
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Fabio Grizzi,
Humanitas Research Hospital, Italy

REVIEWED BY

Shady Saikali,
AdventHealth, United States
Jeffrey Tuan,
National Cancer Centre Singapore,
Singapore

*CORRESPONDENCE

Muhammad Shahid Anwar

shahidanwar786@gachon.ac.kr

Muhammad Faran Majeed

m.faran.majeed@kum.edu.pk

RECEIVED 19 May 2023

ACCEPTED 16 October 2023
PUBLISHED 09 November 2023

CITATION

Mehmood M, Abbasi SH, Aurangzeb K,
Majeed MF, Anwar MS and Alhussein M
(2023) A classifier model for prostate
cancer diagnosis using CNNs and transfer
learning with multi-parametric MRI.
Front. Oncol. 13:1225490.
doi: 10.3389/fonc.2023.1225490

COPYRIGHT

© 2023 Mehmood, Abbasi, Aurangzeb,
Majeed, Anwar and Alhussein. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 09 November 2023

DOI 10.3389/fonc.2023.1225490
A classifier model for prostate
cancer diagnosis using CNNs
and transfer learning with multi-
parametric MRI

Mubashar Mehmood1, Sadam Hussain Abbasi2,
Khursheed Aurangzeb3, Muhammad Faran Majeed2*,
Muhammad Shahid Anwar4* and Musaed Alhussein3

1Department of Computer Science, COMSATS Institute of Information Technology,
Islamabad, Pakistan, 2Department of Computer Science, Kohsar University Murree, Punjab, Pakistan,
3Department of Computer Engineering, College of Computer and Information Sciences, King Saud
University, Riyadh, Saudi Arabia, 4Department of AI and Software, Gachon University,
Seongnam, Republic of Korea
Prostate cancer (PCa) is a major global concern, particularly for men,

emphasizing the urgency of early detection to reduce mortality. As the second

leading cause of cancer-related male deaths worldwide, precise and efficient

diagnostic methods are crucial. Due to high and multiresolution MRI in PCa,

computer-aided diagnostic (CAD) methods have emerged to assist radiologists

in identifying anomalies. However, the rapid advancement of medical

technology has led to the adoption of deep learning methods. These

techniques enhance diagnostic efficiency, reduce observer variability, and

consistently outperform traditional approaches. Resource constraints that can

distinguish whether a cancer is aggressive or not is a significant problem in PCa

treatment. This study aims to identify PCa using MRI images by combining deep

learning and transfer learning (TL). Researchers have explored numerous CNN-

based Deep Learning methods for classifying MRI images related to PCa. In this

study, we have developed an approach for the classification of PCa using transfer

learning on a limited number of images to achieve high performance and help

radiologists instantly identify PCa. The proposed methodology adopts the

EfficientNet architecture, pre-trained on the ImageNet dataset, and

incorporates three branches for feature extraction from different MRI

sequences. The extracted features are then combined, significantly enhancing

the model’s ability to distinguish MRI images accurately. Our model

demonstrated remarkable results in classifying prostate cancer, achieving an

accuracy rate of 88.89%. Furthermore, comparative results indicate that our

approach achieve higher accuracy than both traditional hand-crafted feature

techniques and existing deep learning techniques in PCa classification. The

proposed methodology can learn more distinctive features in prostate images

and correctly identify cancer.
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1 Introduction

A major challenge for medical science is cancer, which is the

most widespread disease in humans around the globe. Cancer cells

exhibit aggressive growth rates, and their precise diagnosis is pivotal

to a patient’s survival. The most prevalent cancer diagnosed in men

worldwide is PCa. Alarming statistics from the American Cancer

Society predict approximately 288,300 new PCa cases in the United

States by 2023, with an estimated 34,700 fatalities cancer society (1).

The conventional method for PCa classification relies on the

Gleason Score (GS), as determined by analyzing biopsy samples.

However, this conventional biopsy method has been found to exhibit

reduced sensitivity in accurately identifying PCa. Furthermore, the

Gleason classification method encounters challenges stemming from

variations in interpretation, encompassing discrepancies among

different observers (interobserver variability) and inconsistencies

within assessments made by the same observer (intraobserver

variability). These variations can predominantly be attributed to the

heavy reliance on human interpretation within the Gleason

classification method ŞCheck that all equations and special

characters are displayed correctly.erbănescu et al. (2). Recent

advancements in mpMRI have emerged as a pivotal tool for

assessing the risk of PCa and improving the grading and

classification of PCa Oberlin et al. (3); Bardis et al. (4). High-grade

PCa is frequently characterized by the presence of more densely

packed structures which can be effectively identified through the

utilization of advanced MRI-based machine learning techniques.

