioid adenocarcinoma.

KEYWORDS

endometrial endometrioid adenocarcinoma, MRI, radiomics, preoperative risk
classification, deep-learning
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1 Introduction

Endometrial cancer (EC) is a malignancy of the inner epithelial

lining of the uterus and is the sixth-most commonly occurring

cancer among women. EC was diagnosed in 417,367 women in

2020 worldwide, which caused a significant financial burden for

patients and carers (1, 2).

It is important to note that Asian women develop endometrial

cancer at a younger age than other populations and have more

advanced disease, so it is important to classify patients at an early age

to manage them suitably (3). Endometrial endometrioid

adenocarcinoma is the most common pathological type of EC and

can be classified into low-grade (grade I and II) and high-grade (grade

III) according to their histological grading (4). It is well known that

high-risk factors such as tumor grade, myometrial invasion (MDI),

and lymphovascular space invasion (LVSI) play an important role in

the choice of procedure and clinical adjuvant therapy as well as

prognosis. The ESMO-ESGO-ESTRO guidelines (5) incorporate

these factors into the risk classification to guide clinical treatment,

which also allows for good identification of the patient’s prognosis (6,

7). Differences in the need for lymph node dissection in high- and

low-risk EC patients according to guideline. However, the important

factors determining risk classification described above are usually

only accurately reported in postoperative pathology, so it is

particularly important to identify a non-invasive method that can

predict risk classification preoperatively.

Radiomics is a cost-effective and non-invasive approach to

characterize tissue intensity, shape, and texture by quantifying

the imaging phenotype of the region of interest (ROI) (8–10).

Several basic steps are involved, including image acquisition and

preprocessing, ROI annotation, feature extraction and selection,

and model construction and prediction (11). It aims to link

large-scale extracted image information with clinical and

biological (12). It can be used not only as a clinical decision

tool but also as a research tool for the discovery of new

molecular disease pathways (11). These advances in the

application of CT, PET, US, and MR imaging can enhance

patient stratification and prognostication, thus supporting

emerging targeted therapies (12).

Deep learning is a branch of artificial intelligence where

networks of simple interconnected units are used to extract

patterns from data in order to solve complex problems (13). As

described above, radiomics can be a valuable tool for accurate

diagnosis and treatment planning. However, ROI segmentation

requirements hinder development because the process is too

cumbersome and dependent on the experience of the operator.

Deep learning algorithms are a good alternative to address this

problem because they are capable of automatically learning

phenotypic features with powerful characterization capabilities

without predefined characteristics and human intervention and

are considered advanced radiomics (14–16).

In the field of gynecologic oncology, imaging histology is also

widely used for disease diagnosis, prognostic stratification, and

treatment strategies (17). Currently published related studies only

use traditional radiomic features to construct models. With the

development of artificial intelligence and deep learning, we
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attempted to extract more MRI imaging information for risk

prediction by deep-learning methods (18–21). Our study

combines traditional radiomics and deep-learning methods to

predict the risk classification of endometrial endometrioid

adenocarcinoma. To our knowledge, this is the first risk

classification model for patients with endometrial endometrioid

adenocarcinoma. The aim of our study was to evaluate the patient’s

risk classification preoperatively and design individualized

treatment plans based on their risk classification.
2 Methods

The study was conducted in the following aspects: selection of the

population to be included in the study, image acquisition and ROI

segmentation, radiomics features extraction, model construction, and

validation. (The technology roadmap is shown in Figure 1).
2.1 Population selection

Patients undergoing endometrial cancer surgery at our hospital

from January 1, 2020, to July 29, 2021, were retrospectively selected

in the study based on the following criteria. Of these, total

hysterectomy + double adnexectomy and lymph node evaluation

are the most basic surgical procedures for those with lesions

confined to the uterus.

