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Comparison of preoperative
CT- and MRI-based
multiparametric radiomics in
the prediction of lymph node
metastasis in rectal cancer

Yue Niu1,2, Xiaoping Yu1,2*, Lu Wen2, Feng Bi2, Lian Jian2,
Siye Liu2, Yanhui Yang1,2, Yi Zhang1,2 and Qiang Lu2

1Department of Diagnostic Radiology, Graduate Collaborative Training Base of Hunan Cancer
Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,
2Department of Diagnostic Radiology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of
Xiangya School of Medicine, Central South University, Changsha, Hunan, China
Objective: To compare computed tomography (CT)- and magnetic resonance

imaging (MRI)-based multiparametric radiomics models and validate a multi-

modality, multiparametric clinical-radiomics nomogram for individual

preoperative prediction of lymph node metastasis (LNM) in rectal cancer

(RC) patients.

Methods: 234 rectal adenocarcinoma patients from our retrospective study

cohort were randomly selected as the training (n = 164) and testing (n = 70)

cohorts. The radiomics features of the primary tumor were extracted from the

non-contrast enhanced computed tomography (NCE-CT), the enhanced

computed tomography (CE-CT), the T2-weighted imaging (T2WI) and the

gadolinium contrast-enhanced T1-weighted imaging (CE-TIWI) of each

patient. Three kinds of models were constructed based on training cohort,

including the Clinical model (based on the clinical features), the radiomics

models (based on NCE-CT, CE-CT, T2WI, CE-T1WI, CT, MRI, CT combing with

MRI) and the clinical-radiomics models (based on CT or MRI radiomics model

combing with clinical data) and Clinical-IMG model (based on CT and MRI

radiomics model combing with clinical data). The performances of the 11

models were evaluated via the area under the receiver operator characteristic

curve (AUC), accuracy, sensitivity, and specificity in the training and validation

cohort. Differences in the AUCs among the 11 models were compared using

DeLong’s test. Finally, the optimal model (Clinical-IMG model) was selected to

create a radiomics nomogram. The performance of the nomogram to evaluate

clinical efficacy was verified by ROC curves and decision curve analysis (DCA).

Results: The MRI radiomics model in the validation cohort significantly

outperformed than CT radiomics model (AUC, 0.785 vs. 0.721, p<0.05). The

Clinical-IMG nomogram had the highest prediction efficiency than all other

predictive models (p<0.05), of which the AUC was 0.947, the sensitivity was

0.870 and the specificity was 0.884.
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Conclusion: MRI radiomics model performed better than both CT radiomics

model and Clinical model in predicting LNM of RC. The clinical-radiomics

nomogram that combines the radiomics features obtained from both CT and

MRI along with preoperative clinical characteristics exhibits the best

diagnostic performance.
KEYWORDS

rectal cancer, lymph nodes, radiomics, magnetic resonance imaging (MRI), computed
tomography (CT)
Introduction

Rectal cancer (RC) is one of the leading causes of cancer-related

deaths. The latest data from GLOBOCAN 2021 reported RC as 8th

among all cancers worldwide with high morbidity and mortality (1,

2).There is much evidence that lymph node metastasis (LNM) is the

most important and closely correlated with the poor prognosis due

to a high rate of local recurrence (3). Thus, preoperative assessment

of LNM can provide important information to determine the need

for adjuvant therapy and the adequacy of surgical resection (4).

It is well known that both computed tomography (CT) and

magnetic resonance imaging (MRI) are common imaging methods

to assess Tumor-Node-Metastasis (TNM) staging of RC. MRI has

the highest contrast resolution for the soft tissues, allowing the best

depiction of relationship between the primary focus of RC and the

surrounding anatomical structures, which is very useful in tumor

(T) staging (5). It is also valuable in determining nodal (N) staging

because of its ability to better show the internal condition of lymph

nodes (6). CT can rapidly scan the entire abdomen and chest,

allowing for distant metastasis evaluation, as well as T and N staging

(2). In fact, traditional imaging methods as CT and MRI both have

limited ability to predict LN status with morphological criteria due

to the features of metastatic LNs with smaller short diameter are

often similar to those of nonmetastatic LNs (7, 8). Additionally,

MRI is less accurate in N staging than in T staging with values of

sensitivity and specificity ranging between 58–77% and 62–74%,

respectively (9). Therefore, improving the technique of preoperative

identification of LNM is key imperatives.