These approaches enable the detection and assessment of high-

grade PCa, thereby enhancing diagnostic precision and treatment

planning for patients. This study aims to create an automated method

for classifying PCa, aiding radiologists’ assessments.

The implementation of quantitative assessments of mpMRI

offers radiologists a valuable, noninvasive tool to enhance their

clinical decision-making processes. Furthermore, it helps mitigate

the discrepancies that can arise due to differences between readers.

With the growing interest in the integration of artificial intelligence

(AI) with medical practice, empowered by enhanced computational

capabilities and the emergence of new AI methodologies, there has

been a surge in studies introducing CAD approaches. These systems

leverage machine-learning and deep-learning approaches to detect

and classify tumors in medical imagery, with a pronounced impact

on PCa detection and classification Abbasi et al. (5). This study aims

to build an automated PCa classification method, addressing the

limitations of traditional GS and improving the diagnostic potential

offered by mp-MRI. Early-stage PCa identification is extremely

important and beneficial for treatments. Identification of PCa using

MRI images improves the rate of early diagnosis and assists in

building a Computer Aided Diagnostic (CAD) system Jin et al. (6);

Reda et al. (7). A pivotal objective within CAD systems is the

development of objective and reproducible metrics for automated

analysis Cem Birbiri et al. (8). The continuous refinement of PCa

classification techniques holds significant importance, particularly

in distinguishing between low and high-grade cancers.

To identify PCa, several approaches have been proposed. Most

of them used traditional machine-learning approaches, to classify

images and train classifiers Bardis et al. (4); Monni et al. (9); Abbasi
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et al. (5); Gillies et al. (10); Fehr et al. (11); Vignati et al. (12); Liu

et al. (13); Ullah et al. (14); Shahzad et al. (15); Laghari et al. (16);

Sobecki et al. (17); Giannini et al. (18); Wang et al. (19); Schelb et al.

(20); Wildeboer et al. (21); Wibmer et al. (22). Many of these

approaches used features of low radiomics focused on previous

clinical reports, which may not fully leverage the entire information

within the MRI images Källén et al. (23). Moreover, unsupervised

approaches were previously used to acquire features that may

contain unnecessary information or may exclude essential clues.

Deep learning approaches recently acquired great performance and

are widely used in classifying and identification tasks of both

medical applications Esteva et al. (24); Albarqouni et al. (25);

Yuan and Meng (26) and natural images LeCun et al. (27). They

can train classifiers and learn features jointly. Because deep learning

techniques have enormous potential and success, the authors use

them to classify PCa. Deep learning-based architectures have

yielded remarkable results because of their capability to

autonomously acquire and represent features Tsehay et al. (28).

Compared to conventional approaches, CNN-based models such as

Alexnet demonstrated improved performance Kiraly et al. (29). A

challenge associated with architectures like this is the substantial

data needed for effective training such as in Chen et al. (30). Using

transfer learning is an easier way to handle this problem. In order to

extract features and identify data from one domain into another,

transfer learning employs training experience as a sort of knowledge

sharing Le et al. (31). Good performance can be accomplished with

small training images by using the transfer learning technique

Wildeboer et al. (32); Zhong et al. (33) that applies models of

pre-trained images from other datasets. Furthermore, various MRI

sequences of PCa present different concerns, and it is important to

consider an effective way to incorporate different details. By

combining details derived from multi-parametric images, a

descriptive representation of PCa may be gained Cem Birbiri

et al. (8).

A multi-parametric MRI transfer learning (mp-TL) system to

identify PCa is presented in this study. To obtain features from

various MRI sequences, the proposed transfer learning model has

three branches: ADC and T2w (sagittal, trans-axial). The features

extracted from these categories are combined in the model. For this

study, we aim to utilize transfer learning techniques leveraging a

family of networks of pre-trained EfficientNet models for the

classification of prostate images. Compound scaling is used in

the recently proposed Efficient-Nets architecture to balance the

network’s three dimensions (Depth, Height, and Width). The

proposed method demonstrates good performance in effectively

classifying PCa images, contributing to enhanced diagnosis. The

improvement in classifying PCa techniques is necessary to

distinguish low and high-grade cancer. There is a need for an

efficient deep learning-based architecture that efficiently classifies

PCa images. In the proposed methodology, the important step for

the classification of MRI images is the pre-processing stage. Pre-

processing is used to process the PCa MRI images, and then the

classification and feature extraction of PCa images is performed

using deep CNN models. The contribution of this study is based on

the classification of images and results in comparison with existing

approaches. These are a few of this study’s major contributions.
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• The proposed approach here harnesses transfer learning to

jointly analyze multiple MRI sequences, rather than

focusing solely on a single MRI sequence. This enables us

to extract more discriminative features, leading to a

substantial enhancement in PCa classification.

