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Background: Limited studies have observed the prognostic value of CT images

for esophageal neuroendocrine carcinoma (NEC) due to rare incidence and low

treatment experience in clinical. In this study, the pretreatment enhanced CT

texture features and clinical characteristics were investigated to predict the

overall survival of esophageal NEC.

Methods: This retrospective study included 89 patients with esophageal NEC.

The training and testing cohorts comprised 61 (70%) and 28 (30%) patients,

respectively. A total of 402 radiomics features were extracted from the tumor

region that segmented pretreatment venous phase CT images. The least

absolute shrinkage and selection operator (LASSO) Cox regression was applied

to feature dimension reduction, feature selection, and radiomics signature

construction. A radiomics nomogram was constructed based on the radiomics

signature and clinical risk factors using a multivariable Cox proportional

regression. The performance of the nomogram for the pretreatment

prediction of overall survival (OS) was evaluated for discrimination

and calibration.

Results: Only the enhancement degree was an independent factor in clinical

variable influenced OS. The radiomics signatures demonstrated good

predictability for prognostic status discrimination. The radiomics nomogram

integrating texture signatures was slightly superior to the nomogram derived

from the combined model with a C-index of 0.844 (95%CI: 0.783-0.905) and

0.847 (95% CI: 0.782-0.912) in the training set, and 0.805 (95%CI: 0.707-0.903)

and 0.745 (95% CI: 0.639-0.851) in the testing set, respectively.
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Conclusion: The radiomics nomogram based on pretreatment CT radiomics

signature had better prognostic power and predictability of the overall survival in

patients with esophageal NEC than the model using combined variables.
KEYWORDS

esophageal neoplasm, tomography, radiomics, nomogram, survival
1 Introduction
Neuroendocrine carcinoma (NEC) is a malignant tumor

originating from the neuroendocrine cells, and most commonly

occurs in the lungs and the digestive system (1). Esophageal NEC is

a rare disease with a reported incidence of between 0.05% and 5.9%

among all malignancies affecting the esophagus (2). At the time of

diagnosis, the disease displays aggressive progression with poor

prognosis because the neuroendocrine system is not well developed

in the esophagus (1). Unlike esophageal squamous cell carcinoma

(ESCC) and esophageal adenocarcinoma (EAC), NEC can be

diagnosed and classified using a grading system based on mitotic

count and the Ki-67 proliferation index (3). Esophageal NEC is

entirely defined by high grade ratings (G3) and high ratios of Ki-67

(2–5). Surgery combined with chemoradiotherapy is considered the

most ideal treatment strategy for esophageal NEC due to its highly

invasive nature and tendency for early metastasis (6). However, a

rare incidence and low treatment experience result in insufficient

clinical observations and suitable guidelines for the management of

esophageal NEC.

It has been proven that angiogenic CT parameters play a

predictive role for tumor progression and prognosis after surgery

or neoadjuvant chemotherapy/chemoradiotherapy (7, 8). A few

retrospective clinical esophageal NEC analyses have shown better

survival effects with a combination of radical resection, radical

lymph node dissection, and adjuvant therapy (9–11). However, the

survival investigations involving esophageal NEC are based on basic

clinical prognostic evaluation. Studies involving evaluation of

tumor heterogeneity and therapeutic efficacy have not been

conducted yet.

Radiomics has increasingly emerged as a technique for

improved tumor evaluation, whereby a huge amount of data may

be extracted from medical images through post-processing

techniques, thus enabling quantification of the heterogeneity

within the tumor (12). Assessment of the tumor texture on

images of esophageal cancers has been performed earlier and

shown to carry prognostic information in terms of predicting

survival (13, 14). Recently, Riyahi et al. demonstrated feature

extraction of CT images of patients with locally advanced

esophageal cancer before chemoradiotherapy and generated a

sensitivity and specificity of 94.4% and 91.8%, respectively (15).

To the best of our knowledge, the potential of CT texture analysis as

a therapeutic responder or as a predictor of treatment efficacy in

esophageal NEC has never been investigated.
02
The aim of this study was to investigate the role of pretreatment

CT imaging radiomics signatures using texture features, and that of

clinical characteristics in predicting the overall survival of patients

with esophageal NEC.
2 Materials and methods

2.1 Subject enrollment

This study was approved by the Institutional Review Board

(IRB) of the First Affiliated Hospital of Zhengzhou University. All

patients enrolled in this study provided informed consent.