Radiomics is a noninvasive method that reveals the

heterogeneity of tumors in specific regions of interest (ROI) from

medical images (10). Several studies reported radiomics features

could predict LNM in other malignant tumors (11, 12). For
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colorectal cancer, Huang et al. (13) used a contrast enhanced CT

(CE-CT)-based radiomics model to discriminate LNM in colorectal

cancer with a concordance index (C-index) of 0.736-0.778. Su et al

(14) constructed a nomogram model based on T2-weighted

imaging (T2WI) radiomics and MRI reported model in RC with

an area under the receiver operating characteristic curve (AUC) of

0.891 in the validation group. However, these studies were based on

single sequence only, with variable predictive efficacy. As

mentioned previously, both CT and MRI are imaging tools for

RC staging, but there is lack of evidence that CE-CT or T2WI is the

optimal sequence for constructing radiomics model. A comparison

of radiomics models between common modalities including non-

contrast enhanced CT(NCE-CT), CE-CT, T2WI, gadolinium-

enhanced T1-weighted imaging (CE-T1WI) is needed to justify

the reasonableness. Therefore, it might be beneficial for the

development of a multiparametric radiomics method to assess

LNM in RC. In addition, multiparametric data extracted through

multi-modality imaging might be complementary to the use of

morphological changes (4).

The purpose of this study was to compare CT- and MR-based

multiparametric radiomics models and validate a multi-modality,

multiparametric clinical-radiomics nomogram based on NCE-CE,

CE-CT, CE-T1WI and T2WI that could provide a convenient and

rapid tool to accurately predict preoperative LNM in RC.
Materials and methods

Patient data

The institutional review board approved the present

retrospective study, and the informed consent was waived. A total

of 234 patients who underwent radical resection of RC from April

2012 to May 2018 were included in this study, and their

preoperative clinical and imaging data were retrospectively

analyzed. The inclusion criteria were as follows (1): pathologically

confirmed non-mucinous rectal adenocarcinoma after surgery (2),

completed baseline MRI and CT examinations before surgery, and

(3) patients with LNs with short-axis (SA) diameters≥3 mm on both

CT and MRI. The exclusion criteria were as follows (1): received

adjuvant therapy such as radiotherapy or chemotherapy before

operation (2), incomplete clinical, pathological or imaging data, or
frontiersin.org
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(3) obvious motion artifacts caused by breathing or intestinal

peristalsis. According to the random distribution of 7:3, patients

were divided into two cohorts: a training cohort (n = 164) and a

validation cohort (n = 70). The general clinical data including

patient age, sex, location of tumor, MRI-reported LNM, MRI-

reported extramural vascular invasion (EMVI), carcinoembryonic

antigen (CEA), and clinical tumor (cT) stage (the eighth edition of

the American Joint Committee on Cancer [AJCC 8th] TNM staging

system) were collected and tabulated.
Image acquisition

All patients were examined by abdominal CT and pelvic

(rectum) MRI within 1 week before surgical operation. All MRI

examinations were performed with a 3.0-T MRI scanner (Discovery

750W®, GE Healthcare, Waukesha, WI). The MRI sequences

included high-resolution T2WI (axial, coronal and sagittal),

T1WI (axial), diffusion-weighted imaging (DWI, axial) and CE-

T1WI (axial, coronal and sagittal) sequences. For venous phase CE-

T1WI, the contrast agent gadodiamide (Omniscan®, GE Medical

System, NJ) was intravenously administered at a dose of 0.1 mmol/

kg of body weight with a flow rate of 3.5 ml/s using a power injector,

followed by a bolus injection of 20 ml of normal saline. NCE-CT

and CE-CT images were obtained using a 64-detector (Siemens

Somatom Definition AS+) or 256-detector row CT scanner (GE

Revolution Xtream). CE-CT scan was performed during the portal

venous phase determined with automated scan triggering software

and the injection rate of the contrast medium (Omnipaque® 350,

GE Medical System, NJ) was 2.5 ml/s. The portal venous-phase

scanning automatically began 25 seconds after the trigger

attenuation threshold (100 HU) was reached at the level of the

descending aorta. Both CE-CT and NCE-CT were acquired

covering the same axial extent, during the same acquisition

session and in the same scanner for each patient, using the same

reconstruction settings (slice thickness and matrix size), reducing

any potential misregistration issue between the two datasets. The

scanning parameters are provided in the Supplementary Materials

Tables S1 and S2.
Image evaluation

Two experienced radiologists (radiologist A and radiologist B,

with experience of 5 and 12 years in the diagnosis of RC,

respectively) blinded to the histopathology results reviewed the

images in consensus. EMVI positivity on MRI was defined as

follows (15) (1): tumor signal intensity in a vascular structure (2),

dilated vessels, and (3) tumoral extension through the vessel wall

invading the vessel border. Qualitative criteria of MRI reported

LNM were based on the 2016 European Society of Gastrointestinal

and Abdominal Radiology consensus meeting (7). Disagreements

between the two radiologists in the assessment of these features

were resolved by the assessment of a third senior radiologist with 20

years of experience in the diagnosis of RC.
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Pathological analysis

All patients underwent total mesorectal excision (TME). We

referred to the histopathological assessment of regional LNM as the

gold standard. Pathological reports of surgically resected

specimensaccording to the AJCC 8th TNM staging system (16).

