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A novel machine learning-based
programmed cell death-related
clinical diagnostic and
prognostic model associated
with immune infiltration in
endometrial cancer

Jian Xiong1†, Junyuan Chen2†, Zhongming Guo3,
Chaoyue Zhang2, Li Yuan3* and Kefei Gao1*

1Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangzhou, China, 2China Medical University, Shenyang, China,
3Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
Background: To explore the underlying mechanism of programmed cell death

(PCD)-related genes in patients with endometrial cancer (EC) and establish a

prognostic model.

Methods: The RNA sequencing data (RNAseq), single nucleotide variation (SNV)

data, and corresponding clinical data were downloaded from TCGA. The

prognostic PCD-related genes were screened and subjected to consensus

clustering analysis. The two clusters were compared by weighted correlation

network analysis (WGCNA), immune infiltration analysis, and other analyses. The

least absolute shrinkage and selection operator (LASSO) algorithm was used to

construct the PCD-related prognostic model. The biological significance of the

PCD-related gene signature was evaluated through various bioinformatics

methods.

Results: We identified 43 PCD-related genes that were significantly related to

prognoses of EC patients, and classified them into two clusters via consistent

clustering analysis. Patients in cluster B had higher tumor purity, higher T stage,

and worse prognoses compared to those in cluster A. The latter generally

showed higher immune infiltration. A prognostic model was constructed using

11 genes (GZMA, ASNS, GLS, PRKAA2, VLDLR, PRDX6, PSAT1, CDKN2A, SIRT3,

TNFRSF1A, LRPPRC), and exhibited good diagnostic performance. Patients with

high-risk scores were older, and had higher stage and grade tumors, along with

worse prognoses. The frequency of mutations in PCD-related genes was

correlated with the risk score. LRPPRC, an adverse prognostic gene in EC, was

strongly correlated with proliferation-related genes and multiple PCD-related

genes. LRPPRC expression was higher in patients with higher clinical staging and
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in the deceased patients. In addition, a positive correlation was observed

between LRPPRC and infiltration of multiple immune cell types.

Conclusion: We identified a PCD-related gene signature that can predict the

prognosis of EC patients and offer potential targets for therapeutic interventions.
KEYWORDS
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1 Introduction

Endometrial cancer (EC) was the sixth most common cancer

diagnosed in women in 2020, with a total of 417,000 new cases

documented worldwide. The median age of diagnosis of EC patients

is 61 years, and the lifetime risk of EC is around 3% (1). EC is

associated with a high mortality rate, and over 76,000 women die

annually as a result of EC (2). The mortality rate due to EC further

increases with advanced tumor stage, invasive histology, and

metastasis (3). There is currently a paucity of biomarkers or

models that can effectively predict the prognosis and survival of

EC patients (4). Therefore, it is crucial to elucidate the molecular

mechanisms underlying EC occurrence and progression in order to

identify novel prognostic markers and therapeutic targets.

Cell death plays a crucial role in several biological processes,

and can be classified as programmed cell death (PCD) and

accidental cell death (ACD) (5). PCD is the culmination of

ordered, gene-controlled pathways following the spontaneous loss

of cellular function, whereas ACD is an uncontrolled process that is

triggered in response to certain harmful stimuli. PCD is primarily

responsible for maintaining intracellular homeostasis (6). Various

types of PCD have been documented so far, including autophagy-

dependent cell death, necroptosis, apoptosis, ferroptosis, pyroptosis,

entosis, parthanatos, NETosis, alkaliptosis, lysosome-dependent cell

death (LCD), and oxeiptosis (7).

Lysosomal degradation during autophagy-mediated cell death

facilitates metabolic adaptation and nutrient recycling (8). Necrosis

has long been considered an involuntary form of cell death,

although recent evidence indicates that necrosis can be initiated

and sustained, resulting in necroptosis that centers around the

formation of necrosomes (9, 10). Apoptosis is an intrinsic

mechanism for eliminating damaged cells and involves a series of

events including condensation, nucleolysis, and nuclear

fragmentation, which culminate in the engulfment of apoptotic

vesicles by macrophages (11). Ferroptosis is characterized by the

accumulation of lipid hydroperoxides in an iron-dependent manner

that ultimately reaches a lethal threshold (12, 13). Cuproptosis is a

recently identified mode of PCD that is triggered by copper

imbalance and is closely associated with disease progression (14).

Pyroptosis is an inflammatory form of PCD that is typified by the

creation of membrane pores that compromise cellular integrity,

eventually leading to cell rupture (15). Entosis is a form of cell

“cannibalism” wherein one live cell is engulfed and lysed by another
02
cell without the activation of the apoptotic pathway (16).

