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Optimizing the synergy between
stereotactic radiosurgery
and immunotherapy for
brain metastases

Kelly H. Yoo, David J. Park, John H. Choi,
Neelan J. Marianayagam, Michael Lim, Antonio Meola
and Steven D. Chang*

Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
Solid tumors metastasizing to the brain are a frequent occurrence with an

estimated incidence of approximately 30% of all cases. The longstanding

conventional standard of care comprises surgical resection and whole-brain

radiotherapy (WBRT); however, this approach is associated with limited long-

term survival and local control outcomes. Consequently, stereotactic

radiosurgery (SRS) has emerged as a potential alternative approach. The

primary aim of SRS has been to improve long-term control rates. Nevertheless,

rare observations of abscopal or out-of-field effects have sparked interest in the

potential to elicit antitumor immunity via the administration of high-dose

radiation. The blood-brain barrier (BBB) has traditionally posed a significant

challenge to the efficacy of systemic therapy in managing intracranial

metastasis. However, recent insights into the immune-brain interface and the

development of immunotherapeutic agents have shown promise in preclinical

and early-phase clinical trials. Researchers have investigated combining

immunotherapy with SRS to enhance treatment outcomes in patients with

brain metastasis. The combination approach aims to optimize long-term

control and overall survival (OS) outcomes by leveraging the synergistic effects

of both therapies. Initial findings have been encouraging in the management of

various intracranial metastases, while further studies are required to determine

the optimal order of administration, radiation doses, and fractionation regimens

that have the potential for the best tumor response. Currently, several clinical

trials are underway to assess the safety and efficacy of administering

immunotherapeutic agents concurrently or consecutively with SRS. In this

review, we conduct a comprehensive analysis of the advantages and

drawbacks of integrating immunotherapy into conventional SRS protocols for

the treatment of intracranial metastasis.
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Introduction

Brain metastasis describes the dissemination of neoplastic

cells from a primary malignancy to the brain tissue and is a

common complication in adults with solid tumors (1, 2). The

incidence rates vary and are commonly observed in patients with

lung, melanoma, renal cell, and breast cancers (3). Various

treatment modalities are available to manage brain metastasis,

including chemotherapy (CT), surgical intervention, whole-brain

radiotherapy (WBRT), stereotactic radiosurgery (SRS), targeted

therapies, and immunotherapy (4–6).

SRS has emerged as a popular choice among these modalities,

primarily due to its superior efficacy and reduced toxicity compared

to WBRT (7). WBRT triggers double-stranded DNA damage,

leading to the generation of cytotoxic free radicals in the tumor

cells due to oxygenation (8). In contrast, high-precision SRS elicits a

local and systemic immune response against cancerous cells,

resulting in better long-term control rates and a lower risk of

neurocognitive decline when compared to conventional WBRT (9).

Animal studies have recently shown the occurrence of the

abscopal effect (AE), a phenomenon in which the combination of

radiation and dendritic cell growth factor leads to a reduction in

distant metastases and improved disease-free survival compared to

radiation alone (10). This effect occurs due to the ability to activate

an immune response against cancer cells. The incorporation of

immunotherapeutic agents that enhance the host immune response

against cancer has expanded the range of therapeutic options

available for neoplastic diseases (11). Anti–cytotoxic T-

lymphocyte–associated antigen 4 (Anti-CTLA-4) and anti–

programmed death 1/programmed death ligand 1 (anti-PD-1/PD-

L1) antibodies have emerged as a key component of treatment for a

range of tumors. However, the optimal combination and timing of

these systemic agents with radiation therapy (RT) remains to be

fully elucidated (12).

Recent advances in immunotherapy have led to the re-

evaluation of the potential impact of RT, particularly through the

use of hypo-fractionated ablative irradiation (13). The mechanism

linking radiation dose and fractionation to antitumor immunity

holds substantial implications for clinical translation and the

potential synergistic effects with immunotherapy through the

release of tumor-associated antigens (TAA), improved antigen

presentation, and increased infiltration of immune cells into the

tumor microenvironment (TME) (14). However, further

investigation is crucial to optimize the combination of SRS and

novel immunotherapies.
Methods

A systematic literature search was performed in the PubMed

database, limited to articles published in the English language

through April 28, 2023. The search strategy employed different

keywords related to immunotherapy for the treatment of

intracranial melanoma (M), non-small cell lung carcinoma

(NSCLC), renal cell carcinoma (RCC), and other relevant

malignancies. The identified publications were subjected to a
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screening process, during which non-English articles, as well as

publications that fell under the categories of reviews, editorials,

commentaries, case reports, opinion letters, and viewpoints,

were excluded.

