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Purpose: Chemotherapy is pivotal in the multimodal treatment of pancreatic

ductal adenocarcinoma (PDAC). Technical advances unveiled a high degree of

inter- and intratumoral heterogeneity. We hypothesized that intratumoral

heterogeneity (ITH) impacts response to gemcitabine treatment and demands

specific targeting of resistant subclones.

Methods: Using single cell-derived cell lines (SCDCLs) from the classical cell line

BxPC3 and the basal-like cell line Panc-1, we addressed the effect of ITH on

response to gemcitabine treatment.

Results: Individual SCDCLs of both parental tumor cell populations showed

considerable heterogeneity in response to gemcitabine. Unsupervised PCA

including the 1,000 most variably expressed genes showed a clustering of the

SCDCLs according to their respective sensitivity to gemcitabine treatment for

BxPC3, while this was less clear for Panc-1. In BxPC3 SCDCLs, enriched signaling

pathways EMT, TNF signaling via NfKB, and IL2STAT5 signaling correlated with

more resistant behavior to gemcitabine. In Panc-1 SCDCLs MYC targets V1 and

V2 as well as E2F targets were associated with stronger resistance. We used

recursive feature elimination for Feature Selection in order to compute sets of

proteins that showed strong association with the response to gemcitabine. The

optimal protein set calculated for Panc-1 comprised fewer proteins in

comparison to the protein set determined for BxPC3. Based on molecular

profiles, we could show that the gemcitabine-resistant SCDCLs of both BxPC3

and Panc-1 are more sensitive to the BET inhibitor JQ1 compared to the

respective gemcitabine-sensitive SCDCLs.
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Conclusion: Our model system of SCDCLs identified gemcitabine-resistant

subclones and provides evidence for the critical role of ITH for treatment

response in PDAC. We exploited molecular differences as the basis

for differential response and used these for more targeted therapy of

resistant subclones.
KEYWORDS
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Introduction

Pancreatic cancer is one of the most aggressive and lethal

cancers worldwide, and the fourth leading cause of cancer-

associated deaths (1). It has been predicted that pancreatic cancer

will be the second most common cancer-related cause of death by

2030 in the United States (2). Surgical therapy is currently the only

curative treatment option, but only about 20% of patients are

eligible for this treatment option at the time of diagnosis (3). This

is followed by adjuvant chemotherapy, which prolongs the median

overall survival of patients, depending on the chemotherapy

regimen to 35.0 and 54.4 months for gemcitabine and modified

FOLFIRINOX, respectively (4). In patients with metastatic

pancreatic cancer, the administration of FOLFIRINOX leads to a

survival advantage with a median overall survival of 11.1 months

compared to 6.8 months under gemcitabine treatment (5).

However, the choice of chemotherapeutic agents is based on the

patient’s physical condition, while the individual biology of the

tumor, unlike in other cancer entities, has not played a role in

clinical routine practice so far.

In recent years, several studies have suggested the classification

of pancreatic ductal adenocarcinomas (PDACs) into different

subgroups based on their molecular signature (6–8). Currently,

one of the most commonly used classification system is based on

transcriptomic subtypes, e.g., the subdivision by Moffit et al. into a

classical type and a more aggressive basal-like type (8). Those

assignments indeed correlate with patient overall survival and

likewise with a certain resistance or sensitivity against specific

chemotherapies, but the correlation of the overall survival rate

only applies to early stages (9).

At the single-cell level, it became evident that tumor cells of

both subtypes coexist within one tumor. The entirety of these co-

existing subpopulations make up the expression profile of the tumor

mass. It can therefore be concluded that the genomic and

transcriptomic profiles are determined by a continuum of gene

expressions derived from a mixture of subpopulations within a

pancreatic tumor (9, 10). This intratumoral heterogeneity (ITH) is

hard to capture sufficiently by bulk analyses (11).

ITH has become apparent to play an important role in tumor

biology and thus also determines the response to the selected

therapy options and ultimately overall survival as shown in
02
various tumor entities (12). Genomic instability causes the tumor

cells to generate numerous genetic changes and a branching

evolutionary process of tumor clones is created (13). Most of

these changes do not benefit the subclones and an equilibrium in

the context of a functional hierarchy is created in the tumor cell

population (14). This functional heterogeneity is also reflected in

differences in intrinsic sensitivity to specific drugs and external

changes, such as chemotherapy, can disturb this balance and give

certain subclones a selection advantage, which is also reflected in

tumor recurrence (15, 16). Our previous studies in Panc-1 cells have

shown phenotypic and functional heterogeneity, i.e., with respect to

epithelial-mesenchymal transition (EMT), stem cell marker

expression and response to growth factors (17).

In our present study, we pursue the hypothesis that ITH

influences the treatment response of PDAC since resistant

subclones are already present within the tumor cell population

before treatment. By establishing single cell-derived cell lines

(SCDCLs) of the classical cell line BxPC3 and the basal-like cell

line Panc-1, we aim to uncover heterogeneity of treatment response

of distinct tumor cell subpopulations in an in vitro model.

Subsequently, we aim to uncover the molecular preconditions of

tumor cell subclones that correlate with their distinct response to

therapy using transcriptomic and proteomic profi l ing.

Understanding subclonal resistance mechanisms in heterogeneous

tumor cell populations might ultimately help to develop new

clinical treatment strategies in PDAC.
Materials and methods

Cell culture and establishment of SCDCLs

The PDAC-derived cell line BxPC3 (classical subtype) and Panc-

1 (basal-like subtype) were cultured in DMEM high glucose with 10%

fetal bovine serum and 1% Penicillin-Streptomycin-Glutamine

(Sigma-Aldrich, St. Louis, USA) at 37°C, 5% CO2 in a humidified

atmosphere. Mycoplasma contamination was excluded in both cell

lines by PCR (MycoScope PCR Detection Kit, Genlantis, San Diego,

CA). Cell line authentication was performed by short tandem repeat

(STR) profiling using the PowerPlex® 21 System (Promega, Madison,

USA) according to the manufacturer’s instructions.
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To generate single cell-derived cell lines (SCDCLs), limited

dilution of both parental cell lines was performed in 96-well

plates. For Panc-1 two and for BxPC3 four 96-well plates were

seeded initially. Each well was examined by phase-contrast

microscopy three hours after plating to ensure that only wells

harboring a single cell were used for further cultivation. Once the

single-cell clones reached approximately 80% confluency in a 96-

well plate, they were transferred to a 6-well plate. Upon reaching

80% confulency in the 6-well-plate, the SCDCLs were further

transferred to a T-25 flask. After reaching 80% confluency in the

T-25 flask, both RNA and protein samples were collected.
Treatment response of individual SCDCLs
to gemcitabine

To measure the sensitivity to gemcitabine (Sigma-Aldrich, St.