The negative LNM (LNM-) group was defined as patients with no

regional LNM. The positive LNM (LNM+) group was defined when

patients’ number of regional LNM was greater than or equal to one.
Tumor segmentation and
feature extraction

ROI segmentation was performed on CT and MRI images

by ITK-SNAP software (http://www.itksnap.org). Before

segmentation, a comprehensive lesion assessment was firstly

conducted in the Picture Archiving and Communication System

(PACS) by referencing the entire sequence of CT and MRI. For CT,

segmentation was based on unenhanced and portal venous phase–

enhanced images. While for MRI, segmentation was based on high-

resolution T2WI oblique axial sequence and CE-T1WI axial

sequence. Since the acquisition of both NCE-CT and CE-CT

images was carried out during the same examination, image

registration was unnecessary, and it allowed to automatically

report the segmentation performed by the radiologist on CE-CT

images on the associated NCE-CT images within ITK-SNAP (17).

This ensured avoiding differences between features occurring from

different segmentations shape and volumes. Segmentations were

manually performed on the CE-T1WI and T2WI sequences

separately. The above segmentation was completed by radiologist

A and radiologist B who were blinded to the pathological

information. The ROI was manually sketched along the tumor

edge to avoid cystic degeneration, bleeding, and necrosis of the

tumor as far as possible. The lesions were double-blindly delineated

by two observers in 50 cases randomly selected for different

sequences and two sets of segmentation masks were obtained for

each sequence. The corresponding radiomics features were

calculated according to the segmentation results of the two

groups, and intraclass correlation coefficients (ICCs) were

calculated to assess the interobserver correlation coefficient

reproducibility of the radiomic feature extraction. Next, the

segmented image was preprocessed and the N4 correction

algorithm in the 3D Slicer (version 4.9, http://www.slicer.org) was

used to remove the artifacts of the MRI offset field, reducing the

unevenness of the radio-frequency field and the influence of the MR

device itself. Then, the gray values of CT and MRI images were

normalized to [0-255] to reduce the gray differences between

different sequences of different patients, acquisition time and

parameter settings so as to ensure the accuracy and reliability of

texture analysis. The B-spline interpolation algorithm was used to

resample the ROI to a uniform size (1 * 1 * 1 mm3) for

feature extraction.

The subsequent feature extraction was performed by a radiomic

module (backed by Pyradiomics v3.0) embedded in the open-source
frontiersin.org
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software package 3D Slicer. Two image filters, wavelet and

Laplacian of Gaussian (LoG) were applied to original images,

respectively. Sigma parameter of LoG filter defined the texture

roughness to be emphasized. We set the sigma size to 1,3 and 5

to obtain filtered images with different textures. In wavelet filter

processing, bin width was set to 10. Then, 1130 radiomics features

were extracted from the preprocessed images of each mode,

including (1) shape-based features (2) histogram features (3)

matrix texture features: Grey-level co-occurrence matrix (GLCM),

Grey-level run length matrix (GLRLM), Grey-level size zone matrix

(GLSZM), Gray-level dependence matrix (GLDM) and

Neighbourhood grey-tone difference matrix (NGTDM) (4)

wavelet features. These features have been shown to be

characteristic of cancer heterogeneity and may reflect changes in

image structure (18).
Feature selection and model building

Feature selection and model construction only used training set

data, and validation set was used for model evaluation. Firstly, the

features of ICC calculated by segmentation difference were

preliminarily screened to eliminate the unstable features with ICC

< 0.8. Then, Pearson correlation (PCC) analysis was performed

separately for each class of the remaining radiomics features to

obtain a feature set with relatively small redundancy (the

correlation coefficient threshold was set to 0.99). After the

obtained feature set was standardized by Minmax or Zscore

algorithm, the recursive feature elimination (RFE) algorithm was

used to find the optimal feature subset. Five classification

algorithms (Random forest, Gaussian process, Adaboost, K-

Nearest Neighbor and Multi-layer Perceptron) were compared to

obtain the optimal one. The 5-fold cross validation was used for

feature selection and classification algorithm optimization, and the

optimal radiomics model was constructed and evaluated in the

independent validation set.

To quantify the accuracy of the signature constructed by

different radiomics models, we calculated the LN-positive

probability score of each case using the radiomics formula of the

training set, which was defined as the radiomics score (rad-score).