The eligibility criteria for inclusion in the qualitative synthesis

were as follows: patient-centered studies with SRS as a treatment

modality within three months of systemic therapy, and relatively

unbiased reporting of one or more of the following outcomes: local

tumor control, distant tumor control, overall survival, radiation-

induced adverse events, or other toxicities. The selection of studies

for qualitative synthesis was based on a rigorous evaluation of the

study design, patient population, and quality of reporting (Figure 1).
Role of stereotactic radiosurgery in
management of brain metastases

The therapeutic landscape for brain metastases has undergone

significant evolution in recent years, with SRS emerging as the

preferred treatment modality for patients with multiple intracranial

metastases (15). The preference for SRS as a treatment option for

multiple intracranial metastases has stemmed from the recognition

that WBRT does not confer significant survival benefits and may

adversely impact neurocognitive function, in contrast to SRS (9).

SRS has consistently demonstrated high long-term control rates,

with estimates of at least 70% at one year for SRS alone, and even

higher rates for smaller metastases. Despite the favorable outcomes

of SRS in treating brain metastases, studies estimate that a

considerable proportion of patients (30-50%) may develop new

distant brain metastases over the same period. As a strategy to

minimize the risks of radiation-related toxicities and costs, and to

defer or avoid the use of WBRT and its associated adverse effects,

many patients undergo multiple rounds of SRS before considering

the option of WBRT if necessary (16).
Immuno-modulation by stereotactic
radiosurgery

The process of stimulating the area undergoing SRS results in a

complex set of physiological responses that can be broadly classified

into two categories: (1) at the level of tumor cells, where it induces

significant DNA damage leading to cell death, and (2) at the level of

the TME, where it activates multiple signaling pathways, inducing a

pro-inflammatory state within the TME, and potentially causing

harm to the surrounding stromal and endothelial cells

(Table 1) (17).

The interaction between radiation and the host’s immune

response to brain metastases is multifaceted and influenced by

numerous factors. Brain metastases can escape immune detection

through several mechanisms, including the secretion of cytokines

that suppress immune activity, decreased expression of TAA and

major histocompatibility complex (MHC) class I, and the

recruitment of regulatory T cells (Tregs) to the TME (Figure 2)

(18). In the vicinity of the tumor, Tregs can increase in proportion

to as high as 20-30% of CD4+ T cells. Furthermore, the suboptimal
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functioning of host dendritic cells (DCs) also contributes to the

weakened immune response to tumor cells, even in the presence of

radiation (19).

Radiation has been shown to augment the presentation of TAA

by DCs to both CD4+ and CD8+ T cells, thereby reinforcing the

ability of the immune system to recognize and target tumor cells

(20). Furthermore, radiation has been observed to facilitate the

maturation of antigen-presenting cells (APCs), enhance the

assembly of antigen-MHC complexes, and induce the secretion of

critical inflammatory cytokines, including tumor necrosis factor-

alpha (TNF-a), interferon gamma (IFN-b), and chemokine ligand

16 (CXCL16). These cytokines were found to attract immune cells

to cross the blood-brain barrier (BBB) and infiltrate the TME (13).

In mouse models, single-fraction doses of 15 to 25 Gy have been

demonstrated to elicit a CD8+ T-cell dependent immune response,

leading to regression of the treated tumor. Depletion of CD8+ T

cells has been associated with local tumor persistence, increased

distant metastases, and decreased survival (21). Combining

extracranial SRS with anti-PD-1 therapy has been shown to

enhance the ratio of antigen-specific effector T cells to Tregs and

increase T-cell infiltration into tumors, when compared to single-

modality treatments, according to a study by Sharabi et al. (14).
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Current insights into the immune
response of the central nervous
system

Recent discoveries have challenged the conventional idea that the

brain is an “immunologically privileged” site due to the BBB and the

absence of lymphatic drainage. Radiolabeled antigens have been found

to travel through the subarachnoid space to cervical and retropharyngeal

lymph nodes (22), and dendritic cells have been identified in the

meninges and choroid plexus, involved in antigen presentation to T

cells (23). The BBB can also be affected by brain cancer and RT, leading

to increased permeability and lymphocyte accessibility (24).

Studies have shown that radiation exposure can increaseMHC class

I expression on glioma cells, leading to the infiltration of CD4+ and

CD8+ T cells, while systemic administration of anti-CTLA-4 antibodies

has been found to enhance the effector T cell response and decrease the

number of Tregs (25). Combining SRS and immunotherapy has shown

efficacy in the management of brain metastases, leading to an improved

local tumor response, deferred progression, reduction in size of

unirradiated brain lesions, and prevention of new brain and systemic

metastases through the AE (26–28).
FIGURE 1

Diagram of PRISMA workflow with search strategy and inclusion criteria.
TABLE 1 Mechanism of action of immunomodulation by stereotactic radiosurgery.