A total of 115 patients who had a confirmatory diagnosis

of esophageal NEC during the period from September 2015 to

July 2019 were included in our database. We confirmed the

diagnosis of esophageal NEC, without any squamous carcinoma/

adenocarcinoma component mixed, on the basis of pathological

and immunohistochemical specimen via esophagoscope before

surgery or intraoperatively. Patients who had earlier undergone a

baseline contrast-enhanced CT before treatment in our institution

were enrolled in the study. The remaining 89 patients (median age,

65 years; range, 42-79 years) comprising of 57 males and 32 females

were included in the study for treatment observation and

subsequent follow-up investigation.

Of the 89 patients, 61 patients (70%) (median age, 65 years;

range, 42-78 years) were included in a training cohort for exploring

the independent predictors of the texture parameters as well as to

optimize the threshold in differentiating the patients’ survival

outcomes. The remaining 28 patients (30%) (median age, 65

years; range, 45-79 years) comprised a testing cohort, which was

used to validate the prognostic significance of the identified

predictors, by applying optimal cutoff values in an external

verification set.
2.2 Treatment

The treatment strategies for NEC included esophagectomy (n = 5),

chemotherapy (n = 40), radiotherapy (n = 1), chemoradiotherapy (n =

2), preoperative neoadjuvant chemotherapy (n = 1), and postoperative

adjuvant chemotherapy (n = 39). The surgical approach for the 5 cases

(6%) selected was based on the site of the lesion. The left thoracic

approach into the chest was used for a lower esophageal lesion (n = 4),

and a right thoracic approach was employed for an upper esophageal
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lesion (n = 1). The treatment regimen for chemotherapy, preoperative

neoadjuvant chemotherapy, and postoperative adjuvant

chemotherapy included etoposide (Vepeside, VP - 16) 100mg/m2 IV

on day 1 to day 5 and cisplatin (DDP) 75mg/m2 IV on the first day of a

21 - day cycle for a total of 4 to 6 cycles. Patients treated with

radiotherapy received a dose of 1.8 Gray per day on day 1 to day 5,

with total dose of 60 Gray at 33 days. Chemoradiotherapy regimen

consisted of VP - 16, 50 mg/m2 and DDP, 20 mg/m2 on days 1 to 5,

and a total of 60 Gray of concurrent radiotherapy as

mentioned previously.
2.3 Patient follow-up

Therapeutic efficacy was evaluated 12 weeks after surgery by a

CT enhancement examination. Patients who were treated with

chemotherapy and/or radiotherapy also underwent a CT

enhancement examination after every 3 cycles from the beginning

of treatment for the first 12 cycles and at every 4 cycles thereafter.

All patients underwent clinical follow up through an outpatient

service or a telephone communication (every 12 weeks) until death

or the end of the study. The OS was set (time from the date of

diagnosis to death from any cause) as the main endpoint and was

predicted by constructing nomograms.
2.4 CT image acquisition

A baseline CT scan was obtained less than a week before

treatment was initiated. All patients fasted for 6 hours. 20 mg of

amidoamine was injected intramuscularly 10 - 15 minutes before

CT examination. In order to distend the upper gastrointestinal tract,

the subjects were first asked to drink 800 - 1000ml water, and

subsequently advised to drink 200 - 300 ml water with a straw in a

supine position. A contrast-enhanced CT scan of the chest was

performed with a 64 - slice CT scanner (Lightspeed VCT, GE

Healthcare, Waukesha, WI, USA) or a 256 - slice CT scanner

(Revolution CT, GE Healthcare, Waukesha, WI, USA). The scan

mode settings comprised of a tube voltage of 120 kV or 80 kV/140

kV with a fast kV - switching technique, tube current under Auto

mA with a noise index of 8.0, a slice thickness of 5 mm, a gantry

speed of 0.6 seconds per rotation and a pitch of 0.984: 1. A contrast

medium containing 350 mg of iodine per ml (Omnipaque™; GE

Healthcare, Cork, Ireland) was injected at a flow rate of 3 ml/s via

the elbow vein. The dose of the contrast medium was calculated as

1.5 ml per kg body weight. Scanning was triggered when the CT

value of the aortic arch reached 100 HU. The venous phase was

initiated 60 s after triggering the scan.
2.5 Clinical features selection

The basic morphological image features and clinical data

assessed included the age and gender of the patient, tumor length,
Frontiers in Oncology 03
location, the thickness of esophageal tumor wall (Median), clinical