• To demonstrate the model’s effectiveness, the authors

evaluate the PCa dataset utilizing a diverse range of

Efficient-Net Models, encompassing B0, B5, and B7.

• Multi-view ensemble approach is used for classifying multi-

parametric MRI images.

• An Efficient-Net model with fine-tuning and an additional

Global Average Pooling (GAP) layer at the model’s end,

serves as a crucial component. This not only extracts vital

information but also forwards it to the activation function

for further processing.

• The proposed approach’s effectiveness is highlighted through

extensive experimentation conducted on the PCa dataset.
2 Related work

Numerous studies have been carried out by researchers to

predict prostate MRI imaging. The literature on MRI image

classification encompasses a range of both deep-learning and

machine-learning techniques. There are various PCa MRI datasets

that can be used for classification tasks, such as prostatex, ACRIN,

and I2CVB. However, accessibility to these datasets is often limited

or incomplete for many researchers. In contrast, Prostatex is a

publ ic ly access ib le datase t spec ifica l ly intended for

research purposes.

For the MRI imaging classification of PCa, Chen et al. (34)

suggested a deep-learning method focused on classification. A deep

convolutional neural network, such as InceptionV3 and VGG-16

underwent pre-training on the ImageNet dataset. Subsequently, the

multi-parametric magnetic resonance imaging dataset was fine-

tuned. Xu et al. (35) employed residual networks for the identifying

PCa. ResNets have demonstrated a capacity to learn both low-level

and high-level features, making them well-suited for detecting

subtle and intricate patterns in medical images, which are often

indicative of diseases like PCa.Their study showcased the feasibility

of training residual networks to acquire features that are valuable

for identifying suspicious indicative of PCa.

In this study, Alkadi et al. (36), the authors employ a deep

convolutional neural network to segment prostate lesions in T2W

MRI images. They introduce a 3D sliding window technique for 3D

context while maintaining computational efficiency. The approach

distinguishes cancerous and non-cancerous tissues, with

comparable results to multi-parametric systems, avoiding intricate

alignment steps. This comprehensive study Viswanath et al. (37)

assesses the performance of supervised classifiers in a multisite

approach for detecting prostate cancer (PCa) extent using T2w

MRI. The primary focus is on radiomic features extracted from

high-resolution T2 images. The aim is to enhance the accuracy and

timeliness of diagnoses in the context of medical imaging,
tiers in Oncology 03
particularly for PCa detection, where early and precise

identification is critical for effective treatment.

Authors in this study Muhammad et al. (38) have highlighted

the potential of utilizing a combination of multiple parameters,

either as individual parameters or integrated multiple parameters

within a machine learning framework, to enhance diagnostic

capabilities. Their Schelb et al. (20) study highlights the

effectiveness of training deep learning models to recognize and

segment lesions in T2 and diffusion MRI data, significantly

improving the clinical evaluation of MRI data. The UNet model

was trained using cross-validation, incorporating split-sample

techniques, and subsequently validated using an external test set.

Singh et al. (39) suggest the use of deep neural networks for

cribriform pattern classification. In this study, the authors

introduce an automated image classification system employing

deep learning and hand-crafted features to analyze prostate

images. The focus is on detecting cribriform patterns, with results

demonstrating diagnostic potential.

With notable advancements in computer vision, particularly in

target recognition and identification through deep convolutional

neural networks, the medical imaging research community is

increasingly delving into the exploration of diverse CNN

architectures. These architectures offer substantial potential for

enhancing the accuracy of cancer detection systems. In this study,

Yoo et al. (40) developed and introduced an automated pipeline

based on CNN. This pipeline is designed to analyze images on a per-

patient basis, aiming to detect clinically relevant PCa.

Bulten et al. (41) reported that the implementation of a semi-

automatic labeling system eliminated the need for pathologists to

manually annotate the images. A high degree of agreement with the

reference norm has been obtained by the established framework.

The deep learning method outperformed pathologists in different

observation trials. Li et al. (42) clarify that for the diagnosis of

disease, histology analysis is also seen as the gold standard. By

reducing test time and inter-observer variability, computer-aided

diagnostic software can theoretically further optimize existing

pathology workflows. Previous cancer grading analyses have

predominantly focused on the classification of predefined regions

of significance or the handling of extensive volumes of fine-

grained annotations.

