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Metabolic reprogramming is a phenomenon in which cancer cells alter their

metabolic pathways to support their uncontrolled growth and survival. Platinum-

based chemotherapy resistance is associated with changes in glucose

metabolism, amino acid metabolism, fatty acid metabolism, and tricarboxylic

acid cycle. These changes lead to the creation of metabolic intermediates that

can provide precursors for the biosynthesis of cellular components and help

maintain cellular energy homeostasis. This article reviews the research progress

of the metabolic reprogramming mechanism of platinumbased chemotherapy

resistance caused by three major nutrients in ovarian cancer.
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1 Introduction

In gynecologic cancer, OC is ranked 2nd in mortality (1). Among ovarian

malignancies, epithelial ovarian cancer (EOC) accounts for 90% (2). Since most patients

are diagnosed at an advanced stage (3), the first-line primary treatment regimen

recommended by the NCCN guidelines is surgery followed by platinum-based

chemotherapy (4). Nevertheless, 25% of patients occurs platinum resistance at first

recurrence (5). Patients who recrudesce within 6 months after the end of platinum-

based first-line therapy are classified as being platinum-resistant, with a poor response to

subsequent chemotherapy and median overall survival of 9-12 months (6). Therefore, the

mechanism of platinum resistance and its influencing factors have been actively studied

and explored, and new treatment options have been proposed to improve the prognosis of

patients by finding key targets.
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Cisplatin utilizes DNA as its most critical target of action to

exert its cytotoxic effects by forming DNA adducts (7). The

mechanisms of platinum-based chemotherapy resistance in

ovarian cancer are complex and multifactorial, involving genetic

and epigenetic changes, alterations in drug transport and

metabolism, and activation of cellular survival pathways (8–15).

Recent studies have shown that metabolic reprogramming plays a

crucial role in the development of platinum-based chemotherapy

resistance in ovarian cancer (16).

Metabolic reprogramming is a phenomenon in which cancer

cells alter their metabolic pathways to support their uncontrolled

growth and survival (17, 18). Platinum-based chemotherapy

resistance is associated with changes in glucose metabolism,

amino acid metabolism, fatty acid metabolism, and tricarboxylic

acid cycle. These changes lead to the creation of metabolic

intermediates that can provide precursors for the biosynthesis of

cellular components and help maintain cellular energy

homeostasis (19). This article reviews the research progress of

the metabolic reprogramming mechanism of platinum-based

chemotherapy resistance caused by three major nutrients in

ovarian cancer.
2 Glucose metabolism

In the 2020s, Warburg’s findings revealed that even under

aerobic conditions, tumor cells preferentially utilize glycolysis,

known as aerobic glycolysis, instead of oxidative phosphorylation

(20, 21). This metabolic reprogramming in tumor cells is not aimed

at increasing energy production, but rather at generating raw

materials for the synthesis of biological macromolecules, which

support cell proliferation under limited resources. Recent studies

have demonstrated that oncogenes and various tumor regulators

can modulate key proteins and rate-limiting enzymes involved in

glucose metabolism in tumor cells, promoting their growth and

survival (22–24).

Key substances in the glucose metabolism process of ovarian

cancer cells, including glucose transporter 1, hexokinase 1 (HK1),

hexokinase II (HK2), etc., promote the proliferation and metastasis

of tumor cells through a variety of downstream target genes and

signaling pathways (25–32). In platinum-resistant ovarian cancer,

the dysregulation of glucose metabolism intermediates, key

enzymes and abnormally active metabolic activities play a

significant role in promoting drug resistance in tumor cells.
2.1 Serine/threonine kinase Aurora-A

In a study, the researchers utilized the organoid model of

ovarian cancer to validate the hypothesis that abnormally

overexpressed serine/threonine kinase Aurora-A directly

phosphorylates sex-determining region Y-box 8 (SOX8) at Ser327

or indirectly enhances SOX8 transcription via c-Myc (33).