Parthanatos is induced by excessive activation of the nuclease

PARP-1 (17), an RNA polymerase (RP) that interacts with and

activates DNA or RNA, leading to replication or repair of damaged

DNA and proteins. NETosis is initiated by the release of neutrophil

extracellular traps (NETs), i.e., interconnected structures that cells

release in response to infection or injury (18). Alkaliptosis, a newly

recognized type of PCD, heavily relies on the intracellular

alkalization process (19). LCD is dependent on hydrolase, which

facilitates lysosomal transport to the cytoplasm by means of

membrane penetration. This process is regulated by intracellular

signaling systems and membrane proteins (20). KEAP1, a detector

of reactive oxygen species (ROS), has recently been shown to be

involved in a unique type of cell death known as oxygen

apoptosis (21).

Mutations in the PCD pathways have been detected in the early

stages of cancer, which endow the tumor cells with resistance to

anti-cancer treatments (7). Therefore, targeted interventions that

activate PCD pathways using single or combined therapies are an

effective anti-cancer strategy. For instance, the FDA-approved BCL-

2 inhibitor triggers apoptosis in lymphoma cells (22). In addition,

activation of GSDME-mediated pyroptosis has proved to be highly

effective against many cancers (23). Cancer cells can resist PD-1/

PD-L1 checkpoint inhibition by blocking ferroptosis through the

regulation of ferritin and other proteins (24), indicating that

activation of the ferroptosis pathway in these cells can sensitize

them to PD-1/PD-L1 blockers.

In this study, we used bioinformatic approaches to establish a

PCD-related prognostic gene signature for EC and found that

higher risk scores were associated with a worse prognosis. Our

findings provide new insights into the molecular basis of EC

progression. Furthermore, the genes associated with PCD have

significant potential as prognostic biomarkers and therapeutic

targets for EC.
2 Materials and methods

2.1 Data acquisition and preprocessing

The RNA sequencing (RNAseq), single nucleotide variation

(SNV), and relevant clinical data of 544 tumor samples and 35

normal samples from TCGA-UCEC (Uterine Corpus Endometrial
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https://doi.org/10.3389/fonc.2023.1224071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiong et al. 10.3389/fonc.2023.1224071
Carcinoma) were downloaded through the UCSC XENA website

(https://xenabrowser.net/datapages/) and Sangerbox website

(http://www.sangerbox.com/). TCGA-CESC (168 tumor samples)

and TCGA-BRCA (1057 tumor samples) were downloaded from

the UCSC XENA website (https://xenabrowser.net/datapages/) for

external validation. The RNAseq data was transformed into

fragments per kilobase of exon model per million mapped

fragments (FPKM) format. In addition, the curated transcriptome

data, SNV data, and corresponding clinical data of 12,591 patients

across 32 cancer types were also retrieved from the UCSC XENA

website (http://xena.ucsc.edu/). All transcriptomic data were

transformed to the FPKM format for downstream analysis.
2.2 Screening of prognostic
PCD-related genes, consensus
clustering, and immune infiltration

A list of PCD-related genes (Supplementary Table S1) was

obtained through literature review and manual searching (7), and

these genes were extracted from the TCGA-UCEC cohort. The

prognostically relevant genes were screened through univariate Cox

regression analysis using the “survival” package, and subjected to

consensus clustering using the “ConsensusClusterPlus” package. The

patients were accordingly divided into two clusters. The “limma” and

“estimate” packages were used for scoring immune filtration, and the

results were visualized using the “ComplexHeatmap”, “gplots”,

“ggplot2”, “RColorBrewer” and “oompaBase” packages. The

immune cell populations were characterized on the basis of

classical markers, including immunoglobulin G (IgG),

hematopoietic cell kinase (HCK), major histocompatibility complex

class II (MHC-II), lymphocyte-specific kinase (LCK), activation

transcription 1 (STAT1), interferons, TNF and B7-CD28 (CD28)

(25). The scores of the immune cell subsets in both clusters were

evaluated by ssGSEA. Weighted correlation network analysis

(WGCNA) was performed using the “WGCNA” and “limma”

packages, with cluster, age, stage, grade, and tumor mutation

burden (TMB) as the factors. The gene modules with the strongest

correlations with each factor were screened using abline=60 and soft

threshold=4 as the criteria. Finally, the PCD-related genes were

functionally annotated by GO analysis.
2.3 Construction and validation of PCD-
related genes signature

The “glmnet” package was used for LASSO analysis to select the

PCD-related genes for the prognostic model. Although overfit

potential generally exists in machine learning-based models,

feature selection can effectively solve the overfitting problem

because it can select the most relevant features from the original

feature set, thus reducing the complexity and noise interference of

the model. Common feature selection methods include Filter

method, Wrapper method, and Embedded method. Among them,

the Filter method sorts and filters according to the correlation

between features and target variables. The wrapper method, by
Frontiers in Oncology 03
constantly trying different feature subsets, uses the model itself to

evaluate and select the optimal subset. Embedded methods use

feature selection as part of the model training process, such as

LASSO and ridge regression. As our model is exactly based on the

LASSO algorithm, the overfit potential could be avoided to some

extent. The risk score was calculated by multiplying the expression

of each gene with its respective coefficient:

Riskscore  =on
i=1½exp ression value of genei ∗ bi� (1)

The variable “n” represents the number of genes included in the

signature, and the variable “b” denotes the coefficient assigned to

each gene obtained from LASSO regression.