Inclusion criteria: (i) all patients were treated surgically

without preoperative radiotherapy; (ii) postoperative pathology

was reported as endometrial endometrioid adenocarcinoma; (iii)

MRI information and clinical information were available at our

center; and (iv) T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI), and diffusion-weighted imaging (DWI)

sequences were complete, and the difference between the time of

MRI and the time of surgery was less than 15 days. Exclusion

criteria: (i) the patient had other systemic tumors; (ii) the

maximum diameter of the tumor presented on MRI was <1 cm;

and (iii) the quality of the MRI was poor. Figure 2 shows the

screening flow chart.

In addition, patient’s clinical data including age, CA125

values within 15 days before surgery, tumor size on MRI,

tumor grade of the preoperative dilation and curettage (D&C),

and family history of first-degree relatives were included. Tumor

size was determined by the longitudinal diameter of the largest

cross-sectional area of the tumor in the MRI image. Several

missing data were filled by the median interpolation method as

well as the random interpolation method. Median interpolation

was used for CA125 and MRI tumor size, and random

interpolation was used for tumor grading of preoperative

D&C(fx=RANDBETWEEN).

The final screened patients were divided into a training set and a

validation set by year. The risk classification model stratifies patients

according to the ESGO/ESMO/ESP 2020 guidelines (molecular

typing unknown) into a low-risk (low risk in the risk classification)

and a high-risk group (intermediate risk, intermediate-high risk, and

high risk are included in the risk classification).
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2.2 MRI

MRI was performed using a 3.0/1.5 T scanner and an

abdominal phased-array coil. Patients were asked to fast for at

least 4 h before the examination and to drink water to

moderately fill the bladder. The patient was supine and

breathing calmly during image acquisition, and the scanning

range was from the aortic bifurcation to the lower margin of the

symphysis. After gadoteric acid meglumine salt injection was

injected intravenously at a rate of 0.2 mmol/kg body weight and

2–3 mL/s, the following sequences were obtained: T1WI, T2WI,

and DWI.
2.3 Lesion segmentation

All images were exported from our center in Digital Imaging

and Communications in Medicine (DICOM) format. The region of

interest (ROI) was manually drawn along the edge of the lesion

using ITK-SNAP software, layer by layer on T1WI/T2WI/DWI,
Frontiers in Oncology 03
respectively, and normal tissue was avoided as much as possible to

obtain whole-tumor data. The plotting was performed using

apparent diffusion coefficient (ADC) sequence contrast to obtain

visual support. The tumor showed moderate or low signal intensity

on T2WI and high signal intensity on DWI. All ROIs were

segmented by three experienced physicians (JY, YC, and FZ), and

the final ROIs were determined by mutual agreement among the

three physicians. In samples where controversy and disagreement

arose during the ROI outlining process, the final opinion was given

by another radiologist (HL) with extensive experience. All four

physicians were unaware of the clinical and pathologic information

of the patients (Figure 3).
2.4 Radiomics features extraction

Since the MRI scanning machines used in our center are not

identical, the images were first preprocessed using N4 bias field

correction and then normalized using resampling to unify their

voxels to 0.7×0.7×1 mm.
FIGURE 1

The technology roadmap.
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The first-order features; shape features (2D and 3D); grayscale