Sequence of Action Mechanism of SRS

1. Activation of DCs by induction of immunogenic cell death Induction of STING pathway and type 1 IFN

2. Upregulation of CD8+ T cells by increased TAA presentation
Increase of expression of surface molecules
(Fas, MHC class I, ICAM-1, CEA, or mucin)

3. Immunomodulation of TME
a. Induction of local production of chemokines, cytokines, and other soluble factors
b. Alterations in tumor-associated stroma and endothelium
c. Modulation of immune cell subsets in TME
SRS, stereotactic radiosurgery; DC, dendritic cell; IFN, interferon; STING, stimulator of interferon genes; MHC, major histocompatibility complex; ICAM, intracellular adhesion molecule; CEA,
carcinoembryonic antigen; TME, tumor microenvironment.
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The AE is defined as the suppression of unirradiated distant tumors

ormetastases followingRT to a target lesion. Theunderlyingmechanism

is thought to be immune-mediated, where RT activates the immune

system by revealing tumor-specific antigens that are processed by

dendritic cells to activate T cells in neighboring lymph nodes (29).

Research into the AE is ongoing, and there is growing interest in

exploring its potential as a treatment strategy, particularly with the use

of immune checkpoint inhibitors (ICI) which display a higher degree of

immunomodulatory activity compared to other therapeutic approaches.

However, AE remains a topic of significant controversy within the field

of RT. To date, only one study has reported a case of AE in SRS (30).
Immune checkpoint inhibitors

The human immune system plays a crucial role in defending

against cancerous cells (31). Among the immunocompetent cells, T-

cells have been identified as the most important ones in generating an

antitumoral immune response (32). The potency of this response is

determined by the modulation of stimulatory and inhibitory signals.

The two immune checkpoints, CTLA-4 and PD-1, are crucial in

regulating this response (33, 34). Antibodies such as ipilimumab,

which targets CTLA-4, and nivolumab and pembrolizumab, which

target PD-1, have shown promising results in cancer immunotherapy

(Figure 2). These antibodies obstruct the inhibitory signals,

amplifying the T-cell mediated immune response against cancer,

and have been effectively used to manage various cancers (35).
Interactions between radiotherapy
and the immune system

SRS is a highly effective method for treating tumors and

achieving improved local tumor control (LTC). However, distant
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relapse remains a common issue after exclusive SRS due to the

persistence of an immunosuppressive TME. To address this issue,

the incorporation of immune evasion inhibitors alongside SRS may

be beneficial, potentially enhancing the antitumor immune

response and overall treatment outcomes.

The fundamental impact of ionizing radiation on biological

systems is mainly attributed to the damage it inflicts on DNA

molecules. Radiation’s immune-stimulating effects have been

extensively studied over the past two decades. Studies have shown

that local RT can enhance the systemic immune response by

releasing TAAs from necrotic and apoptotic tumor cell debris.

These antigens are then presented to CD8+ cytotoxic T cells

by DCs, initiating an immune response that attacks tumor cells

in other parts of the body where the antigens are recognized

(36). Preclinical and clinical studies have further demonstrated

that combining therapeutic radiation with ICIs can significantly

enhance the systemic immune response, resulting in immunogenic

tumor cell death (37, 38).

The optimal timing and dosage of radiation to maximize

antitumoral immune stimulation have been elucidated through

several research studies. For instance, Schaue et al. conducted a

study on a mouse Mmodel to examine the effects of total dose, dose

per fraction, and number of fractions of RT on the RT-induced

immune response and the outcomes (39). Tumor growth was

effectively inhibited by single fraction doses of radiation. The LTC

rates were positively correlated with radiation dose and quantity of

tumor-reactive T cells (21).