symptoms, immunohistochemical index of markers such as

Cytokeratin (CK), Chromogranin A (CgA), Synaptophysin (Syn),

Neuron-specific enolase (NSE), and Ki-67 (%). Tumor invasion

depth (cT stage), lymph node metastasis (cN stage), distant

metastasis (cM stage), treatment strategy, tumor margin (well-

defined or ill-defined), presence or absence of tumor calcification,

morphological subtype and tumor homogeneity (homogeneous or

presence of necrosis) were also assessed. The degree of

enhancement was classified as slight, moderate, and marked

enhancement, with the standard used for assessment of

enhancement being: slight enhanced, the enhancement of the

nodule was close to that of adjacent muscles; moderate enhanced,

enhancement slightly higher than the adjacent muscles; marked

enhanced, enhancement markedly higher than in the muscles (14).

The start date of treatment, and the date of pretreatment CT

examination were also documented.
2.6 Imaging segmentation

A radiologist (Y.Z.) with 12 years of experience in chest and

abdominal CT diagnosis, independently retrieved the CT images in

a DICOM format from the picture archiving and communication

system (PACS), and resampled them to 1 × 1 × 1 mm3 sizes for

maintaining a consistent thickness. The resampling images were

subsequently loaded into the ITK-SNAP software (version 3.6.0;

www.itksnap.org) for manual segmentation. Tumor volume of

interest (VOI) segmentation was performed, and the images were

exported in an NII. format for subsequent 3D reconstruction, data

extraction, and analysis. First, the VOI was delineated to encompass

the whole enhanced esophageal lesion in the sagittal position.

Visually identified air density within the tumor and the normal

esophageal wall adjacent to the margin of the lesion were excluded.

Next, the outlined segmentation was compared and modified in an

axial position and coronal position, respectively. A 3D

reconstruction was precisely performed along the edge of the VOI

region which was automatically separated from the other structures

and the background.
2.7 Radiomics features extraction

The textural features were derived from a multiparadigm

numerical computing and programming software Artificial

Intelligence Kit (version 3.2.2, GE Healthcare). A total of 402

radiomics features were extracted for tumor characteristics from

the VOI region segmented from the pretreatment venous phase CT

images. The features were composed of the histogram (42 features),

gray level co-occurrence matrix (GLCM) (144 features), gray level

size zone matrix (GLSZM) (11 features), gray level run length

matrix (GLRLM) (180 features), formfactor (15 features), and

Haralick (10 features) (16–21). An analysis of variance (ANOVA)

was performed for dimension reduction, and a correlation analysis

was performed to reduce data redundancy. The details of features
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extraction are described in the supplementary data. The extracted

texture features were standardized so as to remove the unit limits of

the data of each feature.

A random selection of 30 enhanced CT images of the patients

was selected for assessment of intraobserver agreement (20). The

intraclass correlation coefficients (ICCs) were calculated to evaluate

inter-observer variability of radiomics features and were classified

as poor (< 0.40), fair (0.40 - 0.59), good (0.60 - 0.74), or excellent

(0.75-1.00) (22). Highly correlated features (ICC ≥ 0.90) were

identified and selected initially. After a spearman correlation

analysis between the texture features, there were a remainder of

50 features.
2.8 Feature selection and radiomics
signature building

Potential prognostic factors of survival were evaluated using a

univariate Cox proportional hazard model based on forward

stepwise selection from the clinical variables. A least absolute

shrinkage and selection operator (LASSO) Cox regression method

was used to determine features that predicted the overall survival.