Louis, USA), cells of the respective parental cell population growing

in log phase (2,000 cells of BxPC3 and 1,500 cells of Panc-1 per well)

were seeded in 96-well plates. After a period of 24 hours, the cells

were treated with gemcitabine concentrations ranging from 2.5 to

320 nmol/L for 72 hours. After this time, the survival fraction of the

cells was determined. For this purpose, cell metabolism was used as

a surrogate parameter for viability by using the CellTiter-Blue assay

(Promega, Madison, USA). Normalization was based on untreated

controls. IC50 and ICmax of parental cell populations were

determined using dose-response curves. Subsequently, each

SCDCL was treated with gemcitabine in the same experimental

set-up at the IC50 and ICmax of the respective parental cell

population. Finally, for selected SCDCLs, complete dose-response

curves were generated, as performed for the parental cell lines. Each

individual measurement was carried out in triplicates and repeated

three times.
Proliferation curves

Cells were seeded at 20,000 cells per well in a 6-well plate

(Sarstedt AG & Co. KG, Nümbrecht, Deutschland). Cells were

detached from a well by trypsination and counted with a Neubauer

chamber (Brand GmbH & Co. KG, Wertheim, Deutschland) every

24 hours. Counting results were normalized to day 1. For each

proliferation curve, three independent biological replicates were

performed for each time point.
Total mRNA sequencing

RNA was extracted from each SCDCL using the AllPrep

RNeasy Mini Kit (Qiagen N.V., Venlo, Niederlande) as indicated

by the manufacturer in the instruction manual. RNA samples were

sequenced at Novogene Europe, Cambridge, United Kingdom. A

poly-A enrichment and strand-specific library preparation were

used. Sequencing was performed on an Illumina Novaseq6000 with

S4 flowcell and PE150 length aiming for 30 million reads per

sample. The data have been deposited to GEO Accession with the

data set identifier GSE232549.
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Pathway and gene set analyses

Raw sequencing data (fastq format) was mapped against the

human transcriptome (Ensembl GRCh38.103) using kallisto

(v0.46.1) and differential expression analysis was performed using

sleuth (v0.30.0) (18, 19). Gene set enrichment analysis (GSEA) on

b-values (effect sizes estimated by sleuth) was performed using

mitch (v1.4.1) against HALLMARK gene sets extracted from the

msigdf R package (v7.0) (20).
Label-free micro-LC tandem
mass spectrometry

Protein from each SCDCL was extracted using the EasyPep™

Mini MS Sample Prep Kit (Thermo Fisher Scientific Inc., Waltham,

USA). Extracted protein was analyzed using label-free micro-LC

tandem mass spectrometry (Ultimate 3000 nHPLC, ThermoFisher

& 5600+ Triple TOF, AB Sciex) using data-independent acquisition

(DIA). After digestion of non‐labeled protein samples with trypsin,

transmitted ions were fragmented and analyzed in the TOF MS

Analyzer at high resolution. The raw SWATH data were processed

using the software tool DIA-NN v1.7.16 (data-independent

acquisition by neural networks) developed by Vadim Demichev

et al. (21). The software was used in the high accuracy LC mode

with RT-dependent cross-normalization enabled. Mass accuracy,

MS1 accuracy, and scan window settings were set to 0, as DIA-NN

optimizes these parameters automatically. The ‘match between runs’

function was used to first develop a spectral library using the ‘smart

profiling strategy’ from the data-independent acquisition data. The

human UniProtKB/swiss-prot database (version 2020/12/6) was used

for protein inference from identified peptides (22). Trypsin/P was

specified as protease. The precursor ion generation settings were set

to peptide length of 7–52 amino acids, the maximum number of

missed cleavages to one. The maximum number of variable

modifications was set to zero. N-terminal methionine excision and

cysteine carbamidomethylation were enabled as fixed modifications.

The resulting report file was further processed in the DIA-NN R

package for MaxLFQ-based protein quantification (21, 23). A report

was generated containing unique proteins (proteins that were not

assigned to a group of homologs) that passed the FDR cut-off of 0.01

applied on the precursor level and were identified and quantified

using proteotypic peptides only.

The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium via the PRIDE partner

repository with the dataset identifier PXD042256 (24, 25).
Proteomic feature extraction for
treatment response

For calculation of the most important proteins that were related

to the heterogeneity of SCDCLs we used the R software (v. 4.1.2)

along with the packages caret and klaR (26–28). Both packages are

available from the CRAN.repository (https://cran.r-project.org/).

Using the random forest (RF) algorithm implemented in the caret

package the protein data obtained from the MS experiments were
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used to fit a regression model. Measured response to the IC50 value

of gemcitabine of the respective parental tumor population was

used as target variable of the model. ‘Backward Feature Elimination’

was utilized to select the most important proteins for the best fit of

the regression model. To this end, the ‘Root Mean Square Error’

(RMSE) served as performance measure and the protein set that

yielded the best RMSE value was selected from each model run.

Using different seed values we took advantage of the random

characteristics of the RF algorithm and performed several

replicates for both cell lines (10 for Panc-; 30 replicates for

BxPC3) of the model runs. In our model, a higher ranking of a

protein within a list of the respective run corresponded to a higher

relevance for explaining heterogeneous therapy response to IC50 of

gemcitabine of the respective parental tumor population. As each

run computed an at least slightly different set of ‘optimal’ proteins

the results of all model runs were integrated by calculating a total

score for each protein as follows: o
n

k=1

Xk = 1 −
a − 1
b

(b=“number of

proteins in a run”, a=“rank position of the protein in this run”,

n=total number of runs). We arbitrarily chose 50 as the upper limit

for the number of proteins in the final list because the average

number of proteins determined for BxPC3 corresponded to this

order of magnitude, whereas the number of proteins determined for

Panc-1 was significantly lower.
Treatment response of individual
SCDCLs to JQ1

To measure the sensitivity to JQ1 (APExBIO, Houston, USA),

cells of the respective parental cell population or SCDCLs growing

in log phase (2,000 cells of BxPC3 and 1,500 cells of Panc-1 per well)

were seeded in 96-well plates. After a period of 24 hours, the cells

were treated with concentrations ranging from 1.92 to 30,000.00

nmol/L for 72 hours. After this time, the survival fraction of the cells

was determined. For this purpose, cell metabolism was used as a

surrogate parameter for viability by using the CellTiter-Blue assay

(Promega, Madison, USA). Normalization was based on untreated

controls. Each individual measurement was carried out in triplicate

and repeated three times.
Statistical analysis

If not stated differently, all analyses were performed using R

version 4.1. Responder stratification was performed using stratifyR

(v1.0-3) with 2 strata and a fixed total sample size of 0.9 (29). Data

handling was performed using the tidyverse package (v2.0.0)

including ggplot2 for plotting.