features (Gray Level Concurrence Matrix [GLCM]), gray-level size

zone matrix [GLSZM], gray-level run-length matrix [GLRLM],

neighborhood gray tone difference matrix [NGTDM] and Gray Level

DependenceMatrix [GLDM]); and wavelet features were extracted from

the T1, T2, and DWI sequences using the pyradiomics package in

Python, respectively, and the number of features extracted from each

sequence was 1133. Then, a pre-trained Densenet121 convolutional

neural network model was used to identify the maximum cross-section

of the ROI for deep-learning image features.
2.5 Radiomics feature selection

First, Spearman’s correlation test was performed on the

traditional radiomics features extracted from each sequence, and

one of the features with correlation coefficients >0.9 was randomly

removed for the pairs. The random forest regression model was

then used to screen the radiomics features that had a significant

impact on risk_group. The random forest regression models were

constructed for the radiomics features extracted from DWI

sequences, T1 sequences, and T2 sequences, respectively, and the

number of trees with the minor mean square error was used as the

final number of trees. All features in the models were ranked in

terms of importance, and features with importance >0.5 were

included in the next step of analysis. For the extracted deep-

learning image features, since the features themselves do not have

practical meaning, the deep-learning features extracted from each

sequence are compressed to 5 in Python (1/20th of the training set

sample size).
Frontiers in Oncology 04
2.6 Model construction and validation

Multinomial logistic regression was used to construct a multi-

sequence traditional radiomics signature on the screened traditional

radiomics features in the training set. The traditional radiomics risk

score (radscore) was calculated for each sample based on the

predicted function of the ROCR package. Meanwhile, the deep-

learning radiomics risk score (deepscore) was calculated for each

sample by using the same method. Radscore and deepscore were

then used as variables along with the patient’s clinical information

(age, CA125 values within 15 days before surgery, tumor size on

MRI, tumor grade of D&C, and family history of first-degree

relatives) to construct a nomogram predicting risk_group (called

radiomics nomogram). Internal validation of the model was carried

out using bootstrap method. Validation of the nomogram used data

from the validation set.
2.7 Evaluation of radiomics nomogram

The ROC curve, calibration curve, decision curve analysis

(DCA) curve, sensitivity, specificity, positive predictive value,

negative predictive value, Youden index, and prediction accuracy

of the training set were plotted. The cut-off value of the model

according to the ROC curve and Youden index was calculated, and

the risk of the samples in the validation set according to this cut-off

value was graded, followed by further plotting the ROC curve and

DCA curve of the model in the validation set. Based on the

prediction results, various evaluation indices of the model were

further calculated.
FIGURE 2

Flowchart of the study population.
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2.8 Statistical analysis

The ITK-SNAP used in this study was version 3.8.0 and the

Python used was version 3.7.0. Continuous variables in the baseline

profile were expressed as median values (IQR) because they did not

satisfy normal distribution. For model validation using data from

the validation set, each data in the validation set was assigned a

value of 0 or 1 based on the cut-off value obtained from the ROC of

the training set, and then the risk score was calculated. The

variability between the different models was compared using the

Delong test. For all statistical analyses, a p-value less than 0.05 was

considered statistically significant. All statistical analyses were done

using R software (Version 4.2.1).
Frontiers in Oncology 05
3 Results

3.1 Patients

From January 1, 2020, to July 29, 2021, a total of 390 patients

underwent surgical treatment for EC at our institution, and 222

patients were excluded according to the inclusion and exclusion

criteria, resulting in 168 patients being finally included in the study

(95 in the training set [2021] and 73 in the validation set [2020]).

All clinical and pathological information is presented in Table 1.

The number of missing CA125 was 13, the number of missing MRI

tumor size was 10, and the number of missing D&C grade was 15.

The value of CA125 was 17.74 according to the median, the value of
FIGURE 3

A 68-year-old woman with endometrial adenocarcinoma, classified as intermediate-high risk. Above are the T1W, T2W, and DWI sequences,
respectively, and the region covered in red is the plotted ROI (region of interest). We can see that the uterine cavity is replaced by the cancerous
foci, and the tumor is lower than the adjacent normal muscle layer in the T1 sequence, while the tumor shows a moderate signal in the T2
sequence, and the tumor shows a significantly high signal in DWI.
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MRI tumor size was 3.3 cm according to the median, and the D&C

grade was randomly interpolated from 0 and 1.

Among the 95 patients in the training set, tumor grade G1+G2:

78 cases (82%) and grade G3: 17 cases (18%); FIGO stage IA: 74

cases (78%), stage IB: 7 cases (7%), stage II: 4 cases (4%), stage III–

IV: 10 cases (11%); LVSI positive: 25 cases (26%) and LVSI negative:

70 cases (74%); myeloid infiltration depth >50%: 12 cases (13%),

myeloid infiltration depth <50%: 83 (87%); risk stratification was

low risk in 55 cases (58%), intermediate risk in 9 cases (10%),

intermediate-high risk in 20 cases (21%), and high risk in 11

cases (12%).