The radiomics score for each patient was computed using an

equation in which the coefficients were derived from the LASSO

Cox model. The radiomics score (Rad-score) was computed for

each patient through a linear combination of selected features

weighted by their respective coefficients. Feature selection and the

radiomics signature building were performed in training and testing

sets. A five-fold cross-validation test was used to detect the

goodness of fit of the model. The model was validated for its

calibration ability by calculating the probability of outcome for

each patient of the whole dataset according to the model and

comparing it with the actual survival of the patient. More details

of LASSO Cox model and radiomics signature building are

described in the Supplementary Data. The survival models used

different sets of factors that included the radiomics score only, and a

combined score using both selected radiomics features and

clinical variables.
2.9 Statistical analysis

Statistical analysis was conducted with R software (version

3.4.4; http://www.Rproject.org) and p < 0.05 was considered

statistically significant. The differences between the continuous

variables were compared using the Mann-Whitney U test, and the

differences between the categorical variables were analyzed by the

Chi-square test. The predictive accuracy of the radiomics signature

was quantified by receiver operator characteristic (ROC) curve in

both, the training and the testing sets. The median value of each

score in the model was used to stratify the patients into high-risk

and low-risk groups (23). The potential correlation of the two

models with the overall survival (OS) was assessed using Kaplan-

Meier analysis. The difference in survival between the groups was

calculated as hazard ratio (HR) for each model by use of log-

rank tests.
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3 Results

3.1 Patient characteristics

The details of patient enrollment are summarized in (Figure 1).

The basic clinical characteristics of patients in the training and

testing cohorts are shown in (Table 1). There was no statistical

difference between the two cohorts in terms of the variables gender,

age, morphological subtype, tumor length, location, clinical

symptom, immunohistochemical result, the thickness of

esophageal tumor wall, Ki-67 (%), cTNM stage, treatment

strategy, tumor margin, necrosis, calcification, enhanced

homogeneity, enhanced pattern, and enhanced degree. The

median OS in the training and testing cohorts were 41.7 months

(range: 33.4 - 50 months) and 45 months (range: 24.6 - 65.4

months), respectively (p = 0.302). OS was censored in 18 and 6

patients from the training and testing cohorts, respectively.
3.2 Intra-observer reproducibility analysis
and radiomics features extraction

The typical example of the drawn VOI covering the largest

image slice of the primary lesion is depicted in (Figure 2). The inter-

observer reproducibility analysis was measured by ICC on the VOI-

based feature extraction, with a mean ICC of 0.67 (range: -0.03 to 1).

The LASSO regression was used for data dimension reduction,

feature selection, and radiomics signature building. After feature

selection derived from the LASSO regression, the COX regression

clinical prediction model was constructed, and the nomogram was

created to predict individuals. The result of data dimension

reduction with LASSO Cox regression models is described in

(Figures 3A, B). The seven selected radiomics features consisted

of mean deviation, GLCM Entropy_angle90_offset1, inverse

difference moment, high Grey Level Run Emphasis_All

Direction_offset4_SD, Run Length Nonuniformity_All

Direction_offset4_SD, Short Run Emphasis_All Direction_offset1,

and Sphericity. The values of the seven selected features in each

patient were applied into the formula, and the Rad-scores were

obtained to reflect the risk. The Rad-scores thus derived by a

combination of the seven most valuable variables and their

coefficients are shown in (Figure 3C).
3.3 Performance and validation of
radiomics model

For clinical variables, as described in (Table 2), the univariate

Cox regression analysis indicated that only the enhancement degree

was an independent factor that influenced the OS. For the

combined model with both radiomics features and clinical

variables, the combined score was calculated using selected

features and variables. The nomograms for radiomics-based

model and the combined model were built based on the training

set. One-year, 3-year and 5-year survival probabilities estimated
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TABLE 1 Basic clinical characteristics of patients in the training and testing cohorts.

Variable Training cohort (n=61) Testing cohort (n=28) P

Gender 0.325

Male 37 (61) 20 (71)

Female 24 (39) 8 (29)

Median age (years)* 65 (42-78) 65 (45-79) 0.56

Morphological subtype 0.282

Medullary type 20 (33) 12 (43)

Mushroom type 13 (21) 2 (7)

Ulcer type 10 (16) 3 (11)

Narrowing type 18 (30) 11 (39)

Median tumor length (mm)* 39.9 (1-99.7) 35.3 (12.2-120) 0.658

Tumor location 0.621

Upper segment esophagus 5 (8) 4 (14)

Middle segment esophagus 37 (61) 17 (61)

Lower segment esophagus 19 (31) 7 (25)