The parallel between the sequence of SRS and ICIs and the

potential benefits observed with neoadjuvant, concurrent, and

adjuvant ICI utilization offers a valuable perspective for

optimizing the administration of SRS and ICIs in the context of

brain metastases (40). The timing of ICI administration emerges as

a critical determinant of therapeutic outcomes. Studies have shown
FIGURE 2

The synergistic effects of radiotherapy and immunotherapy mediated by various mechanisms. Radiation enhances the ability of antigen-presenting
cells to present tumor antigens to naive T cells through the release of antigens, the stimulation of calreticulin, and the downregulation of CD47. This
process leads to the expression of major histocompatibility complex class I (MHC-I) molecules and subsequent antigen presentation, which in turn
results in the interaction between T-cell receptors (TCRs) and antigens. Moderate doses of radiation activate a type I interferon response by sensing
cytoplasmic DNA via cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. In addition, radiation can upregulate
programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), making immunotherapy a potential strategy to
augment radiation efficacy by targeting these pathways.
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that administering ICI therapy 2 to 4 weeks before initiating SRS

treatment during the first cycle yields the most favorable results in

terms of long-term control and overall survival (OS). Concurrent

use of both therapies demonstrated the highest effectiveness (41,

42). Nevertheless, the efficacy of different ICIs may be influenced by

their specific sequence and timing in relation to SRS treatment (41).

Administering ICIs prior to SRS holds promise in priming the

immune system and enhance its response to SRS, resulting in

improved LTC while inducing systemic antitumor effects (43).

Notably, encouraging results have been demonstrated in M patients

receiving neoadjuvant ICI therapy, particularly when combined with

agents like pembrolizumab or nivolumab in conjunction with SRS or

local therapies. Nonetheless, the efficacy and safety of the neoadjuvant

approach require further investigation, especially in the context of

brain metastases (44). The adjuvant utilization of ICIs has
Frontiers in Oncology 05
demonstrated significant potential in reducing the risk of cancer

recurrence and metastasis. Remarkably, adjuvant ICI treatment

following SRS has led to improved progression-free survival (PFS)

and OS in high-risk M patients (45).

The determination of the optimal sequencing and timing of SRS

and ICIs remains an active area of investigation through ongoing

research and clinical trials. The effectiveness and safety of these

combined treatment approaches may vary based on factors such as

tumor type, patient characteristics, and treatment regimens (46). As

the field of oncology continues to evolve, we anticipate that further

data and evidence will emerge regarding the neoadjuvant and

adjuvant administration of ICIs in combination with SRS across

different cancer types. To inform treatment decisions effectively, it is

of utmost importance to stay up-to-date with the latest literature

and clinical trial results (Tables 2, 3).
TABLE 2 Clinical trials of combination therapy in NSCLC, M, RCC, and other patients with brain metastasis.

Authors (year) # Patients Primary Design ICI LTC
(%)

Median OS
(mo)

NSCLC

SRS/ICI
mono

Lee et al.
(2021)

(47)
26
24
27

NSCLC
ICI mono
Concurrent

Non-concurrent

Nivolumab or
pembrolizumab

NA
10.0
22.5
42.1

Enright et al.
(2020)

(48)
33
44

NSCLC
SRS + ICI
SRS mono

Nivolumab or
pembrolizumab or
atezolimumab

97
86

13.9

Shepard et al.
(2019)

(49)
34
17

NSCLC
ICI mono
SRS + ICI

Nivolumab or
pembrolizumab or
atezolimumab

76.3
84.9

15.9
NA

Concurrent

Lee et al.
(2021)

(47)
26
24
27

NSCLC
ICI mono
Concurrent

Non-concurrent

Nivolumab or
pembrolizumab

NA
10.0
22.5
42.1

Schapira et al.
(2018)

(50)
8
29

NSCLC
Concurrent

Non-concurrent

Nivolumab or
pembrolizumab or
atezolimumab

100
77

17.6

SRS + ICI

Sign.C et al.
(2020)

(51)
46
39

NSCLC
SRS + CT
SRS + ICI

Nivolumab or
pembrolizumab or

nivolumab/ipilimumab or
atezolimumab

NA
11.6
10.0

Enright et al.
(2020)

(48)
33
44

NSCLC
SRS + ICI
SRS mono

Nivolumab or
pembrolizumab or
atezolimumab

97
86

13.9

Shepard et al.
(2019)

(49)
34
17

NSCLC
ICI mono
SRS + ICI

Nivolumab or
pembrolizumab or
atezolimumab

76.3
84.9

15.9
NA

Ahmed et al.
(2017)

(52) 17 NSCLC SRS + ICI Ipilimumab NA 5.6

M

SRS/ICI
mono

Rhun et al.
(2020)

(53)
10
20
32

M
ICI mono
SRS + ST
SRS + ICI

Pembrolizumab or nivolumab
or ipilimumab

NA
5
13
11

Trommer et al.
(2018)

(54) 26 M
SRS +ICI
SRS mono

Pembrolizumab
86
80

NA
NA

(Continued)
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TABLE 2 Continued

Authors (year) # Patients Primary Design ICI LTC
(%)

Median OS
(mo)