Results

Morphology of single cell-derived cell
lines (SCDCLs)

We hypothesized that molecular preconditions of tumor cell

subclones within heterogeneous pancreatic cancers correlate with
Frontiers in Oncology 04
differential response to therapy and could be targeted to modify

treatment response (Figure 1A). Hence, we established single cell-

derived cell lines (SCDCLs) of the parental cell populations from

the classical differentiated cell line BxPC3 and basal-like cell line

Panc-1 by limiting dilution. Twelve SCDCLs of BxPC3 and 14

SCDCLs of Panc-1 were generated as schematically shown in

Figure 1B. The time period after single cell sorting until 80%

confluency in a 6-well culture plate was considerably different

between individual SCDCLs of both parental cell lines. Among

the SCDCLs of BxPC3, the first one reached confluency after 32

days and the last one after 62 days (Figure 1C). The time to 80%

confluency of the SCDCLs of Panc-1 ranged from 30 to 48

days (Figure 1D).

Cell morphology and growth patterns of the growing colonies

differed between distinct SCDCLs of both cell lines as exemplified

by the phase contrast images shown in Figures 1E, F. Although the

BxPC3 SCDCLs all tended to grow in rather dense formations, we

also observed a more elongated shape of the cells in some of the

SCDCLs, while others grew much more cuboidal (Figure 1E).

Notably, a higher number of spindle-shaped cells were observed

in the SCDCLs of Panc-1 in some clonal cultures, indicating a more

mesenchymal phenotype. Other SCDCLs of Panc-1, however, grew

in more cobblestone-like formations and resemble more of a cuboid

shape, which indicates a more epithelial phenotype, confirming

earlier observations (Figure 1F) (17).
SCDCLs respond differently to
gemcitabine treatment

To test our central hypothesis, that different SCDCLs of the

same parental tumor cell population of PDACs bear distinct

intrinsic molecular profiles that determine the individual response

to chemotherapy, each SCDCL was tested for its individual response

to gemcitabine in vitro. First, we determined the half-maximal

inhibitory concentration (IC50) and a concentration close to the

maximal inhibitory concentration (ICmax) of the BxPC3 and Panc-1

parental cell populations. Dose-response curves to gemcitabine

were generated for both parental cell lines in the concentration

range from 2.5 to 320 nmol/L. The parental Panc-1 population

(IC50 = 43 nmol/l) proved to be much more resistant to gemcitabine

than parental BxPC3 population (IC50 = 9.6 nmol/L) as measured

by their respective IC50 (Supplementary Information S1).

Subsequently, each SCDCL of both parental cell populations

was treated with the half-maximal inhibitory concentration (IC50)

and a concentration close to the maximal inhibitory concentration

(ICmax) of the respective parental population. We observed a highly

variable response of distinct SCDCLs of both cell lines BxPC3 and

Panc-1 (Figures 2A, B; Supplementary Information S2).

Heterogeneity in response was substantially higher among the

BxPC3 SCDCLs compared to the Panc-1 SCDCLs.

In detail, the SCDCLs of BxPC3 showed a highly variable

response. The most resistant SCDCL B2D9 had a survival rate of

0.67, while this was only 0.29 for the most sensitive SCDCL B3C10

when treated with IC50 of the parental cell population (p<0.009).

There was a continuum of response rates to gemcitabine treatment
frontiersin.org
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between these extremes, although one might suspect a

greater increase from the fourth most resistant SCDCL

onwards (Figure 2A).

Among the SCDCLs of Panc-1, there was also a heterogeneous

response, although the differences between the most resistant

SCDCL P4E2 with a survival rate of 0.8 and the most sensitive

SCDCL P4B9 with 0.66 (p<0.006), when treated with IC50 of the

parental cell population, were considerably smaller. The SCDCLs

with survival rates between these extremes formed a much denser

continuum compared to BxPC3.

From the most sensitive and the most resistant SCDCL of both

parental cell lines, complete dose-response curves were

subsequently established, corresponding to the experimental

design described above. These curves showed significant

differences in the resistance profile between BxPC3 SCDCls B2D9

and B3C10 in concentration ranges from 5 nM to 80 nM (p<0.05)

(Figure 2C). Among the Panc-1 SCDCLs P4E2 and P4B9, a

significant difference was only observed at concentration ranges

from 2.5 nM to 5nM (p<0.05) (Figure 2D).
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Next, we also tested for the other SCDCLs whether the

resistance to gemcitabine occurred randomly at the IC50 of the

respective parental population, or rather indicated a more resistant

behavior of the SCDCL in general. The response rates of the

SCDCLs at the IC50 and ICmax tended to correlate for both cell

lines (SCDCLs of BxPC3: r=0.4828; p<0.001; SCDCLs of Panc-1

r=0.3089; p<0.001) (Supplementary Information S3). Thus, we

concluded that a higher resistance to gemcitabine at the IC50 of

the respective parental population tends to reflect a higher

resistance to gemcitabine of the respective SCDCL in general.
Correlation between proliferative behavior
and treatment response

Next, we tested whether there is a correlation between the time

to confluency after single-cell sorting, which could be an indicator

of better adaptive behavior and treatment response. For the

SCDCLs of both cell lines, no clear association between the time
B

C D

E F

A

FIGURE 1

Schematic overview, growth kinetics of SCDCL and morphology. (A) Overview of intratumoral heterogeneity with subclones of diverse intrinsic
resistance to the therapeutics. (B) Workflow for the establishment of SCDCLs from a parental tumor population by limited dilution. (C) Time of all 12
established SCDCLs of BxPC3 until 80% confluency in a 6-well culture plate ranging from 32 to 60 days. (D) Time of all 14 established SCDCLs of
Panc-1 until 80% confluency in a 6-well culture plate ranging from 30 to 48 days. (E) Morphologic differences of initial colonies of BxPC3 at day 14
after single cell cloning. (F) Morphologic differences of initial colonies of Panc-1 at day 7 after single cell cloning.
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to confluency and response to treatment was observed

(Supplementary Information S4).