Subsequently, SOX8 targets HK2 and lactate dehydrogenase

(LDHA), which affect the glycolysis process via the SOX8/FOXK1

axis, ultimately leading to drug resistance (Table 1).
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2.2 Hexokinase II

Zhang XY et al. (34) shows that HK2 presents resistance to

cisplatin in the ovarian cancer cell, promotes the resistance by

enhancing cisplatin-induced autophagy, and boosts the cisplatin-

induced autophagy by activating the ERK1/2 pathway. The

upregulation of HK2 expression and subsequent drug resistance

can be attributed to the effects of lysophosphatidic acid (LPA) (35).

HK2 is expressed on mitochondria in cancer cells and interacts with

voltage-dependent anion channel 1 (VDAC1) to impede apoptosis

(Figure 1). Notably, studies have demonstrated that peroxisome

proliferator-activated receptor coactivator 1 (PGC1a) (36), which is
highly expressed in drug-resistant ovarian cancer cells, promotes

the transcription of a heat shock protein (HSP70). Consequently,

the upregulation of HSP70 leads to increased expression of HK2 on

mitochondria, and its binding to VDAC1. Therefore, the HSP70/

HK2/VDAC1 signaling pathway may serve as a potential target

for therapies.
2.3 Pyruvate dehydrogenase kinase 1

Platinum-resistant ovarian cancer cells exhibit increased levels

of pyruvate dehydrogenase kinase 1 (PDK1) in comparison to

platinum-sensitive cells. The study by Zhang M et al. revealed

that upregulated PDK1 activates epidermal growth factor receptor

(EGFR) to facilitate the development of chemotherapy resistance

(37). Notably, downregulating PDK1 in drug-resistant cells

enhances the sensitivity to cisplatin-induced cell death. Despite

these findings, the precise mechanism of action remains unclear.
2.4 Phosphoglycerate dehydrogenase

Van Nyen T, et al. (38) explored the relevance of

phosphoglycerate dehydrogenase (PHGDH) expression and serine

biosynthesis activity in tumors with acquired platinum resistance

after platinum chemotherapy. They recognized a subset of ovarian

cancer patients who relapsed after platinum-based chemotherapy

with decreasing in PHGDH expression. Then, through in vivo, in

vitro, and metabolic pathways tests, they investigated that this

subgroup had undergone metabolic changes of decreased serine

biosynthesis, which caused tumor cells to need exogenous serine

for metabolic activities. This metabolic shift is accompanied by a

regenerative phenotype of NAD+. Although tumor cells have no

significant change in NAD+ levels, NAD+ regeneration is active and

benefits from maintaining PARP’s activity to resistant platinum.
2.5 Mitochondrial oxidative
phosphorylation

While the role of aerobic glycolysis in tumors has been

extensively studied, recent research suggests that mitochondrial

oxidative phosphorylation (OXPHOS) may also contribute to

platinum resistance in ovarian cancer.
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Platinum-based chemotherapy agents may induce an increase in

NAD+-dependent deacetylase SIRT1 (39), which in turn promotes

OXPHOS and enriches chemoresistant aldehyde dehydrogenase

(ALDH) + ovarian cancer stem cells (OCSC), ultimately leading to

drug resistance. However, the precise mechanisms underlying this

phenomenon require further investigation. Furthermore, as a critical

modulator of the mitochondrial respiratory chain (40), downregulation

of the TRAP1 chaperone protein inhibits glycolysis in tumor cells and

shifts metabolism towards OXPHOS, which in turn promotes the

release of various inflammatory factors, including IL-6, to stimulate an

inflammatory response that reduces platinum sensitivity in ovarian

cancer cells (41).
2.6 Potential of metformin

As a classic treatment for diabetes, metformin may play a

therapeutic role by exploiting the metabolic changes of platinum-
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resistant ovarian cancer, which is conducive to the cytotoxic effect of