Risk score= [expression value of GZMA × (-0.116286998)] +

[expression value of ASNS × (0.127252486)] + [expression value of

GLS × (0.042654301)] + [expression value of PRKAA2 ×

(0.1310519)] + [expression value of VLDLR × (-0.114179696)] +

[expression value of PRDX6 × (0.016522634)] + [expression value

of PSAT1 × (0.016313951)] + [expression value of CDKN2A ×

(0.116960742)] + [expression value of SIRT3 × (-0.180170396)] +

[expression value of TNFRSF1A × (-0.026584716)] +[expression

value of LRPPRC × (0.055918364)]

According to the median risk score, patients were divided into

high-risk and low-risk groups. The “survival” package was used to

perform proportional hazards assumption testing and survival

regression, and the “survminer” and “ggplot2” packages were

used to plot the graphs. The diagnostic capability of PCD-related

gene signature in the TCGA-UCEC cohort was evaluated by

receiver operational characteristic (ROC) analysis using the

“timeROC” package, and the results were visualized with the

“ggplot2” package. All the samples with survival information were

included in the ROC analysis. The number of samples was 544. The

area under the curve (AUC) was calculated, and 0.7 was the cut-off

for satisfactory diagnostic performance. The “ggplot2” package was

used to visualize the risk factor plot. The prognostic model was

tested on 32 types of cancer (Supplementary Table S2) using the

“ggplot2”, “data.table”, “survival”, “cowplot” and “ggpub” packages.

The prognostic endpoints of the patients included disease-specific

survival (DSS), overall survival (OS), and progression-free

interval (PFI).
2.4 Analysis of single-nucleotide variations
of PCD-related genes

Pan-cancer analysis on the top 10 mutated genes in the

signature using the “ggplot2”, “data.table”, “cowplot”, “ggpubr”,

“GSVA”, “SimDesign” and “tidyr” packages. The mutation

frequencies of the PCD-related genes in the different organs were

also calculated.
2.5 Comparison of risk groups

The “ComplexHeatmap” package was used to create a heatmap

showing the relationship between the risk score and the clinical

factors like age, grade, and stage. Gene set enrichment analysis
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(GSEA) was performed on the high-risk and low-risk groups, and

the top 5 pathways in each group were identified. The

“RColorBrewer” package was used to visualize the results. The

“oncoPredict” package was used for drug sensitivity analysis.
2.6 Construction and validation of a
prognostic nomogram

The “survival” package was used to perform proportional

hazards assumption testing and Cox regression analysis, and a

nomogram consisting of age, stage, grade, and the PCD risk score

was constructed using the “rms” package. The 1-, 3- and 5-year

survival were predicted using the nomogram. Calibration curves for

1-, 3- and 5-year survival were plotted using the “rms” package. All

the samples with survival information were included in the ROC

analysis. The number of samples was 544.
2.7 Correlation between PCD-related
genes, proliferation genes, and immune
cell phenotypes

The correlation between the PCD-related genes and

proliferation-related genes (WNT5A, PCNA, MKI67, CTNNB1,

and CDH1) was analyzed using the “ggplot2” package. LRPPRC

was identified as the gene of interest. The “survival” and

“survminer” packages were used to evaluate the prognostic

relevance of LRPPRC, and analyze its expression across different

clinical stages and OS events. The “igraph” and “ggraph” packages
Frontiers in Oncology 04
were used to analyze the pairwise correlation of genes within the

PCD-related gene signature. Finally, the “ggplot2” package was used

to visualize the association between LRPPRC and the infiltration of

24 immune cel l types infi l trat ion through Spearman

correlation analysis.
2.8 Statistical analysis

R software (4.1.3) was used for statistical analyses. T-test was

used to compare the data between the two groups. P value< 0.05 was

considered statistically significant.
3 Results

3.1 Identification and clustering of
prognostic PCD-related genes

The workflow of our study is illustrated in Figure 1. We identified

43 PCD-related genes that were significantly correlated to the

prognosis of EC patients (Supplementary Table S3), and the Forest

plot of the genes with p<0.01 is shown in Figure 2A. Consensus

clustering analysis of these 43 genes with 2-9 clusters showed that

dividing the samples into two clusters resulted in better distinction

(Figures 2B, C). Patients in Cluster B had higher tumor purity, more

advanced T stage, and worse prognosis compared to those in Cluster

A. The latter generally had higher ESTIMATEScore, ImmuneScore,

and StromalScore (Supplementary Table S4). Furthermore, Cluster A

was associated with high expression levels of IgG, HCK, MHC-II,
FIGURE 1

The workflow chart of the study.
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LCK, B7-CD28, and TNF, whereas STAT1 and IFN were