Gemcitabine, a deoxycytidine analog, causes inhibition of DNA

chain elongation in addition to several other processes (30). To

explore a potential correlation between proliferation rate and

gemcitabine sensitivity, we determined population doubling times

(PDT) of the most resistant SCDCLs, most sensitive SCDCLs and

the parental tumor population of both cell lines. The most resistant

SCDCL of BxPC3 (B2D9: PDT= 44.27h; CI95%: 41.29h to 47.72h)

had a higher PDT in comparison to the most sensitive SCDCL

(B3C10: PDT= 29.28h; CI95%: 26.99h to 32h) and the parental

BxPC3 population (PDT: 31.47h; CI95%: 29.05h to 34.31h). For

further validation, we additionally determined the PDT of the

second and third most gemcitabine resistant SCDCL. However,

PDTs of these SCDCLs were similar compared to the most sensitive

SCDCL B3C10 and the parental cell line BxPC3 (B2F8; PDT=

34.13h; CI95%: 30.72h to 38.38h; B1G3: PDT= 32.82h; CI95%:

29.13h to 37.59h) (Figure 2E). There were no significant differences

between the parental Panc-1 population (PDT= 26.86h CI95%:

25.18h to 28.79h), the most sensitive (P4B9: PDT= 29.91h; CI95%:

27.31h to 33.06h) and most resistant SCDCL (P4E2: PDT= 29.42h;

CI95%: 26.33h to 33.34h) (Figure 2F).
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We concluded that the observed differences in response to

gemcitabine are a reflection of molecular idiosyncrasies of the

individual SCDCLs that are independent of their intrinsic

proliferation rates. Thus, we comprehensively profiled the

transcriptome and proteome of individual SCDCLs of both

parental cell populations to elucidate the molecular basis of the

response of SCDCLs to gemcitabine.
Transcriptomic differences between
SCDCLs are associated with
treatment response

To determine whether the distinct treatment phenotypes of the

SCDCLs are related to transcriptomic heterogeneity, we performed

mRNA sequencing of all 12 SCDCLs of BxPC3 and all 14 SCDCLs

of Panc-1.

Unsupervised Principle Component Analysis (PCA) on the

1,000 most variably expressed genes showed a clear clustering of

the SCDCLs according to their respective sensitivity to gemcitabine

treatment for BxPC3, while this clustering was less clear for Panc-1

(Figures 3A, C; Supplementary Information 5A, C).
B

C
D

E F

A

FIGURE 2

Treatment response and proliferation curves of the parental cell lines and SCDCLs. (A) Survival fraction of each SCDCL of BxPC3 in comparison to the
control after treatment with 9.6 nmol/L (= IC50 of parental population) gemcitabine (mean ± min/max; ** p = 0.0085, unpaired t-test with Welch’s
correction). (B) Survival fraction of each SCDCL of Panc-1 in comparison to the control after treatment with 43 nmol/L (= IC50 of parental population)
gemcitabine (mean ± min/max; ** p = 0.0055, unpaired t-test with Welch’s correction). (C) Dose-response of the parental BxPC3 cell population, B2D9
(most resistant SCDCL to gemcitabine) and B3C10 (most sensitive SCDCL to gemcitabine) to gemcitabine (mean ± SEM). (D) Dose-response of the parental
Panc-1 cell population, P4E2 (most resistant SCDCL to gemcitabine) and P4B9 (most sensitive SCDCL to gemcitabine) to gemcitabine (mean ± SEM). (E)
Proliferation curves of the parental cell line BxPC3 and the SCDCLs B2D9, B2F8, B1G3 and B3C10 (mean ± SEM). (F) Proliferation curves of the parental cell
line Panc-1 and the SCDCLs P4E2 and P4B9 (mean ± SEM).
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For data evaluation, SCDCLs of each parental cell population

were divided into two groups according to their respective

treatment response, i.e., a more resistant group (resG) and a more

sensitive group (sensG). The cut-off value of the survival rate for the

assignment of each SCDCL to the respective group was calculated

for treatment at the respective IC50 as well as ICmax according to

Reddy et al. (29). For the SCDCLs of BxPC3, the cut-off values based

on the IC50 and ICmax were 0.44 and 0.18, respectively. The cut-off

values for Panc-1 were 0.73 and 0.49 based on the IC50 and

ICmax, respectively.

Next, we aimed to identify differentially expressed genes between

SCDCLs of the resG compared to the sensG. When stratified

according to the IC50 value, the SCDCLs of BxPC3 showed 159

differentially expressed genes (q < 0.1; 106 up-regulated in resG, 53

up-regulated in sensG) (Supplementary Information 5B). When

stratified by ICmax, 753 genes were differentially expressed (q < 0.1;

327 up-regulated in resG, 426 up-regulated in sensG) (Figure 3B).

Consistent with less heterogeneity in response to gemcitabine, Panc-1

SCDCLs showed fewer differentially expressed genes. When stratified

by IC50 value 98 genes were differentially expressed (q < 0.1; 37 up-

regulated in resG, 61 up-regulated in sensG) (Supplementary
Frontiers in Oncology 07
Information 5D), and when stratified by ICmax 149 genes were

differentially expressed (q < 0.1; 74 up-regulated in resG, 75 up-

regulated in sensG) (Figure 3D). Measured by the number of

differentially expressed genes in the SCDCLs of the respective

parental cell populations, we conclude that there is less

transcriptional heterogeneity between SCDCLs of the basal-like cell

line Panc-1 compared to the SCDCLs of the classical cell line BxPC3.

Strikingly, the lower transcriptional heterogeneity is reflected in the

lower heterogeneity of response to gemcitabine treatment.
SCDCL transcriptomes reveal resistance-
associated pathway enrichment

Next, gene set enrichment analysis was performed to identify

the differentially regulated signaling pathways between the resG and

the sensG (Figures 4A, C).