platinum drugs and prevents the progression of tumor cells. Metformin

has been identified as a promising drug to overcome resistance to

platinum-based therapy in ovarian cancer. The mechanism of action

involves targeting mitochondrial complex I and ATP synthases, leading

to a partial reversal of resistance (42).Metformin also regulates apoptosis

by downregulating Bcl-2 and Bcl-xL expression and upregulating Bax

andCytochrome expression (43).Moreover,metformin has been shown

to reduce inflammation and improve drug sensitivity by inhibiting the

NFkB signaling pathway and IL-6 secretion (44, 45). Furthermore,

metformin can reverse resistance via the p53-PDK1-HKII pathway and

by activating the AKT signaling pathway while inhibiting the IGF2R

signaling pathway (46, 47). Notably, metformin can also modulate the

metabolic profile of resistant cells by upregulating taurine and histidine

levels and downregulating tyrosine kinase levels, thus preventing

chemoresistance (48, 49). In summary, the combination of metformin

and cisplatin presents a promising therapeutic strategy for preventing

drug resistance in ovarian cancer cells with metabolic alterations.
TABLE 1 The alternation of molecules or pathways.

Molecular Alternation Pathway Target alternation

Glucose metabolism

Aurora-A Overexpress SOX8/FOXK1 axis
HK2
LDHA

Autophagy Promoted by cisplatin-induced ERK1/2 HK2

PGC1a Overexpress HSP70/HK2/VDAC1 HK2

PDK1 Overexpress EGFR

PXGDH Decrease Decreased serine biosynthesis
Regenerative phenotype of NAD+

SIRT1 Increase Promote OXPHOS

TRAP1 chaperone protein Downregulation Promote OXPHOS
Stimulate inflammation response

Lipid metabolism

NKX2-8 Genetic ablation

DGKA Activation Recruit c-JUN

FABP4 Overexpress

Arachidonic acid Adipocytes secrete Inhibit cisplatin-induced apoptosis

FDPS
OCS

Downregulation LDLR overexpress

ARL4C Overexpress OSBPL5 overexpress

ABCG2
MDR1
LXRa

Overexpress

Amino acid metabolism

Glutamine synthetase Regulated by DNA methylation Preferentially GSH synthesis

GSH Decrease GSH-cisplatin adducts Cysteine protective effect

SLC7A1/CAT1 Overexpress Metabolic reprogramming of arginine

IDO1 Overexpress ROS/p53 Arginine transport
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3 Lipid metabolism

Adipocytes and the tumor microenvironment formed with the

participation of adipocytes have a very important impact on the

occurrence, development, and prognosis of malignant tumors (50).

Ovarian cancer is no exception (51). Aberrant expression of key

enzymes, transport proteins, cellular receptors, and various adipocyte

secretagogues (including cytokines, adipokines, and pro-inflammatory

factors) in ovarian cancer promotes the formation of tumor cell

microenvironment and increases the aggressiveness of ovarian cancer

cells. For example, CD36 (52), one of the fatty acid translocases (FAT),

contributes to the growth and distant metastasis of ovarian cancer cells;

fatty acid binding protein 4(FABP4) contributes to the metastasis and

implantation of ovarian cancer into the omentum (53). In turn, these

key substances may serve as indicators for monitoring the process of

platinum-based chemotherapy in ovarian cancer and as key targets for

treatment after the development of platinum resistance.
3.1 b-oxidation

Fatty acid b-oxidation has been linked to platinum resistance

(54), with genetic ablation of the homology box-containing

developmental regulator NKX2-8 promoting fatty acid metabolism

reprogramming and subsequent drug resistance in epithelial ovarian

cancer cells in the adipose microenvironment (55). Additionally, a

novel biomarker, Collagen type XI alpha 1 (COL11A1) (56), has been

found to induce platinum resistance by upregulating fatty acid

metabolism in ovarian cancer through its binding to discoid

domain receptor 2 and activating Src-Akt-AMPK signaling.
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Furthermore, activation of the transcription factor c-JUN a
diacylglycerol kinase (DGKA) leads to the recruitment of c-JUN N-

terminal kinase to c-JUN and enhances the expression of the cell cycle

regulator WEE1 under cisplatin stimulation, ultimately leading to

platinum resistance in ovarian cancer (57).
3.2 Fatty acid binding protein 4

In the context of ovarian cancer, FABP4 plays a central role in

regulating adipocyte-induced lipid metabolism in cancer cells (58).