Diao et al.
(2018)

(55)
40
28
23

M
SRS mono

Non-concurrent
Concurrent

Ipilimumab
45
70
58

7.8
18.7
11.8

Kaidar-Person et al.
(2017)

(56) 58 M
SRS mono
SRS + ICI

Nivolumab or ipilimumab
86
52

5.5
15.0

Mathew et al.
(2013)

(57)
33
25

M
SRS mono
SRS + ICI

Ipilimumab
63
65

5.9

Silk et al.
(2013)

(58)
17
16

M
SRS + ICI
SRS mono

Ipilimumab
NA
NA

19.9
4.0

Knisely et al.
(2012)

(59)
50
11
16

M
SRS mono
ICI + SRS
SRS + ICI

Ipilimumab
NA
NA
NA

4.9
19.8
21.3

Concurrent

Rahman et al.
(2018)

(60)
35
39

M
Concurrent

Non-concurrent
Pembrolizumab or nivolumab

or ipilimumab
NA
NA

17.8
11.6

Trommer et al.
(2018)

(54) 26 M
SRS +ICI
SRS mono

Pembrolizumab
86
80

NA
NA

Diao et al.
(2018)

(55)
40
28
23

M
SRS mono

Non-concurrent
Concurrent

Ipilimumab
45
70
58

7.8
18.7
11.8

Anderson et al.
(2017)

(61) 11 M Concurrent Pembrolizumab NA NA

Williams et al.
(2017)

(62) 11 M Concurrent Ipilimumab NA NA

Yusuf et al.
(2017)

(63)
12
6

M
Concurrent

Non-concurrent
Pembrolizumab or

ipilimumab
87.6
NA

11.9
7.1

Skrepnik et al.
(2017)

(64) 25 M
Concurrent or
SRS + ICI

Ipilimumab 94.8 35.8

Qian et al.
(2016)

(65)
33
22

M
Concurrent

Non-concurrent
Pembrolizumab or nivolumab

or ipilimumab
NA
NA

19.1
9.0

Schoenfeld et al.
(2015)

(66)
7
4
5

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
NA
NA
NA

6.0
14.4
26.0

Kiess et al.
(2015)

(67)
12
15
19

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
89
100
87

NA
19.5
NA

ICI ± SRS

Hassel et al.
(2022)

(68)
31
19

M
ICI + SRS/WBRT
SRS/WBRT + ICI

ipilimumab + nivolumab or
ipilimumab

NA
11
15

Schoenfeld et al.
(2015)

(66)
7
4
5

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
NA
NA
NA

6.0
14.4
26.0

Kiess et al.
(2015)

(67)
12
15
19

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
89
100
87

NA
19.5
NA

Cohen-Inbar et al.
(2017)

(69)
14
32

M
ICI + SRS
SRS + ICI

Ipilimumab
16.5
54.4

6.4
13.8

Patel et al.
(2017)

(70) 20 M ICI + SRS Ipilimumab 71.4 8.0

Schoenfeld et al.
(2015)

(66)
7
4
5

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
NA
NA
NA

6.0
14.4
26.0

(Continued)
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TABLE 2 Continued

Authors (year) # Patients Primary Design ICI LTC
(%)

Median OS
(mo)

Knisely et al.
(2012)

(59)
50
11
16

M
SRS mono
ICI + SRS
SRS + ICI

Ipilimumab
NA
NA
NA

4.9
19.8
21.3

SRS ± ICI

Hassel et al.
(2022)

(68)
31
19

M
ICI + SRS/WBRT
SRS/WBRT + ICI

ipilimumab + nivolumab or
ipilimumab

NA
11
15

Rhun et al.
(2020)

(53)
10
20
32

M
ICI mono
SRS + ST
SRS + ICI

Pembrolizumab or nivolumab
or ipilimumab

NA
5
13
11

Carron et al.
(2020)

(71) 50 M SRS + ICI Pembrolizumab or nivolumab 94 16.6

Galli et al.
(2019)

(72)
18
18

M
WBRT + ICI
SRS + ICI

Pembrolizumab or nivolumab
or ipilimumab

NA
NA

5.0
7.0

Murphy et al.
(2019)

(73) 26 M SRS + ICI
Pembrolizumab or nivolumab

or ipilimumab
NA 26.1

Minniti et al.
(2019)

(74)
35
45

M
SRS + ICI
SRS + ICI

Ipilimumab
Nivolumab

70
85

14.7
22.0

Robin et al.
(2018)

(75) 38 M SRS + ICI Nivolumab or ipilimumab NA NA

Nardin et al.
(2018)