The SCDCLs of both parental cell populations showed a

continuum between the most resistant and most sensitive SCDCL

in their response to gemcitabine (Figures 2A, B). Hence, we

hypothesized a rather continuous differential regulation of
B
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FIGURE 3

Transciptomics (mRNA-seq) of the SCDCLs of BxPC3 and Panc-1. (A) Unsupervised PCA including the 1,000 most variably expressed genes of the
SCDCLs of BxPC3 (B) Stratification on ICmax; 753 genes were differentially expressed (q < 0.1; 327 up-regulated in resG, 426 up-regulated in sensG).
(C) Unsupervised PCA including the 1,000 most variably expressed genes of the SCDCLs of Panc-1 (D) Stratification on ICmax; 149 genes differentially
expressed (q < 0.1; 74 up-regulated in resG, 75 up-regulated in sensG).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1230382
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Färber et al. 10.3389/fonc.2023.1230382
relevant signaling pathways rather than on-off effects. We

performed additional GSEA between the three most resistant

SCDCLs (BxPC3: B2D9, B2F8, B1G3; Panc-1: P4E2, P3D10,

P1C3) and the three most sensitive SCDCLs (BxPC3: B3C10,

B2G7, B3F8; Panc-1: P4B9, P4B5, P3D2) of both, BxPC3 and

Panc-1, to be able to generate a better discriminatory power of

differentially regulated pathways (Figures 4B, D).

The pathways MYC targets V1, MYC targets V2 as well as E2F

targets from the Molecular Signatures Database (MSigDB) were

enriched in the sensitive SCDCL of BxPC3 across all comparisons.

Interestingly, exactly these pathways were enriched in Panc-1 in the

group of the resistant SCDCLs across all comparisons. In contrast,

enrichment of EMT correlated with resistance to gemcitabine in

BxPC3 SCDCLs across all comparisons, while Panc-1 SCDCLs

showed no resistance-associated enrichment of this pathway.

As described above, we hypothesize that relevant signaling

pathways are gradually differentially regulated in the SCDCLs.

Hence, particular attention was paid to pathways that did not

show significant differential expression in the resG and sensG

comparisons, but in contrast, were differentially regulated in the

comparison of the three most resistant versus the three most

sensitive SCDCLs. Since a positive correlation was observed

between the response rates of the SCDCLs to therapy at the IC50

(Figures 4A–D) as well as the response rate at the ICmax

(Supplementary Information S6A–D), the differentially enriched

pathways overlapping in the different comparisons were further

considered. Overlaps of enriched gene sets between all comparisons

are shown in a tabular overview in Supplementary Information S6E,

F. Consequently, in BxPC3 SCDCLs, enriched signaling pathways

EMT, TNF signaling via NfKB, and IL2STAT5 signaling correlated

with more resistant behavior to gemcitabine. In addition, several

other inflammatory signaling pathways appear to be associated with

resistance. An overview of the differentially regulated pathways

according to ICmax classification is shown in Supplementary
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Information 6. In contrast to BxPC3, no additional enriched

pathways were found in the SCDCLs of Panc-1, when comparing

the three most resistant and the three most sensitive SCDCLs. This

result is in line with the lower transcriptional heterogeneity among

SCDCLs of Panc-1.
SCDCL reveals resistance-associated
protein signatures

For a comprehensive understanding of the biological processes

associated with the heterogeneity of SCDCLs and their distinct

intrinsic resistance profiles to gemcitabine, we next sought to profile

their individual proteomes. As commonly known, mRNA

expression levels do not necessarily reflect the respective protein

expression levels (31). To obtain a more comprehensive picture, we

therefore aimed to identify proteins that were associated with the

heterogeneous response to gemcitabine of individual SCDCLs by

mass spectrometry analyses. Using the feature selection with the

random forest approach, we extracted protein signatures that are

associated with the response to gemcitabine of each individual

SCDCL. Extracted proteins were ranked according to their

predictive value for treatment response. This approach reflects the

fact that different protein compositions may be similarly important

for adaptation to the IC50 target variable

For BxPC3, we extracted 50 proteins that were associated with

the functional heterogeneity of response to gemcitabine of

individual SCDCLs (Supplementary Information S7). Of these,

overexpression of 21 proteins was associated with a poorer

response to gemcitabine, whereas overexpression of 29 proteins

was associated with a better response to gemcitabine (Figure 5A).

TNF receptor superfamily member 6b (TNFRSF6B) was ranked

highest among the proteins extracted for BxPC3 and associated with

a poorer response. In addition, DNA activity-influencing proteins
B
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FIGURE 4

Pathway enrichment analysis of the SCDCLs of BxPC3 and Panc-1. (A) Graphical overview of pathway enrichment of resG versus sensG in SCDCLs of
BxPC3. (B) Graphical overview of pathway enrichment of the three most resistant versus the three most sensitive SCDCLs of BxPC3. (C) Graphical
overview of pathway enrichment of resG versus sensG in SCDCLs of Panc-1. (D) Graphical overview of pathway enrichment of the three most
resistant versus the three most sensitive SCDCLs of Panc-1.
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such as bromodomain 3 (BRD3) and high mobility group

nucleosome binding domain 5 (HMGN5) were highly ranked in

the identified set of proteins associated with a poorer response.

Among others, HMGN5 was also expressed significantly stronger at

the mRNA level in the resG compared to the sensG (p=0.046).

For Panc-1, we again identified substantially fewer proteins

whose expression level was associated with response to treatment of

individual SCDCLs which is in line with the lower transcriptional

heterogeneity described above. A set of 18 proteins was identified

that was associated with the heterogeneity of response to

gemcitabine of individual SCDCLs (Supplementary Information

S7). Of these, overexpression of six proteins was associated with a

poorer response to gemcitabine, whereas overexpression of 12

proteins was associated with a better response to gemcitabine

(Figure 5B). Autocrine Motility Factor Receptor (AMFR) was

ranked highest among the proteins extracted for Panc-1

(Supplementary Information S7).
Gemcitabine-resistant SCDCLs are more
sensitive to JQ1

JQ1 is an inhibitor of the bromodomain and extraterminal

family of proteins (BET) with the highest selectivity for BRD4 (32).

In our pathway enrichment analyses based on transcriptomics

described above, the more gemcitabine-resistant SCDCLs of the

classical cell line BxPC3 showed enrichment of EMT, TNF signaling

via NfKB, and IL2STAT5 signaling. The proteome analyses of the
Frontiers in Oncology frontiersin.or09
same SCDCLs identified two pivotal proteins in the extracted

protein signature, i.e., (i) BRD3 which is a family member of the

BET proteins and (ii) the TNF receptor TNFRSF6B whose gene

possess a super-enhancer in multiple myeloma cells (33).

Pathway enrichment analyses based on transcriptomics of the

gemcitabine-resistant SCDCLs of the basal-like cell line Panc-1

showed enrichment of MYC signaling, i.e., gene sets MYC targets

V1 and MYC targets V2.