Of the 73 patients in the validation set, tumor grade G1+G2: 68

cases (93%) and grade G3: 5 cases (7%); FIGO stage IA: 51 cases

(70%), stage IB: 10 cases (14%), stage II: 3 cases (4%), stage III–IV:9

cases (12%); LVSI positive: 29 cases (40%), LVSI negative: 44 cases

(60%); myeloid infiltration depth >50%: 21 cases (29%), myeloid

infiltration depth <50%: 52 cases (71%); risk stratification was low

risk in 39 cases (53%), intermediate risk in four cases (5%),

intermediate-high risk in 22 cases (30%), and high risk in eight

cases (11%) (Table 1).
Frontiers in Oncology 06
3.2 The extracted radiomics features and
the established model

Each series extracted 1133 traditional radiomics features, and

after Spearman’s correlation test and random forest regression, the

number of trees with the smallest mean square error was selected, and

then the features were ranked in terms of variable importance.

The number of features with variable importance >0.5 were:

two for the T1(log.sigma.5.0.mm.3D_firstorder_Maximum%

wavelet.LHH_firstorder_RootMeanSquared), six for T2(wavelet.

HLL_gldm_DependenceVariance&log.sigma.3.0.mm.3D_glcm_

InverseVariance&log.sigma.4.0.mm.3D_glszm_SmallArea

Emphasis&wavelet.LLL_glszm_ZoneVariance&wavelet.HHL_glcm_

Imc2&wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis),

and four for DWI(wavelet.LLL_glcm_Correlation&wavelet.LLL_

firstorder_Minimum&original_shape_Flatness%wavelet .

HHH_firstorder_Kurtosis).

The deep learning features extracted from each sequence were

compressed to 5 in Python. The final radiomics nomogram model

combines the radscore with the deepscore and clinical information

(including age, CA125 values within 15 days before surgery, tumor

size on MRI, tumor grade of D&C, and family history offirst-degree

relatives) (Figure 4).
TABLE 1 Clinical and pathological information of patients with endometrial endometrioid adenocarcinoma included in the study, where age, CA125,
MRI tumor size, D&Cgrade, and first-degree family tumor history were finally included in the radiomics nomogram.

Variable
Overall
N = 168

Train
N = 95

Validation
N = 73

p-value

Age (IQR) 56 (51, 62) 56 (50, 62) 56 (51, 62) 0.6

CA125 (IQR) 17 (12, 26) 16 (12, 25) 18 (12, 28) 0.4

Tumor size (IQR) 3.20 (2.48, 4.30) 3.20 (2.50, 4.25) 3.30 (2.40, 4.30) 0.6

D&C grade (%) 0.035

G1+G2
G3

146(87%)
22 (13%)

78(82%)
17 (18%)

68(93%)
5 (7%)

Family history(%) >0.9

(+)
(–)

23(14%)
145(86%)

13 (14%)
82(86%)

10 (14%)
63(86%)

FIGO
IA
IB
II
III-IV

LVSI
(+)
(–)

MDI
> 50%
< 50%

Risk group(%)
Low
High*

Intermediate
intermediate-high
High

125(74%)
17(10%)
7(4%)
19(11%)

54(32%)
114(68%)

33(20%)
135(80%)

94(56%)
74(44%)
13(8%)
42(25%)
19(11%)

74 (78%)
7 (7%)
4 (4%)
10 (11%)

25 (26%)
70 (74%)

12(13%)
83(87%)

55(58%)
40 (42%)
9(10%)
20(21%)
11(12%)

51(70%)
10(14%)
3(4%)
9(12%)

29(40%)
44(60%)

21(29%)
52(71%)

39(53%)
34 (47%)
4(5%)
22(30%)
8(11%)

0.6
fro
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3.3 Diagnostic performance of the
radiomics nomogram