overexpressed in Cluster B (Figures 2D, E). Subsequently, ssGSEA

showed distinct immune cell infiltration patterns of Cluster A and

Cluster B (p<0.05). For instance, CD8+ T cells, cytolytic activity,

inflammation-promoting, T-cell co-stimulation, etc. were

significantly higher in Cluster A compared with Cluster B, whereas
Frontiers in Oncology 05
the latter had higher levels of aDCs, para inflammation, and Type I

IFN response (Figure 2F). The results of WGCNA indicated that the

brown module had a high degree of positive correlation with both

Cluster and Grade, with correlation coefficients of 0.49 (p<0.05). You

could see that the brown module had a high degree of positive

correlation (0.49) with both Cluster and Grade. In the meanwhile,
A B

D

E

F

C

FIGURE 2

Selection of prognostic-related PCD-related genes, consensus clustering analysis, and immune-related analysis. (A) Forest plot of PCD-related
genes with prognostic significance at p<0.01. (B) Consensus matrix, k=2. (C) Consensus CDF. (D) Heat map of immune scores. (E) ImmuneScore
boxplot of two clusters. (F) Violin plot of immune infiltration analysis for two clusters. "*" represents p < 0.05; "**" represents p < 0.01; "***"
represents p < 0.001; "****" represents p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1224071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiong et al. 10.3389/fonc.2023.1224071
other modules were almost poorly or negatively correlated with

Cluster and Grade. That is to say, the brown module shows high

specificity for Cluster and Grade. Although the royal bluemodule had

the strongest correlation with Cluster (with a related coefficient of

0.56, p<0.05), the low number of genes in the module was not

representative. Therefore, we selected the brown module for further

analysis (Figure 3A). The correlation scatter plot of Module

Membership in the brown module (MM) and Gene significance for

Cluster (GS) showed a highly positive correlation (with a correlation

coefficient of 0.45, p=7.8*10-28), which suggested that the brown

module genes were upregulated in Cluster B (Figure 3B). GO analysis

indicated that the 43 prognosis-related PCD-related genes were

significantly downregulated in the “lipid and atherosclerosis”

pathway (Figure 3C; Table 1).
3.2 Construction and validation of PCD-
related genes signature

A total of 200 PCD-related genes were incorporated in the

LASSO algorithm and 11 genes (GZMA, ASNS, GLS, PRKAA2,

VLDLR, PRDX6, PSAT1, CDKN2A, SIRT3, TNFRSF1A, LRPPRC)

were finally selected to construct the prognostic gene signature

(Figures 4A, B). The detailed information and coefficients of these

genes are shown in Supplementary Table S5. The risk scores of the

individual patients in the TCGA-UCEC cohort were calculated (see

methods), and the patients were divided into high-risk and low-risk

groups based on the median PCD risk score. As shown in Figure 4C,

higher risk scores correlated with shorter OS and higher mortality

rates (p<0.001). In addition, the PCD signature showed strong

predictive performance for 1-, 3- and 5-year OS, with respective

AUC values of 0.678, 0.776, and 0.77 (Figure 4D). LRPPRC,

CDKN2A, PSAT1, PRDX6, PRKAA2, GLS, and ASNS were

overexpressed in the high-risk group, whereas TNFRSF1A, SIRT3,

VLDLR, and GZMA were highly expressed in the low-risk group

(Figure 4E). We also tested the risk score across 32 types of cancer

and found that uterine carcinosarcoma, brain lower-grade glioma,

and ovarian serous cystadenocarcinoma had higher risk scores,

while uveal melanoma, mesothelioma, and skin cutaneous

melanoma typically had lower risk scores. The PCD risk score

distribution for other cancers is shown in Figure 4F.
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The PCD-related genes signature was further validated in

TCGA-CESC and TCGA-BRCA cohorts. The risk scores of the

individual patients in the TCGA-BRCA cohort were calculated, and

the patients were divided into high-risk and low-risk groups based

on the median PCD risk score. As shown in Figure S1A, higher risk

scores correlated with shorter OS and higher mortality rates

(p<0.001). In addition, the PCD signature showed strong

predictive performance for 1-, 3- and 5-year OS, with respective

AUC values of 0.661, 0.647, and 0.632 (Figure S1B). The calibration

curves for 1-, 3- and 5-year OS showed good consistency between

observed survival and predicted survival (Figure S1C). The risk

scores of the individual patients in the TCGA-CESC cohort were

also calculated, and the patients were divided into high-risk and

low-risk groups based on the median PCD risk score. As shown in

Figure S1D, higher risk scores correlated with shorter OS and higher

mortality rates (p<0.01). In addition, the PCD signature showed

strong predictive performance for 1-, 3- and 5-year OS, with

respective AUC values of 0.765, 0.816, and 0.849 (Figure S1E).