Clinical symptom 0.94

Progressive dysphagia 38 (62) 19 (68)

Abdominal/Retrosternal pain 12 (20) 6 (21)

Loss of appetite 9 (15) 2 (7)

Fever 2 (3) 1 (4)

Immunohistochemical result

CK 41 (67) 23 (82) 0.146

(Continued)
F
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FIGURE 1

Flowchart describing study recruitment and enrollment process. NEC, neuroendocrine carcinoma; ESCC, esophageal squamous cell carcinoma;
EAC, esophageal adenocarcinoma.
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TABLE 1 Continued

Variable Training cohort (n=61) Testing cohort (n=28) P

CgA 19 (31) 5 (18) 0.19

Syn 50 (82) 25 (89) 0.379

NSE 11 (18) 4 (14) 0.661

Ki-67 (Median, %)* 80 (60-100) 78 (60-95) 0.945

Median thickness of esophageal tumor wall (mm) * 10.9 (2-46) 11.1 (3-26.1) 0.356

T stage 0.313

T1-2 27 (44) 14 (50)

T3 32 (53) 14 (50)

T4 2 (3) 0

N stage 0.77

Absent 22 (36) 11 (39)

Present 39 (64) 17 (61)

M stage 0.906

Absent 40 (66) 18 (64)

Present 21 (34) 10 (36)

Treatment strategy 0.344

Esophagectomy 3 (5) 2 (7)

Chemotherapy only 30 (49) 11 (39)

Radiotherapy only 0 1 (4)

Neoadjuvant chemotherapy 1 (2) 2 (7)

Postoperative adjuvant CRT 27 (44) 12 (43)

Tumor margin 0.916

Well-defined 54 (89) 25 (89)

Ill-defined 7 (11) 3 (11)

Calcification 0.332

Absent 59 (97) 28 (100)

Present 2 (3) 0

Enhanced homogeneity 0.308

Homogeneous 55 (90) 27 (96)

Presence of necrosis 6 (10) 1 (4)

Enhanced degree 0.134

Slight enhancement 12 (20) 9 (32)

Moderate enhancement 23 (37) 13 (46)

Marked enhancement 26 (43) 6 (21)

Median Hounsfield Units (HU) * 67.5 (40.8-96.2) 66.2 (43.1-87.3) 0.833

Median survival end points

Overall survival(mon) * 41.7 (33.4-50) 45 (24.6-65.4) 0.302
F
rontiers in Oncology
 06
 frontier
Except where indicated, data are numbers of patients, with percentages in parentheses.
CK Cytokeratin, CgAchromogranin A, Syn synaptophysin, NSE neuron-specific enolase, CRT Chemoradiotherapy, mm Millimeter, HU Hounsfield unit, mon month.
* Numbers in parentheses are ranges.
sin.org

https://doi.org/10.3389/fonc.2023.1225180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1225180
FIGURE 2

A enhanced CT of a 69-year-old man with esophageal NEC in the middle segment of esophagus (cT3N2M0). There is a moderately enhanced lesion
with well-defined margin without necrosis and calcification. The red outline depicts an example of the drawn volume of interest (VOI) covering the
largest image slice of the primary lesion.
A B

C

FIGURE 3

Construction of a radiomic signature predictive of OS in NEC after treatment using the LASSO regression model with a 10-fold cross validation. (A)
The filtered features derived from the least absolute shrinkage and selection operator (LASSO) regression analysis. The LASSO coefficients of the 36
radiomics features based on entire tumor volumetric in pretreatment venous phase CT images. (B) The superparameter lambda (l) in LASSO was
determined by the 10-fold cross-validation. Features with non-zero coefficient were selected for model development. LASSO coefficient analysis of
the 36 radiomics features, using 10-fold cross-validation, fourteen nonzero coefficients were selected. (C) Histogram displaying seven selected
radiomic features that contribute to the constructed signature based on entire tumor volume in the pretreatment venous phase. The x-axis
represents the individual radiomic features, with their coefficients in the LASSO Cox analysis plotted on the y-axis.
Frontiers in Oncology frontiersin.org07
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with the nomograms, indicated a good fit for both models in the

training and testing sets as seen in (Figure 4).