Using a Genetic Algorithm, Namdar et al. (43) recommended

fine-tuning a qualified CNN for enhanced PCa diagnosis, resulting

in an improved AUC. Furthermore, Kwon et al. (44) proposed a

radiomics-based method for prostate image identification. The

purpose was to identify multi-parametric MRI for clinically

important PCa. Lay et al. (45) stated because MR imaging has its

limitations, researchers suggest a different PCa detection technique

that can be most effective. The cancer detection approach trains

random ferns on MR sequences in the absence of one or more of

these MR sequences and then uses these random ferns to add the

MR sequences.

An approach for evaluating the grade for PCa has been suggested

in this paper by Abraham and Nair (46). In this method, features are

extracted utilizing deep network autoencoders in conjunction with

hand-crafted features, subsequently categorized with a softmax

classifier. Song et al. (47) have shown that radiologists manually
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mark the regions of significance for PCa and measure the scores for

each area. The authors developed a model on patch-based DCNN

that utilizes a combination of MRI data to distinguish between

cancerous and non-cancerous patients of PCa.

According to Lemaitre et al. (48), new magnetic resonance

imaging (MRI) approaches have emerged to enhance diagnostic

accuracy. However, factors like observer variability and the visibility

and complexity of lesions can still impact diagnosis. In this respect,

CAD-based applications are designed to support radiologists in

their clinical practice. Taking account of all MRI modalities, the

authors suggest a CAD method. The goal of this CAD scheme was

to detect the prostate position of cancer. Liu et al. (49) stated that for

the classification of PCa, deep learning architecture was developed

using the 3D multipara-metric MRI data. The Xmas-Net model was

used for extracting features in this study. Mehrtash et al. (50) have

demonstrated that to better detect PCa Computer-assisted

diagnosis of MRI PCa may be used as a method of clinical

decision support to help interpretation by radiologists. CNN

models are used to detect the probability of a patient being

affected or not.Yang et al. (51) provides an integrated method for

detecting PCa that can simultaneously image PCa and locate lesions

based on characteristics of the deep convolutionary neural network

and SVM.
3 Transfer learning

TL is a technique for transferring information across domains

Orenstein and Beijbom (52). Deep learning is a challenging and

time-intensive process, especially in medical imaging, where a

substantial amount of training data is needed to understand

certain patterns. To address the challenge of limited data, medical
Frontiers in Oncology 04
imaging datasets are utilized to fine-tune the weights of deep

learning models that were previously trained for different

computer vision applications, thus accelerating the training

process. The strategy frequently used in various computer vision

problems is fine-tuning transfer learning. For classification, the

dense layers are well-tuned, while the top layers are frozen. The

proposed methodology for classifying prostate images using

transfer learning is shown in Figure 1.
4 Materials and methods

The prostate dataset was obtained from the Cancer Imaging

Archive Nolan (53). The dataset consists of prostate MRI images

which are labeled with the help of radiologists. After performing

minor data preprocessing, we carefully selected 221 cases of prostate

cancer for our dataset. Our dataset comprised 98 cases of low-grade

and 123 cases of high-grade cancer. Every patient included in the

study exhibited an initial screening result that raised suspicions

regarding prostate cancer. Subsequently, each of these patients

underwent a biopsy, from which a GS was determined. These

cases are annotated with two-class labels distinguishing between

low-grade (GS = 3 + 4, 3 + 3) and high-grade (GS = 4 + 4, 4 + 3,

5 + 3, 3 + 5) cancer. For each case, T2w (sagittal and transaxial) and

ADC images were provided to conduct experiments.

In our experimental setup, we adopted a systematic approach to

partitioning the dataset to ensure robust training and evaluation of

our model. We performed a random selection process, wherein 80%

of the dataset was utilized for various purposes, including training

and validation, while the remaining 20% of the images were

exclusively designated as the test set. Within this 80% portion of

the dataset, we further allocated distinct proportions for training
FIGURE 1

The top layers (last) are fine-tuned using TL.
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and validation. Approximately 50% of the dataset was allocated for