The calibration curves for 1-, 3- and 5-year OS showed good

consistency between observed survival and predicted survival

(Figure S1F).
3.3 Pan-cancer variations in PCD-related
genes

The pan-cancer SNV profiles of the top 10 mutated genes of the

PCD risk model were also analyzed. CDKN2A displayed higher

mutation rates across multiple cancer types (31%), and other

frequently mutated genes included LRPPRC (13%), PRKAA2

(11%), VLDLR (9%), ASNS (8%), GZMA (7%), GLS (7%),

TNFRSF1A (6%), PSAT1 (5%), and PRDX6 (4%). A missense

mutation was the most frequently observed mutation type.

However, the mutation types in CDKN2A were predominantly

nonsense mutation, splice site, frameshift deletion, and multi-hit

(Figure 5A). Furthermore, CDKN2A displayed higher mutation

frequency in head and neck squamous cell carcinoma (104%),

lung squamous cell carcinoma (73%), skin cutaneous melanoma

(61%), pancreatic adenocarcinoma (36%), bladder urothelial

carcinoma (27%), and lung adenocarcinoma (24%). The SNV

frequency of PRKAA2 in skin cutaneous melanoma was 42%.
A B C

FIGURE 3

WGCNA and GO analysis. (A) Heat map of module-trait relationships. (B) Scatter plot of module membership versus gene significance. (C) GO
analysis for 43 prognostic PCD-related genes.
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Also, several PCD-related genes exhibited high mutation frequency

in uterine corpus endometrial carcinoma and skin cutaneous

melanoma (Figure 5B).
3.4 Comprehensive analysis
of two risk groups

As shown in Figure 6A, patients in the high-risk group were older

(p<0.001) and had more advanced tumor grade and stage (p<0.001),
TABLE 1 Description of ID in GO analysis.

ID Description

hsa05417 Lipid and atherosclerosis

hsa05167 Kaposi sarcoma-associated herpesvirus infection

hsa04210 Apoptosis

hsa05163 Human cytomegalovirus infection

hsa05161 Hepatitis B
A

B D

E

F

C

FIGURE 4

Construction and validation of PCD-related genes signature. (A) The variable coefficient values, logarithmic lambda values, and L1 regularization
values obtained through LASSO analysis were visualized. (B) Lambda values, maximum likelihood numbers, and C-Index obtained from LASSO
analysis were visualized. (C) K-M curves for OS in high-risk and low-risk patient groups. (D) ROC analysis to evaluate the performance of signature in
1-year, 3-year, and 5-year prognoses. (E) Visualization of risk factors. (F) The PCD risk score in other types of cancer, with patients’ prognostic
endpoints including DSS, OS, and PFI.
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which was indicative of poor prognosis. GSEA on the two risk groups

revealed significant enrichment of “KEGG_CELL_CYCLE” and

“KEGG_DNA_REPLICATION” in the high-risk group, and that of

“KEGG_CHEMOKINE_SIGNALING_PATHWAY” and “KEGG_

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION” in the

low-risk group (Figure 6B; Supplementary Table S6). Four subgroups

were identified through immune typing analysis. The proportion of

high-risk patients was higher in the c2 subgroup, while the opposite

trend was observed in the other subgroups. The sample distribution of

the high-risk and low-risk groups differed significantly (p<0.001) across

the four subgroups (Figure 6C). Drug sensitivity analysis also showed

significant differences between the high-risk and low-risk groups

(Supplementary Table S7). As shown in Figure 6D, patients in the

high-risk group showed greater sensitivity to AT3148, Elephantin, I-

BET-762, and Niraparib (p<0.001).
3.5 Construction and validation of a
prognostic nomogram

A nomogram was constructed using age, staging, grading, and the

PCD risk score to predict patient survival at 1, 3, and 5 years

(Supplementary Table S8). The scores for each risk factor were

calculated, and the total score was plotted (Figure 7A). On this basis,

this study intends to establish a correction curve to verify the

applicability of the model at the PCD gene level. Our prognostic

indicators predicted favorable 1,3 and 5-year survival rates (Figure 7B).
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3.6 Correlation between PCD-related
genes, proliferation genes, and immune
cell phenotypes

The correlation between the expression of the PCD-related

genes and five proliferation-related genes, including WNT5A,

PCNA, MKI67, CTNNB1, and CDH1, was also evaluated. LRPPRC

showed a significant positive correlation with PCNA, MKI67,

CTNNB1, and CDH1 (p< 0.001), which indicated that LRPPRC

may promote the proliferation of EC cells. CDKN2A was correlated

to all five proliferation-related genes, with a positive correlation

with MKI67 and PCNA (p<0.05), and a negative correlation with

WNT5A, CTNNB1, and CDH1 (p<0.01). PSAT1 was positively

correlated with PCNA, MKI67, CTNNB1 and CDH1 (p<0.05;

Figure 8A). High expression levels of LRPPRC, CDKN2A, and

PSAT1 were associated with poor patient prognosis (Figure 8B).