Patients were divided into high and low risk groups using the

predicted risk of the model. For the radiomics based model and the

combined model, the thresholds were adopted as the median values

of the distribution of the risk groups for OS in both, training and

testing datasets. To find the best threshold to make the best

classification in radiomics based model, the highest value of the

Youden index is selected. Threshold values were -0.234 for the

radiomics based model. As depicted in (Table 3), the radiomics

signature based model showed a favorable predictive efficacy than

the combined model that integrated the radiomics signature with

clinical risk factor, with a C-index of 0.844 (95% CI: 0.783 - 0.905)

and 0.847 (95% CI: 0.782 - 0.912) in the training set, and a C-index

of 0.805 (95% CI: 0.707 - 0.903) and 0.745 (95% CI: 0.639 - 0.851) in

the testing set, respectively. The difference was statistically

significant in the training and testing datasets (p < 0.0001 for

each comparison). The corresponding Kaplan-Meier curves are

shown in (Figure 5).
4 Discussion

We designed the present study to explore the application of

pretreatment CT radiomics as a significant prognostic biomarker

for the overall survival of patients with esophageal NEC. Our

results demonstrated that the radiomics signature from the

texture features showed improved predictive ability than the

combined model incorporating enhanced CT morphological

feature and texture features in the venous phase. In addition,
Frontiers in Oncology 08
the radiomics nomogram integrating the radiomics signature had

a significantly improved ability to predict the overall survival than

that of the combined nomogram based on clinical and

texture factors.

Factors affecting tumor heterogeneity such as tumor phenotype,

biological morphology, gene phenotype and other aspects, were

demonstrated to be significantly contributory to the development

of tumors. Several studies have shown that radiomics plays a critical

role in medical decision making by quantitatively assessing the

heterogeneity within tumors (18, 24). This study explored better

predictors of survival for patients with NEC and intended to

construct a radiomics model for patient survival. It was observed

that the radiomics model reflected both, the information

regarding intra-tumoral heterogeneity as well as its CT

enhancement characteristics.

In the present study, seven radiomics features were identified

that posed as significant variables in the radiomics score model.

These features comprised four categories. One feature included

histogram-based analysis that enabled quantification of the

distribution of CT values. This tended to be intuitive and

sensitive in distinguishing the heterogeneity within the tumor and

between tumors. As reported in previous studies, histogram textural

features were related to heterogeneity and morphologic

characteristics (25–27). Two features derived from GLCM

reflected the frequency of the CT values in a voxel, that in turn

occurs in a specific spatial relationship with an adjacent voxel (26).

Ganeshan et al. demonstrated that patients who had heterogeneous

tumors with alterations in GLCM textural features (e.g. high

entropy values) demonstrated poorer survival for esophageal

cancer (27). Considering the gray range matrix of a two-
TABLE 2 The univariate regression analysis to identify prognostic factors for overall survival in training cohort.

Variable Hazard Ratio 95% CI P

Gender 0.868 0.5864-2.266 0.68

Age 1.008 0.9553-1.031 0.698

Morphological subtype 0.943 0.803-1.4 0.679

Tumor length (mm) 1.004 0.980-1.013 0.678

Tumor location 0.586 0.955-3.049 0.071

Clinical symptom 1.004 0.876-1.132 0.948

Depth of wall thickness (mm) 1.012 0.957-1.02 0.47

Ki-67 (%) 0.089 0.004-1.683 0.107

T stage 0.971 0.587-1.808 0.917

N stage 1.131 0.558-1.401 0.6

M stage 1.524 0.304-1.414 0.282

Treatment strategy 1.251 0.466-1.371 0.416

Tumor margin 0.919 0.373-3.165 0.878

Calcification 3.859 0.034-1.995 0.195

Enhanced homogeneity 1.462 0.236-1.979 0.484

Enhanced degree 2.413 0.246-0.697 <0.001*
fronti
* Statistically significant.
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dimensional image and the characteristic statistics, three GLRLM

based features, were calculated to produce considerably better

results in distinguishing tumor heterogeneity (28). A formfactor

feature named ‘sphericity’ described the texture by identifying the

shape, size and specification of each voxel. Kim et al. found that an

irregular tumor boundary could be a sign of poor survival (29).