(76) 25 M SRS + ICI Pembrolizumab 80 15.3

Trommer et al.
(2018)

(54) 26 M
SRS +ICI
SRS mono

Pembrolizumab
86
80

NA
NA

Kaidar-Person et al.
(2017)

(56) 58 M
SRS mono
SRS + ICI

Nivolumab or ipilimumab
86
52

5.5
15.0

Skrepnik et al.
(2017)

(64) 25 M
Concurrent or
SRS + ICI

Ipilimumab 94.8 35.8

Cohen-Inbar et al.
(2017)

(69)
14
32

M
ICI + SRS
SRS + ICI

Ipilimumab
16.5
54.4

6.4
13.8

Choong et al.
(2017)

(77) 108 M SRS + ICI NA 78 14.2

Ahmed et al.
(2016)

(52) 26 M SRS + ICI Ipilimumab 82 12.0

Schoenfeld et al.
(2015)

(66)
7
4
5

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
NA
NA
NA

6.0
14.4
26.0

Kiess et al.
(2015)

(67)
12
15
19

M
ICI + SRS
Concurrent
SRS + ICI

Ipilimumab
89
100
87

NA
19.5
NA

Tazi et al.
(2015)

(78) 10 M SRS + ICI Ipilimumab NA 29.3

Mathew et al.
(2013)

(57)
33
25

M
SRS mono
SRS + ICI

Ipilimumab
63
65

5.9

Silk et al.
(2013)

(58)
17
16

M
SRS + ICI
SRS mono

Ipilimumab
NA
NA

19.9
4.0

Knisely et al.
(2012)

(59)
50
11
16

M
SRS mono
ICI + SRS
SRS + ICI

Ipilimumab
NA
NA
NA

4.9
19.8
21.3

(Continued)
F
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Clinical evidence of combination
therapy

Ionizing radiation is known to cause DNA damage and subsequent

cell death and its impact on the immune system has been extensively

studied in recent years (86). Local RT can stimulate an antitumoral

immune response by releasing TAAs from necrotic and apoptotic

tumor cells, which are presented to CD8+ cytotoxic T cells by DCs (87).

This activates the immune system to attack tumor cells throughout the

body (88). Numerous preclinical and clinical studies have demonstrated

that combining RT with ICIs can significantly enhance the systemic

immune response, resulting in immunogenic tumor cell death. This

approach has shown promising results in improving treatment

outcomes and may be a valuable strategy for cancer management.
Clinical standpoint

From a clinical perspective, the application of SRS and ICIs for

the treatment of brain metastasis has garnered significant interest,
Frontiers in Oncology 08
driven by preclinical and theoretical evidence. A number of studies

have examined the optimal treatment sequence, SRS fractionation

regimen and dosing, appropriate selection of ICIs, therapeutic

efficacy, and potential adverse effects, generating a debate among

experts in the field. The complexities surrounding optimal

treatment strategies for brain metastasis are further compounded

by the reliance on retrospective cohort analyses with small sample

sizes, despite reporting improved LTC and OS rates with acceptable

toxicity profiles. Notably, these studies primarily involve patients

with M and the utilization of ipilimumab as the most frequently

administered ICI. To address the current challenges, we present a

comprehensive overview of studies examining brain metastasis in

various cancer types, including NSCLC (47–52), M (53–78, 89, 90),

and RCC among others (68, 79, 80, 82–85) (Table 2).

The definition of concomitant administration of ICI and SRS

exhibits significant variability among studies. A notable portion of

the literature defines concomitance as the simultaneous delivery of

SRS and ICI within a timeframe of four weeks before or after the

initiation of ICI (55, 69, 71, 73, 84, 91). Although some studies

employ a narrower definition of concomitance with a window of
TABLE 2 Continued

Authors (year) # Patients Primary Design ICI LTC
(%)

Median OS
(mo)

M, NSCLC, RCC, and others

SRS/ICI
mono

Kowalski et al.
(2020)

(79) 179
NSCLC, M,

RCC
SRS + ICI
SRS mono

Durvalumab or
atezolimumab or

pembrolizumab or nivolumab
or ipilimumab

98.0
89.5

NA

Lanier et al.
(2019)

(80)
101
170

NSCLC, M,
other

SRS + ICI
SRS mono

Ipilimumab or nivolumab/
ipilimumab or

pembrolizumab or nivolumab

91
96

15.9
6.1

Chen et al.
(2018)

(81)
181
28
51

NSCLC, M,
RCC

SRS mono
Concurrent

Non-concurrent

Pembrolizumab or nivolumab
or ipilimumab

82
88
79

12.9
24.7
14.5

Concurrent

Trommer et al.
(2022)