training, which served as the foundation for our transfer learning

process. The remaining 30% of this 80% portion was dedicated to

the validation set. This set played a pivotal role in monitoring the

model’s performance during training. By periodically evaluating the

model’s predictions on this validation subset, we could make

informed decisions regarding hyperparameter tuning and model

adjustments, ultimately ensuring that our model’s generalization

capabilities were optimized. Lastly, the 20% of the images that

constituted the test set were kept entirely separate from the training

and validation data. This segregation ensured that our model was

assessed on entirely unseen data, mirroring real-world scenarios

where it would be applied to make predictions. The test set served to

evaluate the model’s performance, providing a reliable measure of

its ability to generalize to new and previously unseen data. Through

this well-structured data partitioning strategy, we aimed to achieve

a robust and thorough assessment of our model’s capabilities, while

also upholding the principles of fairness, rigor, and transparency in

our experimental approach.
4.1 Proposed approach

This study presented a transfer learning model that utilizes

multiparametric MRI for the classification of PCa into low-grade

and high-grade. In Figure 2, the proposed model is mentioned. To

learn features from multiparametric sequences (ADC, T2w), the

authors make a transfer learning model with three branches and

combine them to gain discriminative descriptors. A significant

amount of training data is needed for deep convolution neural

networks in medical imaging. When the available data is
Frontiers in Oncology 05
insufficient, deep CNNs often rely on pre-trained models. These

models have been previously trained on extensive datasets, allowing

for knowledge transfer, which is a fundamental aspect of TL.

Figure 3 describes the suggested model’s workflow. Transfer

learning-based multi-parametric MRI model to automatic PCa

identification is presented in this study. Various sequences of MRI

reveal distinct aspects of PCa. T2-weighted (T2w) and ADC (Apparent

Diffusion Coefficient) imaging modalities offer distinct insights, and

their integration can significantly enhance the accuracy of PCa

classification. To learn features from multi-parametric sequences

T2w (sagittal and transaxial) and ADC, the authors make a transfer

learning model with three branches of architecture to gain features

separately for each modality and then combine them to gain one

feature vector. We feed these sequences simultaneously in the network

and their concatenation after the convolutional layer. Such a fusion

approach allows the learning process to generate effective and

discriminating PCa-related characteristics of multiple modalities

mutually influenced by each other. To achieve better performance,

we fine-tune our model by changing the top layers and defining the last

layer classes to two nodes, as we identify PCa as a low-grade and high-

grade form of cancer. After optimizing the MPTL methodology, we

could perform the task of classifying prostate images. The performance

of classifying PCa could be further improved by improving the ability

to combine learned features.
4.2 Transfer learning using a single
sequence to extract features

Due to the limited availability of prostate cancer data, we have

opted for a transfer learning strategy instead of training an entire
FIGURE 2

Proposed model.
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deep-learning neural network from the ground up. Specifically, we

have harnessed the power of established deep learning architectures

like ConvNets, AlexNet, and VGGNet, which have previously been

trained on ImageNet datasets and are readily accessible as pre-

trained networks. By implementing the EfficientNet architecture

across multiple MRI series, we can extract essential features from

ADC, T2w sagittal, and T2w transaxial images. This innovative

approach allows us to transfer the knowledge acquired from

ImageNet and effectively characterize PCa images.
4.3 A multisequence MRI-based feature
fusion method

Different MRI modalities of PCa demonstrate different aspects.

Various sequences of MRI disclose various PCa kinds. To provide

separate and complementary data, T2w and ADC are recorded, and

their combination can effectively increase the precision of PCa
Frontiers in Oncology 06
diagnosis. It is efficient to obtain the simultaneous information from

MRI in deep learning method to optimize the relation between

different MRIs. We feed these sequences simultaneously in the

network and their concatenation after the convolutional layer. Such

a fusion approach allows the learning process to generate effective

and discriminating PCa-related characteristics of multiple

modalities mutually influenced by each other. The performance is

seen as the final joint characteristic after fully connected layers.
4.4 Developing a fine-tuned
training strategy

In our approach utilizing the Efficient-Net architecture, we took

several steps to enhance the classification of PCa into high and low-

grade. We integrated fully connected layers into the network and

fine-tuned it using our dataset. This fine-tuning process was pivotal

in adapting the model to our specific classification task. To boost the
FIGURE 3

Workflow of the proposed model.
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feature extraction capabilities of our model, we introduced custom

layers, including global average pooling within the classification

layers. This addition helped in capturing more nuanced features

from the medical images, which is crucial in accurately classifying

cancer. What sets our approach apart is the use of Efficient-Net

architectures, which come with distinct advantages. These models

are not only faster in classification, being 6.1× faster compared to

existing CNN models, but they are also significantly smaller, being

8.4× smaller. Importantly, their compact size doesn’t compromise

their accuracy. Our Efficient-Net models leveraged TL based on

architectures pre-trained on the extensive ImageNet dataset, known

for its high accuracy and efficiency. This TL approach allowed us to

benefit from the knowledge embedded in these pre-trained models,

especially when our own dataset was limited. To further enhance

the training process and ensure robustness, we employed data

augmentation. This technique plays a crucial role in augmenting

the dataset, increasing the diversity of training samples, and

consequently, improving the model’s ability to generalize to

unseen data. It is particularly effective in preventing overfitting, a

common challenge in classification tasks. One notable aspect of our

strategy is the use of a pre-trained model as a feature extractor. In

this approach, the last fully connected layer is removed, and the

remaining layers are treated as a fixed feature extractor. This

significantly accelerates the training process. In essence, our

approach combines the advantages of Efficient-Net architectures,

Transfer Learning, data augmentation, and a pre-trained feature

extractor to enhance the classification of prostate cancer. Figure 4

provides a visual representation of our model in action,
Frontiers in Oncology 07
demonstrating its potential in the field of medical image