In the training set, the area under the curve (AUC) of the

radscore was 0.874, the AUC of the deepscore was 0.778, and the

AUC of the radiomics nomogram was 0.923 (Figure 5A). The mean

value of Dxy’s high valuation of nomogram obtained after 1000

resamples of internal validation was 0.058, and the corrected mean

value of Dxy was 0.787. The C-index of internal validation was

calculated to be 0.894. After risk grading the validation set

according to the cut-off values, the calculated AUCs were 0.765

for radscore, 0.652 for deepscore, and 0.842 for the radiomics

nomogram (Figure 5B). The decision curves showed that

radiomics nomogram had the best clinical net benefit in both the

training and validation sets (Figures 5C, D). The calibration curve

for the training set showed good calibration performance (mean

square error, mse=0.00184) (Figure 5E). The calibration curve for

the validation set also showed good calibration performance(mean

square error, mse=0.00302) (Figure 5F).

The AUC/sensitivity/specificity/PPV/NPV and Youden Index

are shown in Table 2.

The results of the Delong test in the training set showed that the

final radiomics nomogram outperformed the radscore (P=0.037)

and deepscore (P=0.001) in predicting 0 and 1 outcomes, with

statistically significant results; the results in the validation set also

showed that the radiomics nomogram outperformed the radscore

(P=0.037) and deepscore (P=0.001) in predicting 0 and 1 outcomes.

The results in the validation set also showed that the diagnostic

efficacy of the radiomics nomogram was better than radscore

(P=0.037) and deepscore (P=0.001), and the results were

statistically significant.
4 Discussion

This study combines the features of traditional radiomics with

those of deep learning. In terms of preoperative prediction of risk
Frontiers in Oncology 07
classification for endometrial endometrioid adenocarcinoma, our

results show that MRI-based radiomics nomogram has good

diagnostic efficacy. Our study also included clinical information

such as the patient’s age, CA125, MRI tumor size, D&C grade, and

first-degree family tumor history, which are often considered

independent influencing factors for high-risk EC (22–24). With

the exception of the D&C grade (P=0.035), the rest of the indicators

were not statistically significant in either the training or the

validation sets. The percentage of D&C grade in G3 in the

training set was 18%, while that in the validation set was 6.8%.

Our analysis suggests that the preoperative D&C of the population

included in the study was not exactly performed in the same center

and that individual differences in the reading of the films by

different pathologists in different centers may occur. Moreover,

the base of the population we included in the study was not large

enough to offset this variability.

Endometrial endometrioid adenocarcinoma is the most common

type of pathology; however, to date, no model has been developed

that can predict the risk classification of endometrial endometrioid

adenocarcinoma. Previously, some scholars developedmodels for risk

classification of EC, for example, the study by Moro et al. was based

on a model constructed byMRI as well as ultrasound, and they ended

up with an AUC value of 0.85 in the validation set, which is similar to

the results of our model (25). Bi Cong et al. also developed a

radiomics-based nomogram to predict risk classification and found

that this model was approximately 11–15% more beneficial than

actual surgery in the surgical management of patients (26). Celli et al.

also developed a model to preoperatively predict the presence of LVSI

and risk classification of patients with EC based on radiomics,

differing from the previous two studies, in that he used a risk

classification based on molecular typing (27). Kaiyue et al.

developed a nomogram combining ADC values as well as

radiomics for preoperative prediction of high-risk factors such as

EC-grade, DMI, and LVSI (28). In addition, other similar studies

have been conducted (29, 30).

Wang Y et al. also established a preoperative model for predicting

whether patients with endometrial endometrioid adenocarcinoma
FIGURE 4

The final radiomics nomogram, which includes three parts: radscore, deepscore, and clinical information. The different values correspond to
different scores on the straight line, and the total score finally corresponds to the predicted value.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1231497
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2023.1231497
have deep myometrial infiltration based on imaging histology (31).