Then, univariate logistic regression was used to identify potential

predictors of clinical risk factors for LNM. For the multivariable

analysis, first, all the significant clinical characteristics were

included, and next, only the variables with P <0.10 at univariable

analysis were included and selected using the backward elimination

process. The Clinical model and clinical-radiomics nomogram

for predicting LNM were constructed using the selected

clinical predictors.

The Hosmer–Lemeshow test was performed to assess the

goodness-of-fit of the nomogram. Calibration curves were

generated to evaluate the calibration of the nomogram. The AUC

values were calculated to assess the discrimination performances of

the Clinical model, radiomics models and clinical-radiomic

nomogram for predicting LNM. The clinical utility was evaluated

by decision curve analysis (DCA).
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Statistical analysis

SPSS 26.0 (IBM) and R software (version 2.15.3) were used for

statistical analysis. The baseline characteristics of patients with RC

were compared using Student’s t test, nonparametric test, chi-

squared test, and Fisher’s exact test (where appropriate). The

diagnostic performance was compared by receiver operating

characteristic (ROC) analysis, and the difference in AUC values

between these models was compared using Delong’s test.
Results

Patient characteristics

The research flow chart is shown in Figure 1. There are no

significant differences in any of clinical features between the

training and validation cohorts, as shown in Table 1. There are

significant differences in MRI-reported LNM and EMVI between

the LNM- and LNM+ groups both in the training and validation

cohorts. Significant difference in cT stage was found only in the

validation cohorts. See Table 2 for details.
Diagnostic performance of MRI-
reported LNM

Diagnostic performance of MRI-reported LNM is summarized in

Supplementary Materials Table S3. TheMRI-reported LNM achieved

a sensitivity of 70.4%, a specificity of 66.9%, an accuracy of 68.4%, a

positive predictive value of 60.5%, a negative predictive value of

75.8%, and an AUC of 0.687 (95% confidence interval 0.617-0.756).
Rad-score evaluation

As is shown in Supplementary materials, the remaining 12,

3,11and 6 features after dimensionality reduction were extracted

from NCE-CT, CE-CT, CE-T1WI and T2WI respectively. The

diagnostic performance of the radiomics signature in the training

cohort and validation cohort are as shown in Tables 3A, B,

respectively. We combined NCE-CT radiomics model with CE-CT

radiomics model to obtain CT radiomics model, and combined CE-T1

radiomics model with T2 radiomics model to obtain MRI radiomics

model. Then, we combined CT radiomics model with MRI radiomics

model to obtain CT-MRI radiomics model. In terms of predictive

efficacy, the CT-MRI radiomics model significantly outperforms the

remaining six radiomics models, with AUCs of 0.930 and 0.802 for the

training and validation sets, respectively. The comparison of predictive

efficacy between different radiomics models is shown in Table 4.
Development and evaluation of the
clinical-radiomic nomogram

Logistic regression analysis showed that only the MRI-reported

LNM was the independent predictors of LNM, as shown in Table 5.

The Clinical model was constructed using MRI-reported LNM. The

clinical-radiomic combined models were constructed by adding CT or
frontiersin.org
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TABLE 1 Baseline characteristics of the study population.

Characteristic Level Training Cohort (n=164) Validation Cohort (n=70) p value

Age (years) 60.8 ± 9.7 60.8 ± 10.0 0.982a

Sex (No.) 0.584b

Male 100(61.0) 40(57.1)

Female 64(39.0) 30(42.9)

Location 0.096b

lower 68(41.5) 19(27.1)

middle 71(43.3) 37(52.9)

upper 25(15.2) 13(18.6)

≥2 parts 0(0.0) 1(1.4)

cT stage 0.098b

T1-2 42(25.6) 11(15.7)

T3-4 122(74.4) 59(84.3)

MRI-reported LNM 0.753b

Negative 83(50.6) 37(52.9)

Positive 81(49.4) 33(47.1)

MRI-reported EMVI 0.677b

Negative 106(64.6) 48(68.6)

Positive 19(11.6) 9(12.9)

NA 39(23.8) 13(18.6)

CEA (mg/l) 2.3(1.4,4.6) 2.2(1.5,6.6) 0.402c
F
rontiers in Oncology
 05
 fro
a Variables were tested using independent sample t-test, data are mean ± SD.
b Variables were tested using Chi-square test or Fisher’s exact test, data are the number of patients, with percentages in parentheses.
c Variables were tested using Mann–Whitney U-test, data are median, with Interquartile range in parentheses.
SD, standard deviation; LNM, lymph node metastasis; PLNM, pathological-reported lymph node metastasis; EMVI, extramural vascular invasion; CEA, carcinoembryonic antigen.
FIGURE 1