classification. The performance of the baseline Efficient-Net

architecture is demonstrated in Figure 5.
4.5 Evaluation metrics

The output of input images is typically evaluated using the

evaluation matrices listed below. The confusion matrix can be used

to measure these matrices, including accuracy, precision, recall, and

F1-score. The confusion matrix has four different types of

parameters, where TP denotes a true positive, TN denotes a true

negative, FP denotes a false positive, and FN denotes a false

negative. as shown in Table 1 and equations are given below.

True Positives: The precise predicted positive values

demonstrate that the predicted and the actual class value are

both positive.

True Negatives: These are the accurately predicted negative

values, showing that both the predicted and the actual class value

are negative.

False Positives: When the predicted class is true but the actual

class is false.

False Negatives: When the predicted class is no but the actual

class is yes.

Accuracy: Accuracy is the most used performance metric, which

may be calculated as the ratio of correctly expected observations to

all observations. Having high accuracy will lead one to believe that

our models outperform.
FIGURE 4

Model into work.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1225490
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mehmood et al. 10.3389/fonc.2023.1225490
Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision: Precision is the ratio of accurately predicted positive

observations to all predicted positive observations.

Precision =
TP

TP + FP
(2)

Recall: Recall is defined as the ratio of accurately predicted

positive observations to all of the actual class observations.

Recall =
TP

TP + FN
(3)

F1 score: The weighted average of recall and accuracy is the

Score. This score takes into consideration both false positives and
Frontiers in Oncology 08
false negatives. Although it is not as easy to immediately understand

as accuracy, it is typically more beneficial than precision, especially

if we have an uneven class distribution. If false positives and false

negatives result in equal losses, accuracy performs better. It is

simpler to include both accuracies and recall if the cost of false

positives and negatives is significantly different.

F1 − Score =
2� Precision   xRecall
Precision + Recall

(4)
4.6 Experimental settings

To get generalized results, the authors repeated the experiment

several times, looking at different learning and test data
TABLE 1 Literature review regarding PCa classification.

Author(s) Description of Research Methodology Dataset Used Evaluation Measures

Chenet al. (34) Use transfer learning for
prediction of PCa

InceptionV3,
VGG-16

PROSTATEx AUC, ROC

Xu et al. (35) Utilize the residual networks for detecting PCa Res-Net PROSTATEx ROC, HoM

Alkadi et al. (36) Using deep
convolutional encoder-decoder for detection

DCNN I2CVB Accuracy, DSC, IoU

Kwon et al. (44) Apply CART and LASSO for
detecting PCa

CART,
LASSO

PROSTATEx ROC, AUC

Lay et al. (45) Apply Random ferns for
classifying
PCa

Random
ferns

PROSTATEx ROC, AUC

Abraham and Nair (46) CNN inceptionV3 for feature pooling and
selection

CNN, SVM PROSTATEx Accuracy, kappa,
PPV

Songet al. (47) Model with patchbased DCNN for PCa DCNN PROSTATEx AUC

Lemaitre et al. (48) RF classifier for feature learning and classification RF
classifier

I2CVB AUC

Liu et al. (49) Xmas-Net
model used for extracting
features

Xmas-Net PROSTATEx ROC, AUC

Mehrtash et al. (50) Probability of patient being
affected or not

CNN PROSTATEx ROC

Yanget al. (51) The model with DCNN, SVM to
detect PCa

DCNN, SVM PROSTATEx FROC, ROC,
LLF, NL
FIGURE 5

Efficient-net baseline model.
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combinations. To increase the robustness of the presented MPTL

approach and to reduce overfitting, the authors used the data

augmentation technique to increase the size of the training data

of different image transformations. Before transferring images as

input to the networks, the authors conducted some preprocessing

steps. To fit the model, images are resized or reshaped from the

original size to 244 × 244 for the family of Efficient-Net models for

image classification. The Adam optimizer was used to further train

the entire set of pre-trained Efficient-Net models.