JQ1 suppresses cell proliferation through several signaling pathways

such as TNFA_Signaling_via_nfkb, L2_STAT5_SIGNALING, MYC

signaling as well as multiple inflammatory transcriptional programs in

pancreatic cancer (33–37).

As described above, we intended to identify molecular

preconditions of tumor cell subclones that could be targeted to

overcome treatment resistance of current clinical standard therapy

(Figure 1A). In our model system, these subclones are reflected by

SCDCLs of heterogeneous parental cell populations which show

differential response to treatment with gemcitabine. Based on our

molecular findings, we hypothesize that gemcitabine-resistant

SCDCLs could be specifically targeted by inhibition of proteins of

the BET family in both, the classical cell line BxPC3 and the basal-

like cell line Panc-1. Therefore, we tested the specific anti-

proliferative effect of JQ1, which is an effective inhibitor of the

BET proteins, in our SCDCL model system (32).

In general, the parental population of Panc-1 (IC50: 679 nM

CI95%: 496.5 – 929.1) was more resistant to JQ1 treatment

compared to the parental BxPC3 population (IC50: 184.3 nM;

CI95%: 146.3 - 232.2). Next, we generated dose-response curves

for JQ1 of the parental cell population, the most gemctabine-
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FIGURE 5

Heatmap of extracted proteins associated with response to gemcitabine and response of parental cell lines and SCDCLs to JQ1. (A) Heatmap of
extracted proteins associated with the functional heterogeneity of response to gemcitabine of individual SCDCLs in BxPC3. Twenty-one proteins
were associated with poorer and 29 proteins with a better response to gemcitabine treatment. (B) Heatmap of extracted proteins associated with
the functional heterogeneity of response to gemcitabine of individual SCDCLs in Panc-1. Six proteins were associated with poorer and 12 proteins
with a better response to gemcitabine treatment. (C) Dose response of the parental BxPC3 cell population, B2D9 (most resistant SCDCL to
gemcitabine) and B3C10 (most sensitive SCDCL to gemcitabine) to JQ1 (mean ± SEM). (D) Dose response of the parental Panc-1 cell population,
P4E2 (most resistant SCDCL to gemcitabine) and P4B9 (most sensitive SCDCL to gemcitabine) to JQ1 (mean ± SEM).
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resistant SCDCL and the most gemcitabine-sensitive SCDCL for

both cell lines, BxPC3 and Panc-1.

In BxPC3 the most gemcitabine-resistant SCDCL B2D9 was

the substantially more sensitive to treatment with JQ1 (IC50:

48.36 nM; CI95%: 27.68 - 84.48). compared to the most

gemcitabine-sensitive SCDCL B3C10 (IC50: 95.63 nM CI95%:

73.16 - 125) (Figure 5C). Differential response was significant in

concentration ranges from 9.6 nM to 48 nM (p<0.02). The

parental BxPC3 population was significantly more resistant to

JQ1 treatment (IC50: 184.3 nM; CI95%: 146.3 - 232.2) compared

to both derived SCDCLs.

The most gemcitabine-resistant SCDCL of Panc-1 again was

most sensitive when treated with JQ1 (P4E2: IC50: 471.8 nM CI95%:

338.4 – 658) in comparison to the most gemcitabine-sensitive

SCDCL P4B9 (IC50: 1590 nM CI95%: 667 – 3791). The

differential response was significant in concentration ranges from

240 nM to 6000 nM (p<0.02). The parental population Panc-1 was

in-between these two SCDCLs (IC50: 679 nM CI95%: 496.5 –

929.1) (Figure 5D).

In conclusion, we showed that gemcitabine-resistant subclones,

i.e., SCDCLs, of the heterogeneous parental cell populations of both

the classical cell line BxPC3 and the basal-like cell line Panc-1 can

be specifically targeted using the BET inhibitor JQ1.
Discussion

In recent years technical advances such as single-cell RNA

sequencing or barcoding technologies have developed experimental

methods that can unveil an ever-increasing extent of ITH (38, 39).

Single-cell RNA analyses showed that cells of the basal-like subtype

are much more widespread than generally assumed and can also be

detected in classical classified pancreatic cancers (10). Moreover,

recent studies described single cells expressing both classical and basal

markers (11, 40). Such co-expressing cells appear to reflect an

intermediately differentiated state. Thus, intertumoral subtyping

alone is not fully reflecting the complex tumor biology of

heterogeneous PDACs. The fact that higher levels of ITH correlate

with shorter patient survival underscores its significance (11). There

is evidence that resistant subclones are already present in small

populations of tumor cells prior to initiation of therapy which

results in treatment failure (9, 16, 41). A deeper understanding of

intratumoral heterogeneity and these resistant subpopulations could

therefore help to overcome therapy resistance and tumor relapse.

We recently described SCDCLs derived from single cells as an

ex vivo model to decipher functional differences in expression

profiles and therapy response among individual clones from

primary rectal tumors (42). In the present study, we generated a

total of 26 SCDCLs from the well-established PDAC classical cell

line BxPC3 and basal-like cell line Panc-1. We acknowledge that our

approach provides only a snapshot of the ITH of pancreatic tumors

in real world. By the present study based on SCDCLs we did not

attempt, nor would it be feasible, to reconstruct the complete

complex clonal architecture of pancreatic cancers. However, our

approach provides a model that allows to analyze heterogeneity

from a functional point of view.
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Yachida et al. showed that subclones forming distant metastases

are present within the primary tumor and arise from the non-

metastaic parental population. These clones may develop long

before the metastatic event (43). For both cell lines BxPC3 and

Panc-1 we observed substantially different length of time to

confluency after single cell cloning which might reflect different

adaptive abilities of distinct clones to new environments. In a recent

study, we proved that SCDCLs of the basal-like cell line Panc-1 had

different epithelial/mesenchymal phenotypes, differed in their

invasive behavior, and therefore exhibited different tumorigenic

potential in vitro (17).

The aim of this study was to explore the potential heterogeneity

of response to gemcitabine, as a clinical standard treatment

regimen, in the pancreatic cancer cell lines BxPC3 and Panc-1.

We subsequently aimed to identify gemcitabine-resistant subclones

and to identify potential molecular targets for improved therapy of

these subclones.