Research flow chart of the radiomics models.
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MRI radiomics model to the Clinical model. We constructed three

clinical-radiomic nomograms, as shown in Table 3, including the

Clinical-CT nomogram obtained by fusing the Clinical model with CT

radiomics model, the Clinical-MRI nomogram obtained by fusing the

Clinical model with MRI radiomics model, and the Clinical-IMG

nomogram constructed by fusing the Clinical model with the CT and

MRI radiomics models. In terms of the prediction effect, the Clinical-

IMG nomogram is significantly higher than the other two

nomograms, with AUCs of 0.947 and 0.828 for the training and

validation sets, respectively. The comparison of predictive efficacy

between different nomograms is shown in Table 4.
Comparison of prediction performance
between different models

The comparison of the predictive efficacy among different models

in the validation cohort is shown in Table 4. We found that except for
Frontiers in Oncology 06
NCE-CT radiomics model, the radiomics models were overall

superior to the Clinical model (p<0.05); the combined multi-

parameter models were overall superior to the single-parameter

model for both CT and MRI. The CT radiomics model was

significantly superior to the NCE-CT radiomics model (0.721 vs

0.676, p<0.001) and was slightly outperformed the CE-CT radiomics

model (0.721 vs 0.711, p=0.081), though there was no statistical

significance by Delong test. The MRI radiomics model significantly

outperformed the CE-T1WI radiomics model (0.785 vs 0.735,

p<0.001) or T2WI radiomics model (0.785 vs 0.728, p<0.001). The

MRI radiomics model significantly outperformed CT radiomics

model (0.785 vs 0.721, p=0.007). The multimodality multiparametric

radiomics models combined with Clinical model to build the Clinical-

IMG nomogram had the highest predictive value and significantly

outperformed all other radiomics models and nomograms, p<0.05.

Figure 2 shows the ROC curves and AUC of the Clinical model,

the optimal radiomics model CT-MRI radiomics model and the

optimal clinical-radiomic nomogram Clinical-IMG nomogram in
TABLE 2 Clinical characteristics of the training and validation cohorts.

Characteristic Level

Training Cohort (n=164) Validation Cohort (n=70)

PLNM (–) PLNM(+)
p value

PLNM (–) PLNM(+)
p value

(n=95) (n=69) (n=41) (n=29)

Age (years) 61.3 ± 9.6 60.2 ± 9.8 0.482a 61.0 ± 10.1 60.5 ± 9.7 0.833a

Sex (No.) 0.501b 0.779b

Male 60(63.2) 40(58.0) 24(58.5) 16(55.2)

Female 35(36.8) 29(42.0) 17(41.5) 13(44.8)

Location 0.392b 0.635b

lower 43(45.3) 25(36.2) 12(29.3) 7(24.1)

middle 40(42.1) 31(44.9) 22(53.7) 15(51.7)

upper 12(12.6) 13(18.8) 7(17.1) 6(20.7)

≥2 parts 0(0.0) 0(0.0) 0(0.0) 1(3.5)

cT stage 0.333b 0.018b*

T1-2 27(28.4) 15(21.7) 10(24.4) 1(3.4)

T3-4 68(71.6) 54(78.3) 31(75.6) 28(96.6)

MRI-reported LNM <0.001b* 0.010b*

Negative 64(67.4) 19(27.5) 27(65.9) 10(34.5)

Positive 31(32.6) 50(72.5) 14(34.1) 19(65.5)

MRI-reported EMVI 0.043b* 0.022b*

Negative 64(67.4) 42(60.9) 29(70.7) 19(65.5)

Positive 6(6.3) 13(18.8) 8(19.5) 1(3.5)

NA 25(26.3) 14(20.3) 4(9.8) 9(31.0)

CEA (mg/l) 2.1(1.3,3.3) 2.5(1.5,6.7) 0.077c 2.0(1.4,4.7) 3.2(1.7,9.5) 0.076c
fro
a Variables were tested using independent sample t-test, data are mean ± SD.
b Variables were tested using Chi-square test or Fisher’s exact test, data are the number of patients, with percentages in parentheses.
c Variables were tested using Mann–Whitney U-test, data are median, with Interquartile range in parentheses.
*p values less than 0.05 were considered statistically significant.
SD, standard deviation; LNM, lymph node metastasis; PLNM, pathological-reported lymph node metastasis; EMVI, extramural vascular invasion; CEA, carcinoembryonic antigen.
NA, Not Applicable.
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the training (Figure 2A) and validation sets (Figure 2B). The CT-

MRI radiomics model is significantly superior to the Clinical model

in both the training and validation sets (AUC,0.930 vs. 0.699,

p<0.001,0.802 vs. 0.657, p<0.001), and the Clinical-IMG

nomogram is significantly better than the Clinical model in both

the training and validation sets (AUC,0.947 vs. 0.699, p<0.001,

0.828vs0.657, p<0.001) or CT-MRI radiomics model (AUC,0.947 vs.