The settings utilized to conduct the experiments are as follows.
Fron
• Experiment carried out using a Google Colab Pro platform

with a GPU T4 P100 and 25 Gigabytes memory.

• Batch size of 16.

• Learning rate from le-1 to le-6 with weight decay of le-4.

• Epochs are set to 150.

• The Adam optimizer was used to further train the whole set

of pre-trained Efficient-Net models Perez and Wang (54).
4.7 Experiments and results

We conducted an extensive comparative analysis to evaluate

our proposed model alongside eight baseline methods. Initially, we

employed a transfer learning model without fine-tuning, utilizing

image features directly from ImageNet for experimentation. We

then delved into three additional baseline experiments, finetuning

single MRI sequences, specifically T2-weighted (T2w) and ADC

(Apparent Diffusion Coefficient), for prostate cancer classification.

Subsequently, we extended our experiments to three more baseline

experiments, employing two MRI parameters as input. The

comprehensive classification results for both our method and the

eight baseline methods are meticulously detailed in Table 2.

To assess the classification performance of our proposed MPTL

model, we carried out a comprehensive evaluation, comparing it

with state-of-the-art prostate cancer classification methods,

including both deep learning and machine learning-based

approaches. These comparisons were conducted using our

prostate cancer datasets, and we followed the experiment settings
tiers in Oncology 09
outlined in these reference papers to ensure a fair and equitable

assessment. Table 3 meticulously presents the precision, recall, and

accuracy metrics achieved by both our approach and the

comparative methodologies. It’s noteworthy that deep learning-

based techniques outperformed methods relying on traditional

radiomics features or conventional machine learning approaches.

This observation highlights the capability of deep learning-based

techniques to capture more distinctive features for the identification

of prostate cancer.

Our method performs better at classification than the preceding

approaches. This is due to the fact that convergence issues and over-

fitting issues with little data on PCa also hinder deep network

training. In comparison, the image details in the transfer learning

model using Efficient-Net were considered by our MPTL model.

Therefore, as compared to previous classification techniques, our

technique evaluates more precise parameters for PCa and achieves

more efficiency.

This method classified the input image into cancer types with

low and high grades. We elaborate on the experimental results

performance to distinguish between the aggressive and non-

aggressive forms of cancer. The Efficient-Net B7 architecture,

which was trained on images of PCa, produces the greatest

results. Table 3 shows the results of the proposed methods. In

Şerbănescu et al. (2), authors apply the Google-Net approach for the

identification of PCa classification for binary classification to

distinguish low and high-grade forms of cancer and achieve 60.9

accuracies and performance. In Chen et al. (34) authors apply the

VGG-16 approach for the identification of PCa classification for

binary classification to distinguish the low and high-grade forms of

cancer and achieve 83 accuracies and performance.

In Kwon et al. (44), authors apply the CART approach for the

identification of PCa classification for binary classification to

distinguish the low and high-grade forms of cancer and achieve

82.0 accuracies and performance. In Le et al. (31), authors apply the

ResNet approach for the identification of PCa classification for

binary classification to distinguish low and high-grade forms of

cancer and achieve 82.09 accuracies and performance. In

Muhammad et al. (55), authors apply the inceptionV3 approach

for the identification of PCa classification for binary classification to

distinguish the low and high-grade forms of cancer and achieve

80.09 accuracies and performance.
TABLE 2 Comparison results of PCa classification.

References Methods Accuracy Precision Precision F1-score

Chen et al. Chen et al. (34) VGG-16 83 82.42 88.23 86.78

Kwon et al. Kwon et al. (44) CART 82.0 81.84 81.46 79.61

Le et al. Le et al. (31) ResNet 82.09 82.27 82.88 82.34

Muhammad Muhammad et al. (55) inceptionV3 80.09 78.95 83.96 81.61

Serbanescu et al. Şerbănescuet al. (2) GoogleNet 60.9 58.78 59.36 57.89

Present work (MPTL)

EfficientNet-B0 84.44 87.5 84.0 85.71

EfficientNet-B5 86.67 83.33 90.90 86.95

EfficientNet-B7 88.89 91.67 88.0 89.47
f
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The comparison results of different methods withmulti-parametric

modalities are shown in Table 2. The results demonstrate that our

proposed approach with a fusion of three modalities performs better

results than single modalities and pair of modalities which depicts that

our approach performance is better on multiple modalities.