We observed a highly variable response to gemcitabine of

distinct SCDCLs of both cell lines (Figures 2A, B). Heterogeneity

in response was substantially higher among the BxPC3 SCDCLs

compared to the Panc-1 SCDCLs. There was a continuum of

response rates to gemcitabine treatment between the most

resistant and most sensitive SCDCLs of both parental cell

populations. However, the SCDCLs derived from Panc-1 formed

a much denser continuum compared to BxPC3 reflecting a lower

heterogeneity in gemcitabine-response in Panc-1. The dose-

response curve of the parental population Panc-1 showed a much

less steep inflection point at the IC50 than that of the BxPC3

population and might result in better discrimination of treatment

response for BxPC3 when treated at the IC50. Conversely, our

analysis of the transcriptome revealed less transcriptional

differences in the SCDLCs of Panc-1, suggesting a generally less

intratumoral heterogeneity of this basal-like cell line. In summary, it

can be stated for both cell lines that there is no clear cut-off between

resistance and sensitivity, as the SCDCLs form a continuum across

response rates. Indeed, we could show the same distinct response to

gemcitabine of individual SCDCLs that were derived from our

primary patient-derived pancreatic cancer cell line LuPanc-1 (41

and data unpublished).

After demonstrating distinct intrinsic behavior of individual

SCDCLs of both parental cell populations in terms of response/

resistance to gemcitabine treatment, we performed transcriptomic

analysis. For a comprehensive understanding of the biological

processes associated with the heterogeneity of SCDCLs, GSEA

with Hallmark Gene Sets was performed. With this, we ultimately

aimed to identify potential molecular targets which might help to

modify therapy to especially target gemcitabine-resistant subclones.

Among the more resistant group of SCDCLs of Panc-1, we

observed differentially enriched signaling pathways, i.e., (i) MYC

targets V1, (ii) MYC targets V2, (iii) G2M checkpoints, and (iv) E2F

targets. Indeed, low MYC RNA levels are associated with sensitivity

to gemcitabine and c-MYC overexpression correlates with

gemcitabine resistance (44, 45). Upregulated G2M checkpoint

signaling is associated with impaired survival of pancreatic cancer

patients (46). Published literature for E2F targets, however, is

contradictory. On the one hand, E2F target expression seems to
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be related to impaired clinical outcome and is also predictive of

response to E2F inhibitors in in vitro experiments, but not of

response to gemcitabine or other chemotherapy-based treatments

in pancreatic cancer (47). On the other hand, further studies on

different tumor entities showed an association between E2F-1 and

resistance to chemotherapy (48–50). In our current study, E2F

pathway was associated with gemcitabine resistance in the SCDCLs

of Panc-1, whereas the opposite was true in the SCDCLs of BxPC3.

One might speculate that the effect of E2F signaling in terms of

treatment response is associated with the molecular subtype, i.e.,

classical (BxPC3) or basal-like (Panc-1).

Strikingly, also MYC targets V1, MYC targets V2, and the G2M

checkpoint pathway that were enriched in the gemcitabine-resistant

SCDCLs of Panc-1, were enriched in the gemcitabine-sensitive

SCDCLs of BxPC3. Whether this is due to a hierarchical

functional relevance of these pathways with respect to resistance

to gemcitabine or whether this is due to the different molecular

subtypes of the two parental cell lines can only be speculated at

this point.

In the resistant SCDCLs of BxPC3, we observed enrichment of

numerous signaling pathways such as (i) EMT, (ii) TNFA via NfkB,

and (iii) IL2STAT5. It is well known that EMT in pancreatic cancer

cells contributes to gemcitabine resistance and decreases overall

survival in mouse models (51). In addition, there is evidence that

several EMT regulators induce drug resistance in human pancreatic

cancer (52). NfkB signaling has been described to be constitutively

active in a large proportion of pancreatic tumors and high basal

levels of this transcription factor appear to play an important role in

mediating chemotherapy resistance (53–55). Moreover,

gemcitabine treatment can induce activation of NfkB and STAT3

in pancreatic cancer and can thereby induce resistance to itself (56).

The signal transducer and activator of transcription STAT5 affects

several oncogenes and plays a role in crucial functions such as cell

proliferation, apoptosis and cell differentiation (57, 58).

As it is generally accepted that mRNA expression levels do not

necessarily reflect the respective protein expression levels (31), we

additionally aimed to identify protein signatures that are associated

with the heterogeneous response to gemcitabine.

We identified protein signatures for both BxPC3 and Panc-1

SCDCLs using a machine-learning approach, which were associated

with the treatment response of individual SCDCLs. We

subsequently extracted individual proteins that were associated

with the signaling pathways that were enriched in the

transcriptomic analyses. For BxPC3 (i) the TNF receptor

TNFRSF6b, (ii) the nuclear protein HMGN5, and (iii) the BET

protein BRD3 were extracted among others.

In both colon and gastric cancers, TNFRSF6b induces EMT via

various signaling pathways and affects the growth and metastasis

potential in colon carcinoma (59–61). In PDAC, TNFRSF6b also

promotes proliferation and tumor growth and is associated with

worse outcomes (62). HMGN5 (NSBP1) is a member of the HMGN

nucleosome-binding protein family and, through its interaction

with DNA, affects the architecture of chromatin and thus the

transcriptome profile (63). It contributes to chemotherapy
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resistance in various tumor types such as osteosarcomas,

squamous cell carcinomas of the esophagus, and germ cell tumors

of the testes (64–66). However, its specific role in pancreatic cancers

remains to be elucidated.

We identified BET proteins as potential targets in the

gemcitabine-resistant SCDCLs of both cell lines BxPC3 and Panc-

1. In fact, previous studies showed a synergistic effect of combined

therapy of PDAC cells in vitro with gemcitabine and BET inhibitors

(67, 68).

The BET inhibitor JQ1 affects expression of several gene targets

with greatest selectivity for BRD4 (32). This ultimately leads to a

depletion of the BET proteins from DNA, which affects the

transcription of genes, especially genes with so-called super-

enhancers (33, 69).

SCDCL-specific treatment with JQ1 revealed that both

gemcitabine-most-resistant SCDCLs appeared to be more

sensitive than the parental cell population and the gemcitabine-

most-sensitive SCDCLs.

For c-MYC, it has already been shown in PDAC and other

tumor entities that inhibition of BET proteins reduces the

transcription of c-MYC and causes growth inhibition (70–72). As

MYC signaling was enriched in the gemcitabine-resistant Panc-1

SCDCLs, the better response to JQ1 treatment in comparison to the

gemcitabine-sensitive SCDCL might be caused by the higher

sensitivity to reduced c-MYC transcription in Panc-1.