Its overexpression promotes tumor proliferation and metastasis and

mediates drug resistance to carboplatin. However, the downstream

factors and pathways that specifically mediate drug resistance of

FABP4 remain unclear. Adipocytes can also inhibit cisplatin-

induced apoptosis by secreting arachidonic acid, which activates

Akt (59). Moreover, the SP1-12LOX axis can upregulate the

expression of multidrug resistance-associated protein (MRP) via

signal transduction, increase the production of arachidonic acid-

derived metabolites, and promote drug resistance (60).
3.3 Cholesterol

Cholesterol metabolism dysregulation can be a contributing

factor to platinum resistance in ovarian cancer, as cholesterol is a

vital component of cell membranes and plasma lipoproteins and a

precursor for important bioactive molecules (61). The decrease in

TRAP1 expression, as mentioned earlier, also impacts cholesterol

metabolism. In drug-resistant ovarian cancer cells, exogenous
FIGURE 1

Overexpression of Aurora-A and PGC1a causes reprogramming of glucose metabolism and contributes to the onset of platinum resistance in
ovarian cancer cells. G, glucose; GLUT, Glucose transporter; G-6-P, Glucose-6-phosphate; P, phosphate; TCA, tricarboxylic acid cycle.
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uptake becomes the primary source of cholesterol, with decreased

expression of farnesyl bisphosphate synthase (FDPS) and oxidized

squalene cyclase (OCS) involved in endogenous cholesterol

synthesis, and increased expression of low-density lipoprotein

receptor (LDLR) promoting exogenous cholesterol uptake (62).

Furthermore, carboplatin-resistant ovarian cancer cells exhibit

upregulation of ADP ribosylation factor 4C (ARL4C), a member

of the ADP ribosylation factor subfamily, and Notch-RBP-Jk-
H5K3Me4, a member of the oxysterol-binding protein family

(OSBP), resulting in the upregulation of OSBPL5, a member of

the OSBP family, promoting cholesterol accumulation and

autophagy, leading to carboplatin resistance (63). Malignant

ascites exhibited elevated cholesterol levels, with upregulated drug

efflux proteins ABCG2 and MDR1, and cholesterol receptor LXRa
expression, contributing to multidrug resistance (64).

4 Amino acid metabolism

Assays of serum-free aminoacids have shown that the levels ofmany

amino acids change significantly during the development of ovarian

cancer and that this change in turn promotes tumor development (65,

66).Amino acids that changed significantly compared to healthywomen

included histidine, alanine, asparagine, citrulline, cystine, ethanolamine,

lysine, methionine, ornithine, threonine, and tryptophan (67). There are

many mechanisms of tumorigenesis caused by changes in amino acid

metabolism, such as regulating the invasion of ovarian cancer cells

through transcription factor ETS1 in the case of glutamine deprivation

(68); Six enzymes of folic acid metabolism pathway were overexpressed,

among which serine hydroxymethyltransferase 1 promoted the

expression of cancer inflammatory factors by regulating sialic acid N-

acetylneuraminic acid, and promoted the growth and metastasis of

ovarian cancer tumor cells (69); Upregulation of non-tyrosine kinase

(FER) in ovarian cancer promotes tumorigenesis by activating the PI3K-

AKTpathway through the kinase-substratemodeof actionbetweenFER

and insulin receptor substrate 4 (IRS4) (70). Changes in amino acid

metabolism may also contribute to the development of platinum

resistance in ovarian cancer.
4.1 Glutamine

Glutamine, the most abundant non-essential amino acid in the

human body, serves a multitude of purposes, including its function

as a key substrate or molecule in the biosynthesis of various

compounds, and its essential role in maintaining normal cellular

function and integrity (71). Aside from relying on aerobic

glycolysis, drug-resistant ovarian cancer cells exhibit an addiction

to glutamine (72). DNA methylation has been found to regulate the

expression of the critical enzyme glutamine synthetase, resulting in

the metabolic reprogramming of glutamine in tumor cells (73).