Furthermore, LRPPRC was expressed at higher levels in the

deceased patients compared to the surviving patients (p< 0.01;

Figure 8C). Furthermore, LRPPRC was also significantly

upregulated in stage IV tumors compared to stage I/II tumors (p<

0.05; Figure 8D). LRPPRC also showed a significant positive

correlation with some genes of the prognostic signature, including

GLS, PRKAA2, and PSAT1, and this correlation was stronger

compared to that among the other genes (Figure 8E). Finally, the

relationship between LRPPRC and the infiltration of 24 immune

cells was analyzed. LRPPRC showed a highly positive correlation

with Th2 cells (R=0.433), Tcm cells (R=0.391), and T helper cells
A

B

FIGURE 5

PCD-related genes SNV patterns. (A) Waterfall plot of PCD-related genes SNV pattern in various types of cancer. (B) Mutation frequency of PCD-
related genes in various types of cancer.
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(R=0.316) (p<0.001), and a negative correlation with NK CD56bright

cells (R=-0.540), pDCs (R=-0.487), and NK cells (R=-0.43)

(Figures 8F, G).
4 Discussion

Since irregular vaginal bleeding is an early symptom of EC,

most patients are diagnosed at an early stage. Although early

diagnosis confers some survival advantage, the annual mortality
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rate due to EC is still high (4, 26), which warrants the identification

of novel prognostic biomarkers. The aim of this study was to

identify the prognostic PCD-associated genes in EC in order to

construct a predictive model to guide clinical decision-making. A

total of 43 PCD-related genes were associated with the prognosis of

EC patients, and two distinct clusters were identified.

The patients in Cluster B generally had higher tumor purity,

higher T stage, and worse prognosis, while Cluster A was associated

with higher ESTIMATE scores, ImmuneScore, and StromalScore.

The ImmuneScore is a measure of the percentage of cytotoxic and
A

B

DC

FIGURE 6

Comprehensive analysis of two risk groups. (A) Heat map of the correlation between risk groups and clinical characteristics. (B) GSEA analysis of two risk
groups. (C) Immunotyping analysis. (D) Boxplot of the difference in drug sensitivity between high-risk and low-risk groups. "***" represents p < 0.001.
A B

FIGURE 7

Construction and validation of nomogram model. (A) Nomogram prognostic model. (B) 1-year, 3-year, and 5-year calibration curves.
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memory T cells at the tumor core and tumor margin (27), and the

StromalScore is indicative of the ratio of stromal cells in the tumor

microenvironment (TME) (28). A higher ImmuneScore or

StromalScore suggests the presence of more immune substances

or matrix components in the TME. Thus, Cluster B was associated

with a general decrease in stromal and immune cells and an overall

increase in tumor purity compared to Cluster A, indicating that

immune infiltration and tumor purity are determinants of EC

development and that enhancing the degree of immune

infiltration may slow tumor growth. Furthermore, patients in

Cluster A generally expressed genes characteristic of immune cell

subsets, while patients in Cluster B showed high expression levels of

STAT1 and interferon genes, which suggests an immune active state

corresponding to favorable prognosis in Cluster A. Consistent with

this, Cluster A showed a significant increase in the infiltration of T

cells (such as CD8+ T cells, cytolytic activity, inflammation-

promoting, and T cell co-stimulation) compared to Cluster B. On

the other hand, Cluster B showed a significant increase in aDCs,

para-inflammation, and type I IFN response compared to Cluster A.

Furthermore, WGCNA indicated that the brown module has the

strongest correlation with the clusters, and the genes in the brown

module are upregulated in Cluster B. The WGCNA algorithm is a

powerful tool for identifying co-expressed gene modules and their

relationships with phenotypic traits. One of the main advantages of

WGCNA is that it can handle large-scale gene expression data sets

and identify biologically meaningful gene modules that are

associated with specific traits or conditions. Additionally,

WGCNA can be used to identify key hub genes that play

important roles in regulating gene expression networks. Overall,

WGCNA is a valuable tool for understanding the complex

relationships between genes and phenotypes. Thus, the brown
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module was thought to be reliable. In addition, GO analysis

showed that the 43 prognostic PCD-related genes were negatively

regulated in the pathway of “lipids and atherosclerosis”. Based on

these findings, we hypothesize overexpression of PCD-related genes

may allow cancer cells to proliferate rapidly by accelerating

lipid metabolism.