0.930, p<0.001, 0.828 vs. 0.802, p<0.001).

The nomogram was constructed for visualizing the Clinical-

IMG combined model, as shown in Figure 3A. The calibration

curves of the Clinical-IMG nomogram in the training and

validation cohort are shown in Figures 3B, C, and 4 shows the

DCA results. DCA indicates that the Clinical-IMG nomogram has

the best clinical net benefit compared with the Clinical model or

CT-MRI radiomics model and good calibration in training cohort

and validation cohort is identified using the Hosmer–Lemeshow

test (all p>0.05).
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Discussion

Preoperative noninvasive assessment of LNM in RC patients

has always been a hot and difficult issue (19, 20). In the current

study, we compared various clinical and radiomics models based on

preoperative data of RC patients to predict LNM. The results

showed that the radiomics models were generally better than the

Clinical model. Also, we constructed several radiomics prediction

models from CT or MRI with different parameters. The results

indicated that MRI radiomics model was superior to CT radiomics

model and the combined multiparametric radiomics model showed

better prediction efficiency than the single parameter radiomics

models for both CT and MRI. Moreover, we found that the

multimodality multiparametric radiomics signatures combined

with clinical data build the radiomics nomogram which had the

best predictive performance. Together, either CT- or MR-based

radiomics techniques can help to non-invasively predict LNM of
TABLE 3 Diagnostic efficacy of different models. .

A. Training cohort

AUC (95%CI) p-value Sensitivity Specificity Accuracy

Clinical model 0.699(0.667-0.731) Ref. 0.725 0.674 0.695

NCE-CT_rad signature 0.646(0.609-0.683) 0.033* 0.565 0.589 0.579

CE-CT_rad signature 0.886(0.865-0.908) < 0.001* 0.754 0.789 0.774

CT_rad signature 0.888(0.866-0.909) < 0.001* 0.841 0.758 0.793

CE-T1_rad signature 0.726(0.690-0.762) 0.256 0.609 0.779 0.707

T2_rad signature 0.792(0.764-0.819) < 0.001* 0.667 0.789 0.738

MRI_rad signature 0.848(0.821-0.874) < 0.001* 0.797 0.747 0.768

CT-MRI_rad signature 0.930(0.913-0.947) < 0.001* 0.841 0.895 0.872

Clinical-CT nomogram 0.920(0.903-0.937) < 0.001* 0.899 0.789 0.835

Clinical-MRI nomogram 0.879(0.855-0.903) < 0.001* 0.768 0.789 0.780

Clinical-IMG nomogram 0.947(0.933-0.962) < 0.001* 0.870 0.884 0.878

B. Validation cohort

AUC (95%CI) p-value Sensitivity Specificity Accuracy

Clinical model 0.657(0.624-0.689) Ref. 0.655 0.659 0.657

NCE-CT_rad signature 0.676(0.640-0.712) 0.410 0.690 0.537 0.600

CE-CT_rad signature 0.711(0.676-0.746) 0.019* 0.690 0.610 0.643

CT_rad signature 0.721(0.687-0.756) 0.005* 0.759 0.610 0.671

CE-T1_rad signature 0.735(0.701-0.769) < 0.001* 0.586 0.659 0.629

T2_rad signature 0.728(0.698-0.758) < 0.001* 0.414 0.854 0.671

MRI_rad signature 0.785(0.754-0.815) < 0.001* 0.621 0.732 0.686

CT-MRI_rad signature 0.802(0.772-0.831) < 0.001* 0.621 0.78 0.714

Clinical-CT nomogram 0.744(0.710-0.777) < 0.001* 0.690 0.659 0.671

Clinical-MRI nomogram 0.796(0.766-0.827) < 0.001* 0.690 0.780 0.743

Clinical-IMG nomogram 0.828(0.799-0.856) < 0.001* 0.759 0.780 0.771
CI, confidence intervals; AUC, the area under the receiver operating characteristic curve.
*p values less than 0.05 were considered statistically significant.
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RC, and the predictive efficacy can be further enhanced when

combined with clinical features.

In the present study, radiomics signature of NCE-CT did not

have a statistically significant difference from that of the CE-CT in

the validation cohort (AUC, 0.676 vs 0.711, p=0.187). Yuan et al.