Yan B et al. established an imaging histology model for preoperative

prediction of LVSI for patients with endometrial endometrioid

adenocarcinoma by combining the images of the tumor and

peritumoral region (32). The above two studies mainly decided the

surgical program (i.e., whether lymph node dissection was needed) by

predicting whether there was deep myometrial infiltration and

whether there was LVSI positivity, whereas the risk stratification in

the ESGO/ESMO/ESP 2020 guidelines utilized in our article

incorporates comprehensive pathological information that includes

deep myometrial infiltration, LVSI, and so on, and this risk

stratification determines the patient’s surgical approach. Therefore,
Frontiers in Oncology 08
our predicted risk stratification is more comprehensive and

convincing than the direct prediction of a single piece of information.

The risk stratification of the ESMO guidelines contains three

main aspects: LVSI, FIGO staging, and histologic type. Many

studies have confirmed that LVSI plays an extremely important

role in the prognosis of patients with endometrial cancer. For

example, Restaino S et al. (33) performed a semi-quantitative

analysis of LVSI in EC patients and found that diffuse LVSI was

the strongest independent prognostic factor for lymph node

metastasis and distant metastasis. In addition, they found diffuse

LVSI to be associated with a higher risk of recurrence and decreased

OS. Tortorella L et al. (34) focused on patients with early-stage, low-

risk endometrial carcinoma and assessed, in a semi-quantitative
A B

D

E F

C

FIGURE 5

Model evaluation: (A) ROC of the models in training set (B) ROC of the models in the validation set. (C) The decision curve of the training set.
(D) The decision curve of the validation set. (E) Calibration curve of the radiomics nomogram of the training set. (F) Calibration curve of the
radiomics nomogram of the validation set.
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manner, the prognostic impact of LVSI and showed that Substantial

LVSI represents the strongest independent risk factor for decreased

survival and distant relapse. According to the risk classification of

the ESMO guidelines (6), the lowest possible risk of non-

endometrial endometrioid adenocarcinoma is “intermediate”, and

the guidelines also state that surgical staging or lymph node biopsy

or resection should be considered for intermediate risk or higher,

but not for low-risk patients. The type of pathology is confirmed by

preoperative D&C, and it is highly consistent with postoperative

pathology (35). Therefore, we believe it is necessary to create a

separate risk classification model for patients with endometrial

endometrioid adenocarcinoma.

In conclusion, the radiomics nomogram can predict risk

classification of endometrial endometrioid adenocarcinoma

preoperatively with high efficacy, which can help clinicians to

develop individualized treatment plans. The strengths of our

study are as follows: first, we used methods that combine

traditional radiomics with deep-learning to extract features.

Second, to our knowledge, this is the first study to address risk

classification of endometrial endometrioid adenocarcinoma. Third,

we included external validation and achieved good diagnostic

efficacy in the external validation set.

This study also has some limitations. First, this was a single-

center retrospective study that included only patients who

underwent surgery in our center, which may have caused

selection bias and lack of power than other multicenter studies.

Second, there were some missing clinical data in this study, and

although interpolation was performed, the diagnostic efficacy of the

final nomogram might have been better if the clinical information

had been complete.
5 Conclusion

This study combines traditional radiomics and deep learning of

image features to develop a model that predicts risk classification of

endometrial endometrioid adenocarcinoma preoperatively to help

clinicians develop individualized treatment plans. To our
Frontiers in Oncology 09
knowledge, this is the first predictive model for patients with

endometrial endometrioid adenocarcinoma.
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TABLE 2 Prediction performance of radscore, deepscore, and radiomics nomogram models in the training and validation sets.

Model AUC(CI) Sensitivity Specificity PPV NPV Youden Index

Train set

Tra_rad 0.874(0.802-0.946) 0.764 0.900 0.913 0.735 0.664

Deep_rad 0.778(0.677-0.879) 0.836 0.675 0.780 0.750 0.511

Final_rad 0.923(0.865-0.980) 0.964 0.800 0.869 0.941 0.764

Test set

Tra_rad 0.765(
0.678-0.853)

0.941 0.590 0.667 0.920 0.531

Deep_rad 0.652(
0.544-0.759)

0.765 0.538 0.591 0.724 0.303

Final_rad 0.842(0.762-0.923) 0.941 0.744 0.762 0.935 0.685
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