Preferentially directing glutamine towards glutathione (GSH)

synthesis instead of the TCA cycle ultimately leads to increased

levels of glutamine, glutamic acid, and glutathione. Despite the

sensitivity of drug-resistant tumor cells to nutrient deficiencies,

glutamine can combat starvation-induced cell death by increasing

nucleotide concentrations (74).
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4.2 Glutathione

GSH is synthesized from glutamic acid, cysteine, and glycine

and is one of the important members of cellular antioxidants (75).

GSH depletion in tumor cells can increase the attack of

chemotherapy drugs on tumor cells through reactive oxygen

species (ROS) accumulation, detoxification reduction, and iron

death to achieve therapeutic purposes (76). Non-targeted

metabolomics analyses showed that platinum-resistant ovarian

cancer cells have significantly reduced levels of GSH, which

contributes to chemoresistance by forming adducts with cisplatin,

leading to reduced intracellular concentrations of the active drug,

and cisplatin-GSH adducts also reduce intracellular GSH levels.

And these resistant cells can activate alternative antioxidant

defenses independent of GSH (77). Cysteine stored in large

quantities in GSH has a protective effect on ovarian cancer cells

in a hypoxic environment and can also make tumor cells resistant to

carboplatin (78, 79) (Figure 2).
4.3 Other amino acids

In the context of arginine deficiency, Omental adipose stromal

cells (O-ASC) have been shown to stimulate tumor cell growth and

NO synthesis by secreting arginine (80). The uptake and transport

of arginine across cell membranes are mediated by cationic amino

acid transporters, specifically SLC7A1/CAT1, which are highly

expressed in ovarian cancer and are involved in the metabolic

reprogramming of arginine, ultimately promoting platinum

resistance (81). Furthermore, studies have shown that ovarian

cancer cells with elevated levels of indoleamine 2,3-dioxygenase 1

(IDO1), an enzyme that catalyzes the conversion of tryptophan to l-

kynurenine (Kyn), exhibit platinum resistance by downregulating

the ROS/p53 pathway (82). Hence, it is important to further

investigate the role of arginine transport and IDO1 in the

development of platinum resistance in ovarian cancer cells.
5 Summary

The metabolic processes of the three major nutrients are

interrelated and influence each other. For example, glucose can be

converted into fat, and the intermediate products of sugar

metabolism can generate non-essential amino acids. Glycerol can

be converted into sugar in the body, and most amino acids can be

converted into glucose. Proteins can be converted into fats, amino

acids can be used as raw material for phospholipid synthesis, and

glycerol can be converted into non-essential amino acids. The

metabolism between the three is linked by the tricarboxylic acid

cycle. The changes in key enzymes, intermediates, upstream genes,

and downstream targets in the process of being stimulated by

cytotoxic drugs can cause changes in a variety of metabolic

processes, resulting in changes in ovarian cancer cells and their

tumor microenvironment. These changes can help tumor cells cope

with the need for nutrients during growth. In addition to the three
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major nutrients, the metabolic changes of vitamins, metals, and

trace elements may also lead to platinum resistance in tumors. At

present, the clinical treatment of patients with platinum-resistant

recurrent ovarian cancer is still a difficult problem, and the key

substances in the process of growth and metabolism and their

molecular pathways may be used as therapeutic targets to improve

the prognosis and survival time of patients. In general, metabolic

reprogramming is of great significance in finding the key points for

the treatment of platinum-resistant relapse.
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