(21) recruited 788 patients with RC to construct a CT-based

radiomics analysis to predict LNM in RC. It was found that there

were no statistical significances of the intra-tumoral Bayes model

among the non-enhanced, arterial or venous–phase CT in the

training and validation cohorts, which was consistent with our

findings. The above findings suggested that NCE-CT and CE-CT

radiomics models were of comparable value in predicting LNM of

RC. Badic et al. (17) found that some second and third-order

textural features extracted from images of patients with primary

colorectal tumors were found highly correlated between CE-CT and

NCE-CT, and some radiomics features with moderate correlation

had potential complementary value for predicting survival

outcomes, which may explain the reason of our result that no

significant statistical difference between NCE-CT and CE-CT
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radiomics models may be due to a certain degree of correlation

between NCE-CT and CE-CT radiomics features. Considering the

safety and economy, avoiding the adverse reactions caused by

contrast medium and thus applicable to a wider population (22),

the NCE-CT-based radiomics signature is more suitable for

predicting LNM in RC than CE-CT. In our data, we also found

that the CT radiomics model outperformed the NCE-CT radiomics

model (AUC, 0.721 vs 0.676, p<0.001), indicating that CT radiomics

model combined NCE-CT with CE-CT can further improve the

prediction efficiency. Hence, if appropriate, a CT radiomics model

combining multiple parameters would be selected for LNM

prediction in RC when possible.

In the current study, there was no significant difference in the

predictive value of the MRI radiomics models between CE-T1WI

and T2WI in the validation cohort (0.735 vs 0.728, p = 0.780). To

the best of our knowledge, up to now, it seems none of the studies

have compared the efficacy of CE-T1WI and T2WI-based radiomics

models in predicting LNM of RC. However, some studies (23, 24)

on predicting other high-risk prognostic factors of RC showed

similar findings with our work. Zhang et al. (25) and Liu et al. (26)

found no significant difference between the radiomics signatures

based on CE-T1WI and T2WI in predicting perineural invasion and

EMVI of RC, respectively. In clinical practice, acquiring T2WI

images instead of CE-T1WI images can avoid adverse effects caused

by contrast agents to reduces medical risks and medical expenses.

Additionally, it is generally believed that T2WI is preferred for the

morphological evaluation of LN while CE-T1WI provides minimal

benefit for the accurate determination of metastatic nodes in RC

(27). Thus, our study provides a further rationale for the fact that

T2WI is often used as an optimal sequence in constructing

radiomics model to predict LNM in RC (28–30). Our study also

found that the MRI radiomics model significantly outperformed the

CE-T1WI radiomics model (0.785 vs. 0.735, p<0.001) and T2WI

radiomics model (0.785 vs. 0.728, p<0.001), which was consistent

with the findings obtained in radiomics prediction models for LNM

in other types of cancer (31, 32). Deng et al. (33) developed a

radiomics predictive model for LNM in cervical cancer using
A B

FIGURE 2

ROC curves of three models in the training cohort (A) and validation cohort (B). The results show that the Clinical-IMG nomogram has the highest
AUC value.
TABLE 5 Stepwise logistic regression analysis of LNM prediction.

Variable
Univariate logistic regression

OR (95%CI) p value

Sex 1.234(0.603-2.525) 0.565

Age 0.982(0.946-1.019) 0.332

Location 1.907(0.834-4.364) 0.126

Distance from the anus 0.937(0.767-1.144) 0.522

cT stage 0.958(0.422-2.172) 0.918

MRI-reported LNM 5.433(2.751-10.728) 0.000*

MRI-reported EMVI 0.913(0.602-1.383) 0.667

CEA (mg/l) 1.017(0.973-1.062) 0.459
*p values less than 0.05 were considered statistically significant.
LNM, lymph node metastasis ; EMVI, extramural vascular invasion; CEA,
carcinoembryonic antigen.
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radiomic features extracted from CE-T1WI and T2WI images,

which exhibited high performance in LNM prediction. However,

they did not compare the differences in predictive efficacy among

different MRI parameter sequences. Our research further confirmed

that the model constructed from the combination of multiple MRI

sequences was superior to single-sequence models in discriminating

LN status.

Both CT or MRI could be used for constructing radiomics

models and have obtained good predictive efficacy in RC LN status

(20). Our study found that the AUC of MRI radiomics model in the

validation cohort was significantly higher than that of CT (0.785 vs.