A LASSO-based PCD-related gene signature comprising 11

genes, including GZMA, ASNS, GLS, PRKAA2, VLDLR, PRDX6,

PSAT1, CDKN2A, SIRT3, TNFRSF1A, and LRPPRC, was developed

to predict the OS of EC patients. The LASSO algorithm is a type of

linear regression that is used for feature selection and regularization.

One of the main advantages of the LASSO algorithm is that it can

help prevent overfitting by shrinking the coefficients of less

important variables to zero. This can lead to a more

parsimonious model that is easier to interpret and less prone to

errors. Additionally, the LASSO algorithm can handle high-

dimensional data sets with many variables, which can be useful in

fields like genetics and finance. The PCD-related gene signature

showed good performance in the TCGA-UCEC cohort and two

external validation cohorts, TCGA-CESC and TCGA-BRCA. This

finding strongly supported the accuracy, sensitivity, and specificity

of the PCD-related gene signature in predicting prognosis. GZMA

is predominantly expressed in the cytosolic granules of NK cells and

cytotoxic T-cells. It cleaves gasdermin-B (GSDMB), which releases

the pore-forming moiety of GSDMB and triggers pyroptosis (29–

31). Asparagine synthetase (ASNS) catalyzes the de novo synthesis

of asparagine by transferring amino groups from glutamine to

aspartic acid. Inhibiting ASNS expression in cancer cells impairs

nutrient uptake and promotes apoptosis (32). GLS hydrolyzes

glutamine to produce glutamate (33), and its inhibition can

induce apoptosis in tumor cells (34). PRKAA2 encodes the
A B

D E F GC

FIGURE 8

Bioinformatics analysis reveals the correlation between PCD-related genes, proliferation genes, and immune cell phenotypes. (A) Correlation heat
map depicting the relationship between genes in the PCD-related gene signature and genes associated with cell proliferation. (B) Survival curves for
LRPPRC, CDKN2A, and PSAT1. (C) Box plot of the relationship between LRPPRC and OS event. (D) Box plot of the relationship between LRPPRC and
clinical stage. (E) Co-expression network within PCD-related genes. (F) The lollipop graph depicts the correlation between LRPPRC and immune
phenotype. (G) Scatter plot of the correlation between LRPPRC expression and Th2 cells and CD56bright cells, respectively. "*" represents p < 0.05;
"**" represents p < 0.01; "***" represents p < 0.001.
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catalytic subunit of AMPK, a key enzyme that senses cellular energy

status (35). VLDLR is a cell surface receptor with multiple

functions, such as binding to very low-density lipoprotein and

facilitating its endocytosis, which contributes to energy

metabolism (36). PRDX6 is a mercaptan-specific peroxidase that

reduces hydrogen peroxide and organic hydroperoxide to water and

alcohol respectively (37, 38), and can attenuate apoptosis induced

by oxygen-glucose deprivation/reoxygenation (39). PSAT1 is a

member of the V-class pyridoxal phosphate ester-dependent

transaminase family that fuels tumor cells by generating serine.

Inhibition of PSAT1 expression can suppress serine synthesis in

tumors, thereby inhibiting their growth (40). CDKN2A prevents

MDM2-induced degradation of p53, and promotes p53-dependent

apoptosis (41). SIRT3 is an exclusive mitochondrial member of the

Sirtuin family of class III histone deacetylases, similar to the yeast

Sir2 protein. It can eliminate reactive oxygen species, prevent

malignant transformation, and inhibit apoptosis (42). TNFRSF1A

belongs to the TNF receptor superfamily of proteins that plays a

role in TNFa-mediated cell apoptosis and necrosis (7). LRPPRC is a

mitochondrial protein that regulates RNA metabolism and

transcription. Loss of LRPPRC affects the electron transport chain

in the mitochondria, which increases mitochondrial permeability

and generation of reactive oxygen species (43). LRPPRC, CDKN2A,

PSAT1, PRDX6, PRKAA2, GLS, and ASNS were highly expressed

in the high-risk group, while TNFRSF1A, SIRT3, VLDLR, and

GZMA showed high expression in the low-risk group. Consistent

with our findings, Tian et al. reported high expression of LRPPRC

in EC tissues (44). Upregulation of CDKN2A in the extracellular

matrix can promote EC progression by releasing cytokines and

proteases in the TME (45, 46). Roh et al. demonstrated that

silencing EZH2 in EC cells inhibited PRDX6, leading to the

activation of the exogenous homocysteine pathway and eventually

cell death (47). Zhou et al. found that estrogen activates Grn

metabolism in estrogen-sensitive EC, depending on the up-

regulation of GLS (48). However, the functions of LRPPRC,

PSAT1, PRKAA2, ASNS, TNFRSF1A, SIRT3, VLDLR, and

GZMA in EC progression, and the underlying mechanisms,

remain to be elucidated.