(82)
41 SRS + 22 WBRT
24 SRS + 6 WBRT

NSCLC, M,
other

Concurrent
Non-concurrent

Pembrolizumab or nivolumab
95.3
69.2

17.6
6.8

Travis et al.
(2021)

(83) 110 NSCLC, M
Concurrent

Non-concurrent

Nivolumab and/or
pembrolizumab or

Ipilimumab
NA 14.2

Koenig et al.
(2019)

(84) 97
NSCLC, M,
RCC, other

Concurrent
Non-concurrent

Pembrolizumab or nivolumab
or ipilimumab

96
97

9.4

Chen et al.
(2018)

(81)
181
28
51

NSCLC, M,
RCC

SRS mono
Concurrent

Non-concurrent

Pembrolizumab or nivolumab
or ipilimumab

82
88
79

12.9
24.7
14.5

SRS ± ICI

Qian et al.
(2020)

(85) 74
NSCLC, M,

RCC
SRS + ICI

Durvalumab or
pembrolizumab or

ipilimumab
90.3 NA

Kowalski et al.
(2020)

(79) 179
NSCLC, M,

RCC
SRS + ICI
SRS mono

Durvalumab or
atezolimumab or

pembrolizumab or nivolumab
or ipilimumab

98.0
89.5

NA

Lanier et al.
(2019)

(80)
101
170

NSCLC, M,
other

SRS + ICI
SRS mono

Ipilimumab or nivolumab/
ipilimumab or

pembrolizumab or nivolumab

91
96

15.9
6.1
#, number; ICI, immune checkpoint inhibitor; LTC, local tumor control; OS, overall survival; NSCLC, non-small cell lung cancer; M, melanoma; RCC, renal cell carcinoma; mono, monotherapy;
SRS, stereotactic radiosurgery; CT, chemotherapy; NA, not applicable; mo, months.
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less than two weeks (74, 81), others define it as extending up to over

2 months (61, 92).

Numerous studies have conducted comparisons between

exclusive SRS monotherapy and combined ICI-SRS treatment

with the overall consensus indicating improved LTC rates and

patient outcomes with the concomitant administration of SRS

and ICI (54, 93). Moreover, the combined SRS-ICI treatment

resulted in a significant decrease in local failure compared to SRS

monotherapy in M brain metastases (94). In addition, the

combination of ICI and SRS may also provide benefit for PFS

compared to SRS alone (55, 91).

Furthermore, a trend towards improved patient outcomes and

LTC rates was observed in the patients who received concomitant

SRS-ICI treatment, compared to those who received sequential

treatment with no discernible difference in toxicity (81). The

impact of combining SRS with ICI on treatment-related toxicity

remains a subject of debate.While some studies have reported grade 3

or higher toxicity rates ranging from 5% to 24%, other investigations

have identified a higher incidence of symptomatic radionecrosis after

SRS-ICI treatment (hazard ratio 2.56, 95% confidence interval: 1.35–

4.86, p = 0.004). Therefore, the true extent of toxicity resulting from

this treatment modality remains inconclusive (95).

To provide a more comprehensive evaluation of the efficacy and

safety of the combination of SRS and ICIs for brain metastasis,

meta-analyses are warranted, given the limited patient population

and the diversity of SRS and ICI treatment regimens across studies

(96). One such meta-analysis found that concurrent administration

of ICIs and SRS led to a statistically significant improvement in 1-

year OS compared to non-concurrent ICI administration (96, 97).
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While previous studies have yielded valuable insights into the

combination of SRS and ICIs, it is imperative to recognize that their

conclusions are based on retrospective observational studies, whichmay

not fully reflect the extent of their effects. The true therapeutic value of

this modality can only be established through well-designed prospective

clinical trials, which aim to minimize biases and confounding variables

that may influence the results of retrospective observational studies.

Therefore, it is crucial to await the results of these trials to gain a more

robust understanding of the impact of combining SRS and ICIs on

patient outcomes and to provide healthcare professionals with a clear

guidance to make informed treatment decisions.
Optimal dose and fractionation

Achieving the optimal dose and fractionation of radiation in SRS

for treating spontaneous brain metastases poses a complex clinical

challenge due to the need to balance effective tumor cell cytotoxicity

against suppression of radiosensitive lymphocyte (98). Advancements

in technology have enabled delivery of high radiation doses in a

fractionated manner over multiple days or as a single fraction,

thereby addressing this challenge (98). Preclinical studies provide

limited insight into the complex interactions that occur within the

CNS, but still furnish valuable information. For instance, in a murine

M model, single-fraction doses ranging from 7.5 to 15 Gy optimized

LTC, with a dose of 7.5 Gy providing a balance between tumor

control and minimal suppression of Tregs. Fractionating the 15 Gy

dose into two or three smaller doses improved LTC, reduced Tregs,

and elicited an immune response (39).
TABLE 3 Completed or ongoing clinical trials of stereotactic radiosurgery and immune checkpoint inhibitors in brain metastases treatment.