0.721, p<0.05), reflecting that MRI-based radiomics is more suitable

than CT for assessing N staging, which may be due to the high soft

tissue resolution and multiparametric features of MRI that provide

more tissue information and allow for a more comprehensive

description of the tumor whereas CT reflects only the density

differences between tissues (34–36). Additionally, we also found

no statistical difference between MRI radiomics model and CT-MRI

radiomics model in the validation cohort (0.785 vs. 0.802, p=0.318),

which indicated that CT radiomics model provided limited value in

CT-MRI radiomics model.

Previous researches have demonstrated an association between

MRI-reported LNM and the pathological status of LNs (37). The

diagnostic performance of MRI-reported LNM in our study was
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consistent with previous studies (9, 38). In the present study, MRI-

reported LNM was incorporated as the only independent predictor

for LNM in Clinical model. Except for NCE-CT, the predictive

efficacy of different radiomics models were better than that of

Clinical model in our study (p<0.05), which is consistent with the

MRI findings of Li et al (39). These observations indicated that

imaging approaches can provide more information relevant to

LNM and are always superior to clinical method in evaluating the

status of lymphatic metastasis in RC.

Due to the significance of LNM as a crucial prognostic factor

impacting local recurrence and overall survival in patients with RC,

the preoperative prediction of LNM is highly imperative (29),

especially for patients who cannot undergo surgery or biopsy to

obtain pathological results because of various causes. In our study,

the Clinical, CT and MRI radiomics models were conducive to

predict LNM of RC. In order to fully exploit medical information

and facilitate clinical applications, we constructed an integration

nomogram (Clinical-IMG nomogram) combining the CT and MRI

radiomics features with clinical characteristics for the preoperative

assessment of LNM in RC, and achieved a better prediction

performance. We found that Clinical-IMG nomogram had the

highest AUC and better predictive efficacy than all other

predictive models (p<0.05). Similar to our observation, Li et al.

corroborated that clinical-radiomic nomograms outperform clinical
A

B C

FIGURE 3

Clinical-IMG nomogram for predicting LNM (A). In the nomogram, a vertical line was drawn according to the value of the rad-score to determine
the corresponding value of points. The points of MRI-reported LNM can also be determined in the same way. The total points were the sum of the
three points above. Finally, a vertical line was drawn according to the value of the total points to determine the probability of LNM. The calibration
curve of the Clinical-IMG nomogram for LNM in the training cohort (B) and validation cohort (C). The x-axis represented the predicted LNM risk. The
y-axis represented the actual LNM rate. A diagonal dotted line indicated the reference line where an ideal nomogram would lie. A red solid line
indicated the performance of the nomogram, while the blue dashed line indicated bias correction in the nomogram.
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models in predicting preoperative LNM (40). Therefore, the

development of Clinical-IMG nomogram can enhance the clinical

assessment performance of MRI on detecting LNM. In clinical

practice, we recommend to establish integration model that

incorporates as much multimodality/multiparametric image data

and clinical information as possible to achieve continue

improvement in the non-invasive prediction of LNM in patients

with RC. Additionally, the Clinical-IMG nomogram, as a scoring

system, can quantify the probability of LNM to realize the

individualized preoperative prediction of LNM risk in RC by

clinicians, which is in line with the current development trend of

individualized precision medicine (41).

When considering the methods of the present study, there were

some limitations. First, this study was retrospectively. However,

eligible patients were consecutively retrieved from a prospective

database that included all patients with RC in our hospital. Second,

our data are limited to a single center study, so our results may not

be extended to other medical centers. In the future, multicenter

studies are needed to further verify the results of this study. Third,

even though diffusion-weighted imaging (DWI) is routinely

included in rectal MRI protocols and offers several benefits in

various applications, it also has multiple possible shortcomings.

Manual drawing of ROIs onto the tumor for quantitative or

qualitative assessment may result in interobserver variation.

Furthermore, image distortion due to artifacts is common on

DWI, particularly around air tissue interfaces. These

shortcomings may interfere with radiologists in drawing tumor
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ROI. Forth, our study has limitations concerning the

generalizability of radiomics. Some radiomics features are difficult

to explain and have unequivocal significance in clinical practice.

Currently, radiomic prediction models are challenging to reproduce

and generalize in clinical practice due to their complex processes.

Fifth, radiomics features were extracted from the primary tumor

rather than LNs in our study. The segmentation of LNs poses

challenges due to their relatively small size, potentially unclear

boundaries and complex surrounding structures. However, direct

identification of LNM remains a direction for the further in-

depth research.

In conclusion, MRI radiomics model performs better than both

CT radiomics model and Clinical model in predicting LNM of RC.

The clinical-radiomics nomogram that combines the radiomics

features obtained from both CT and MRI along with preoperative

clinical characteristics exhibits the best diagnostic performance. In

practice, integrating all possible clinical and imaging information

helps to achieve the best model prediction performance.
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