The PCD risk score was also calculated across 32 types of cancer

and showed marked organ specificity. For instance, uterine

carcinosarcoma, brain lower-grade glioma, and ovarian serous

cystadenocarcinoma had higher PCD risk scores, while uveal

melanoma, mesothelioma, and skin cutaneous melanoma usually

had lower PCD risk scores. The PCD risk scores of other cancers

were similarly distributed. The PCD-related genes are likely

overexpressed in the cancers with higher risk scores, and

relatively lowly expressed in cancers with lower scores. We found

that cancers with higher mutation frequencies in PCD-related genes

tended to have lower PCD risk scores. The mutations may affect the

normal expression of PCD-related genes, thereby affecting the level

of the risk score. Furthermore, mutations in PCD-related genes may

reduce their expression in some cancers, leading to dysregulation of

cell death pathways and malignant development. CDKN2A was the

most frequently mutated PCD gene across all cancer types, and

exhibited the most diverse mutation profile, indicating that SNVs in

CDKN2A are ubiquitous in multiple cancers.
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The EC patients in the high-risk group were older and have

more advanced-stage tumors, which corresponded to a worse

prognosis. The PCD gene signature exhibited good predictive

performance for 1-, 3- and 5-year survival. Furthermore, the

prognosis of high-risk patients worsened with age and tumor

grade. GSEA results showed that signaling pathways related to

DNA replication were abundant in the high-risk group, while the

low-risk group was enriched in pathways related to chemotaxis.

This indicated that the tumor cells in the high-risk population

proliferate actively, while an active immune response characterizes

the tumors in the low-risk population. There were remarkable

discrepancies in the distribution of specimens between high-risk

and low-risk groups for the four different types of immunization.

The patients in the high-risk group were sensitive to AT3148,

elephantirin, I-BET-762, and Niraparib, suggesting their potential

clinical applicability in EC patients. We also established a

nomogram consisting of age, stage, grade, and risk score, which

predicted the 1-, 3- and 5-year survival rates with high accuracy.

The PCD genes also showed a significant correlation with

several proliferation-related genes. WNT5A is known to regulate

the proliferation, invasion, and metastasis of tumor cells. In a

previous study, we found that low expression of WNT5A in

gastric cancer tissues was significantly associated with the

invasion and metastasis of tumor cells, and poor prognosis (49,

50). MKI67 is a typical marker of cell proliferation that remains on

the single mitotic chromosome after the breakdown of the nuclear

membrane. It is expressed at low levels in EC tissues (51). Mutations

in the CTNNB1 gene promote the development of esophageal

cancer by upregulating the Wnt/beta-catenin pathway and the

downstream target genes (52). CDH1 encodes E-cadherin, an

epithelial marker that regulates cell adhesion, migration, and

proliferation. It is downregulated during epithelial-mesenchymal

transformation (EMT), which is the driver of tumor cell metastasis

(53). Low expression of E-cadherin is linked to worse prognosis and

survival (54). No study so far has reported any interaction between

LRPPRC and these proliferation-related genes in EC. Based on the

expression patterns and clinical association of LRPPRC, this gene is

likely a risk factor in EC patients and therefore a potential

therapeutic target. LRPPRC showed a strong positive correlation

with GLS, PRKAA2, and PSAT1. There is a possibility of a

synergistic interaction between these genes in EC development,

which warrants further research. Wang et al. have identified

biomarkers in different tumors by combining computational

biology methods such as WGCNA, opening up more possibilities

for researching tumorigenesis mechanisms (55, 56). LRPPRC

expression showed a positive correlation with Th2 cells and a

negative correlation with NK CD56bright cells, which may

accelerate tumor progression. High expression of LRPPRC may

inhibit NK cell activity, thereby suppressing the immune response

and promoting cancer progression. Further studies are needed to

assess the role of LRPPRC in tumorigenesis and development, and

the underlying molecular mechanisms involved in programmed cell

death. Single-cell sequencing (scRNA-seq) has been widely used to

explore the mechanisms and biomarkers of gynecological tumors

(57, 58). In our subsequent study, we will focus on the mechanism

of LRPPRC in EC development through the scRNA-seq approach.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1224071
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiong et al. 10.3389/fonc.2023.1224071
5 Conclusion

PCD-related genes are involved in the development of EC and

can predict patient prognosis. We developed a PCD-related cluster

system for discriminating EC patients with different prognoses. We

also constructed an 11-gene PCD-related signature with high

predictive performance in prognosis, mutation, and drug

response. LRPPRC, an adverse prognostic gene in EC and a

member of the model genes, could predict the clinical status and

immune infiltration level of EC patients. Our findings provide new

insights into the mechanisms underlying EC development and

highlight potential therapeutic targets.
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