Therefore, the findings in this study were in line with previous

analyses, in which CT imaging features exhibited better

performance in discrimination of heterogeneity and prediction

of prognosis.
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Owing to its rarity, tumor heterogeneity, nonspecific

presentation, unique indolent biology, as well as insufficient

awareness, NEC often presents with poor differentiation, a large

tumor volume and a deep invasion depth (9, 10). Esophageal NEC is

usually depicted to have characteristics of a high-grade malignancy

with poor differentiation, inadequate tumor vascularization, and

easy metastasis (9). In the present study, there were differences in

tumor blood supply and degree of enhancement on CT in the

univariate Cox regression analysis. Hence, it was inferred that the

differences in blood supply and enhancement degree are likely to
A

B C

FIGURE 4

The radiomics nomogram constructed during the venous phases depicting radiomics signature to estimate OS for NEC candidates, along with the
assessment of the model calibration. (A) The radiomics nomogram was developed using individually predicted OS in NEC after treatment. (B, C)
Calibration curves for the radiomics nomogram showing the calibration of the model in terms of the 1-year and 3-year survival outcomes in the
training and validation datasets. The diagonal dashed line indicates the ideal estimation by a perfect model. The solid line represents the
performance of the nomogram. The closeness of the solid line to the diagonal dashed line is an indicator of a better estimation.
TABLE 3 Comparison of predictive performance of the different models for OS in training and testing cohort.

Model Training cohort
C-index (95%CI)

Testing cohort
C-index (95%CI)

R model 0.844 (0.905-0.783) 0.805 (0.903-0.707)

R-C model 0.847 (0.912-0.782) 0.745 (0.851-0.639)
R model, Radiomics model; R-C model, Radiomics-clinical model; CI confidence interval.
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influence the biological behavior, growth rate, invasiveness,

sensitivity to medicine, and the survival prognosis of the tumor.

In terms of prognostic nomogram analysis for esophageal NEC,

Zhang et al. found that the nomogram derived from clinical survival

analysis was useful for risk stratification of mortality in patients

with esophageal NEC (10). The decision curve analysis ranged from

0.268 to 0.968 for the threshold probability, with a C-index of 0.723.

However, the results of Zheng et al. originated from purely large

clinical data. This was different from our study which included basic

image parameters involved in the clinical model, such as cTNM,

tumor homogeneity, enhanced degree, etc. In our study, the

radiomics based model exhibited a difference between the high

and low-risk patients with respect to overall survival, compared to

the combined model. This result was slightly different from the

previous studies in cervical cancer by Wang et al. (30), in studies in

lung cancer by Coroller et al. (31), and those in oropharyngeal

carcinoma by Leijenaar et al. (32). The aforementioned

investigators reported better performance of the combined model

integrated with clinical and texture features. It was speculated that

this difference is primarily result from the uncharacteristic imaging

manifestation in esophageal NEC, which may influence the

diagnostic value when the conventional CT enhancement features

of the entire tumor are observed. Moreover, the bias in the

measurement of clinical factors is closely related to insufficient

subjects in each cohort. Furthermore, the enhanced level of the

tumor was set based on the enhancement degree contrast to the

adjacent muscles. However, this is likely to be inevitably influenced

by subjective factors based on the observer and the contrast agent

distribution in individuals. Therefore, it was concluded that the

combined model mildly lowers the diagnostic efficiency for

predicting the OS in patients with esophageal NEC.
4.1 Limitations

This study has several limitations. Firstly, this is a retrospective

study with a small sample size, which might have caused instability

in features selection in both, the training and the testing sets. Future
Frontiers in Oncology 10
studies with larger samples are needed to thoroughly validate the

results of this study. Secondly, the results were derived from the use

of two CT scanners with a different number of detectors, which

might have contributed to a bias in radiomics features extraction.

Moreover, additional imaging modalities, such as radiomics

features derived from pretreatment functional MR images can

provide information on different aspects of tumor characteristics

that can be crucial for predicting tumor prognosis. Future research

in this context will aim at the correlation between the imaging

features and gene or protein biomarkers for survival prediction.
5 Conclusion

A practical radiomics model was developed using pretreatment

CT radiomics features to predict the overall survival in patients with

esophageal NEC. This model incorporated textural features

containing effective and reliable prognostic information to stratify

patients into statistically significant risk groups.
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