The learning curve for accuracy and loss during training and

validation is depicted in Figures 6, 7. Our approach also shows

better identification performance compared with the other machine

learning approaches with extraction features from a single MRI

sequence, showing that the methods based on deep learning will

learn more high-level discriminative features. ROC curves of PCa

classification are shown in Figure 8. The results demonstrate the

performance of the model to identify input images is classified as

low and high-grade forms of cancer that are aggressive and non-

aggressive forms of cancer.
4.8 Cross dataset validation

To comprehensively evaluate the generalization performance of

the proposed Multi-Parameter Transfer Learning (MPTL) model,
Frontiers in Oncology 10
an extensive experiment was conducted across diverse datasets. The

primary objective of this experiment was to showcase the

practicality and effectiveness of the MPTL framework in real-

world scenarios where data sources may vary significantly.

For this purpose, we strategically leveraged two distinct

datasets, both of which are publicly available to ensure

transparency and reproducibility in our research. The first

dataset, sourced from the Cancer Imaging Archive Nolan (53), is

a substantial collection of medical images related to prostate cancer.

The second dataset, referred to as I2CVB G. Lemaitre et al. (56),

provides an additional set of prostate MRI images for comparative

analysis. It’s worth noting that these datasets bring a wealth of

diversity to the experiment. They exhibit variations in terms of

image characteristics such as shapes, angles, sizes, resolutions, and

formats. This diversity mirrors the real-world scenario where

medical imaging data can originate from various sources and

possess inherent dissimilarities. After minor cleaning, our training

process was conducted on a robust training set comprising 5096

images from the first dataset. Subsequently, we rigorously assessed

the model’s performance on an independent test set comprising

1371 images sourced from the I2CVB dataset. This demarcation of
FIGURE 6

Accuracy curves of PCa classification.
TABLE 3 Comparison results of PCa MRI.

Accuracy Precision Recall F1-score

MPTL-B0 84.44 87.5 84.0 85.71

T2w sagittal 71.43 72.13 73.79 72.66

T2w transaxial 73.78 71.43 79.39 75.44

ADC 74.72 73.86 78.30 76.06

ADC and T2w sagittal 81.81 82.97 86.67 84.78

ADC and T2w transaxial 83.33 85.1 83.34 84.20

Sagittal and T2w transaxial 82.21 86.95 83.33 85.10

MPTL-B5 86.67 83.33 90.90 86.95

MPTL-B7 88.89 91.67 88.0 89.47
f

FIGURE 7

Loss curves of PCa classification.
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training and testing datasets enabled us to simulate a real-world

scenario where a model is required to adapt and generalize across

distinct data sources.

The results obtained in this cross-dataset experiment are highly

encouraging. The proposed MPTL framework exhibited remarkable

performance, further emphasizing its versatility and effectiveness in

handling diverse data sources. Specifically, our model achieved an

accuracy rate of 86.65%, indicating its capability to make correct

classifications. The precision rate, measuring the model’s ability to

correctly classify positive cases, stood at an impressive 83.36%.

Furthermore, the recall rate, signifying the model’s capacity to

identify all relevant instances, reached an impressive 89.18%. Lastly,

the F1-score, which strikes a balance between precision and recall,

demonstrated a robust performance at 86.13%. These outcomes

underscore the generalization power of the MPTL framework for

the classification of prostate MRI images. The model’s consistent and

high-quality performance across datasets with diverse characteristics

reinforces its potential utility in real-world medical applications,

where data heterogeneity is often encountered.
5 Conclusion

In terms of replacing manual cancer assessment by radiologists

using MRI images, CAD plays a critical role. There are, however,

numerous risks and a high level of complexity involved in this task,

along with expert-level opinions. The manual extraction of

handcrafted features and subsequent classification not only

consumes time but also introduces a higher likelihood of errors.

To streamline the assessment process for radiologists and mitigate

diagnostic errors, the necessity for an automated decision-making

classification model becomes evident. In this paper, we introduce an

innovative MPTL model for the automatic classification of PCa.

Our model leverages knowledge from ImageNet to aid in the feature

learning process from multi-parametric MRI (mp-MRI) sequences.

These transferred features are combined to enhance the accuracy of

PCa classification. A refined fine-tuning method including global
Frontiers in Oncology 11
average pooling is further applied to enhance PCa classification. As

a result, the learned features exhibit significantly enhanced

discriminative capabilities. Through an extensive series of

comparative studies, we have highlighted the exceptional

performance of our model in direct comparison to the prevailing

state-of-the-art cancer classification methods. Our empirical results

unequivocally establish the efficacy of our proposed approach in

achieving high-precision PCa classification. Our findings highlight

the potential benefits of transfer learning techniques from natural

images to the medical domain, potentially offering valuable

solutions in scenarios where the availability of annotated training

datasets is limited for various practical considerations.
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