Strikingly, enrichment in MYC signaling was associated with

gemcitabine-sensitivity in SCDCLs of BxPC3. In line, the

gemcitabine-sensitive SCDCL of BxPC3 responded well to

treatment with JQ1, albeit the response of the gemcitabine-

resistant SCDCL was even better. At the first glance, this finding

seems to be contradictory. However, as described above JQ1

treatment affects several signaling pathways besides MYC

signaling. TNFRSF6b has been described to possess a super-

enhancer that is occupied by BRD4 (33) and is overexpressed in

the gemcitabine-resistant SCDCLs of BxPC3. Thus, JQ1 potentially

inhibits transcription of TNFRSF6b and might thereby result in

higher sensitivity of the gemcitabine-resistant SCDCL compared to

the gemcitabine-sensitive SCDCL in BxPC3. In addition to

TNFRSF6b overexpression, TNFA via NfkB, and IL2STAT5

signaling was also associated with gemcitabine resistance in

SCDCLs of BxPC3. The relA subunit of NfkB binds to BRD4 via

acetylated lysine-310, protecting it from degradation and

stimulating the transcriptional activity of NfkB. Inhibition of

BRD4 by JQ1 results in reduced nuclear levels of NfkB and

therefore reduced TNFA-induced NfkB target gene expression

(37). As a potential third mechanism, JQ1 removes BRD2 from

chromatin and subsequently inhibits STAT5 and the expression of

its target genes (73).

We acknowledge that our current study does not elucidate

specific molecular mechanisms of JQ1 treatment in specific

SCDCLs and needs further experimental in-depth studies. As

discussed above, several distinct signaling pathways might

mediate JQ1 effects. However, the focus of our current study

was to uncover the heterogeneity of treatment response of
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distinct tumor cell subpopulations in an in vitro model and

uncover the molecular preconditions of those subpopulations.

Using SCDCLs of the classical cell line BxPC3 and the basal-like

cell line Panc1, we showed considerable heterogeneity of

response to gemcitabine which was based on distinct molecular

preconditions. Our present study shows that understanding

subclonal resistance mechanisms in heterogeneous tumor cell

populations of PDACs might ultimately help to develop new

treatment strategies as exemplified by JQ1 treatment. Pishvaian

et al. highlighted that pancreatic cancer patients who received

molecularly guided therapy compared to patients who received

standard therapy had a significantly better survival (74). Our

study underlines that especially treatment of heterogeneous

pancreatic cancers requires individual patient-specific

molecularly guided (combination) treatment strategies rather

than a “one-size-fits-all” approach.
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SUPPLEMENTARY INFORMATION S1

Treatment response of parental cell lines BxPC3 (classical) and Panc-1 (basal-

like) to gemcitabine. Data are the means ± SEM of three independent
experiments. (A) Dose-response of the parental BxPC3 cell population to

gemcitabine. (B) Dose-response of the parental Panc-1 cell population

to gemcitabine.

SUPPLEMENTARY INFORMATION S2

Treatment response of the parental cell lines and SCDCLs to gemcitabine.

Data aremeans ±min. tomax. (A) Survival fraction of each SCDCL of BxPC3 in
comparison to the control after treatment with 160 nmol/L (= ICmax of

parental population) gemcitabine. (B) Survival fraction of each SCDCL of

Panc1 in comparison to the control after treatment with 160 nmol/L (= ICmax

of parental population) gemcitabine.

SUPPLEMENTARY INFORMATION S3

Linear regression of treatment with the IC50 concentration of gemcitabine of
the respective parental population and ICmax. Data are the means ± SEM. (A)
Treatment response of each SCDCLs of BxPC3 to IC50 (9,6nM) of the parental

population against treatment response to ICmax (160nM). (B) Treatment
response of each SCDCLs of Panc-1 to IC50 (43 nM) of the parental

population against treatment response to ICmax (160nM).
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SUPPLEMENTARY INFORMATION S4

Survival Fraction of each subclone after treatment with the IC50

concentration of gemcitabine of the respective parental population or

ICmax (160nM) against time to confluency in a 6-well plate. Data are the

means ± SEM of three independent experiments. (A) Treatment response of
each SCDCLs of BxPC3 to IC50 (9,6nM) of the parental population against

time to confluency in a 6-well. (B) Treatment response of each SCDCLs of
BxPC3 to ICmax (160nM) against time to confluency in a 6-well. (C) Treatment

response of each SCDCLs of Panc-1 to IC50 (43nM) of the parental population
against time to confluency in a 6-well. D, Treatment response of each

SCDCLs of Panc-1 to ICmax (160nM) of the parental population against time

to confluency in a 6-well.

SUPPLEMENTARY INFORMATION S5

Transcriptomics (mRNA-seq) of SCDCLs of BxPC3 and Panc-1. (A)
Unsupervised PCA including the 1,000 most variably expressed genes of

the SCDCLs of BxPC3. (B) Stratification on IC50; 159 genes differentially

expressed (q < 0.1; 106 up-regulated in resG, 53 up-regulated in sensG). (C)
Unsupervised PCA including the 1,000 most variably expressed genes of the
Frontiers in Oncology 13
SCDCLs of Panc-1. (D) Stratification on IC50; 98 genes were differentially
expressed (q < 0.1; 37 up-regulated in resG, 61 up-regulated in sensG).

SUPPLEMENTARY INFORMATION S6

mRNA-seq and pathway enrichment analysis of the parental cell population

and SCDCLs of BxPC3 and Panc-1. (A) Graphical overview of pathway
enrichment of resG versus sensG in SCDCLs of BxPC3 by grouping on the

basis of the ICmax responses. (B) Graphical overview of pathway enrichment
of the three most resistant versus the three most sensitive SCDCLs of BxPC3

by grouping based on the ICmax responses. (C)Graphical overview of pathway

enrichment of resG versus sensG in SCDCLs of Panc-1 by grouping based on
the ICmax responses. (D) Graphical overview of pathway enrichment of the

three most resistant versus the three most sensitive SCDCLs of Panc1 by
grouping based on the ICmax responses. (E) Overview of all gene set

enrichment analyses of the SCDCLs of BxPC3. Pathways marked in grey
were significantly enriched in the more resistant group/3 most resistant

SCDCLs, respectively. (F) Overview of all gene set enrichment analyses of

the SCDCLs of Panc-1. Pathwaysmarked in grey were significantly enriched in
the more resistant group/3 most resistant SCDCLs, respectively.
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