Clinical Trial Phase Tumor ICI Target/Drug Modalities

NCT01703507 1 M CTLA-4/Ipilimumab WBRT vs. SRS

NCT01950195 1 M CTLA-4/Ipilimumab NA

NCT02107755 2 M CTLA-4/Ipilimumab NA

NCT02696993 2 NSCLC CTLA-4/Ipilimumab, PD-1/Nivolumab WBRT vs. SRS

NCT02716948 1 M PD-1/Nivolumab NA

NCT02858869 1 NSCLC, M PD-1/Pembrolizumab SRS

NCT02886585 2 M PD-1/Pembrolizumab NA

NCT02978404 2 NSCLC, RCC PD-1/Nivolumab NA

NCT03340129 2 M CTLA-4/Ipilimumab, PD-1/Nivolumab SRS

NCT03807765 1 BC PD-1/Nivolumab NA

NCT04047602 1 NSCLC, M, others NA SRS

NCT04427228
(MIGRAINE)

2 NSCLC, M, others NA SRS

NCT04650490
(STICK-IM)

2 NSCLC NA NA

NCT04889066 2 NSCLC PD-L1/Durvalumab fSRT or PULSAR

NCT04711824 2 BC PD-L1/Durvalumab RT
ICI, immune checkpoint inhibitor; LTC, local tumor control; OS, overall survival; NSCLC, non-small cell lung cancer; M, melanoma; RCC, renal cell carcinoma; BC, breast cancer; mono,
monotherapy; SRS, stereotactic radiosurgery; WBRT, whole-brain radiation therapy; PULSAR, ersonalized ultra-fractionated stereotactic adaptive radiotherapy; NA, not applicable.
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The appropriate timing for administering immunotherapy in

conjunction with RT remains a topic of ongoing research.

Administering immunotherapy prior to SRS could enhance the

antitumor response by allowing APCs and effector cells to be

present when tumor cells are destroyed. However, this sequence

could result in a reduced response if the circulating lymphocytes are

recruited and then damaged by subsequent radiation. On the other

hand, administering RT prior to immunotherapy could enhance

expression of TAAs and increase BBB permeability, potentially

improving drug delivery and immune cell infiltration. The optimal

sequence of immunotherapy and RT depends on various factors,

including radiation delivery parameters, the mode of action of

immunotherapy, tumor histology, and overall mutational profile (99).

It is widely accepted that ICI therapy should be administered

either in conjunction with or prior to SRS or RT. A preclinical study

of colorectal cancer treatment with a combination of 2 Gy x 5

fractions of radiation and a PD-L1 inhibitor has demonstrated that

simultaneous administration of the inhibitor on either the first or

fifth day is the most efficacious approach. However, administering

the inhibitor seven days after radiation completion failed to

improve survival compared to RT alone (100). The optimal

scheduling of SRS or RT in combination with immunotherapy

remains a topic of ongoing investigation and research.

In a series of experiments evaluating the effect of the timing of

administration of anti-CTLA-4 and anti-OX40 antibodies in

relation to a single dose of 20 Gy radiation, the optimal timing of

anti-CTLA-4 administration in relation to RT was found to depend

on the dose and timing of the antibody (101). Administering anti-

CTLA-4 prior to RT cleared all tumors, whereas administering it

after RT resulted in only 50% of tumors being eliminated. The

optimal timing of administering anti-OX40 was only after radiation

completion, and mice that received anti-OX40 1 day after radiation

showed improved tumor clearance and a doubling of median

survival time. These results suggest that anti-CTLA-4 therapy in

combination with RT improves outcomes, regardless of when the

therapy is administered (101).

The order in which anti-CTLA-4 antibodies are administered

has a significant effect on treatment efficacy. Prior studies have

indicated that administering the drug either two days before or

concurrent with radiation completion leads to improved treatment

outcomes compared to administration two days after radiation

(102). Administering the CTLA-4 inhibitor ipilimumab during or

after SRS has demonstrated better survival rates compared to

pretreatment administration in clinical practices. This outcome

may occur because radiation releases antigens and prepares the

immune system prior to the administration of ipilimumab (67).

Optimal results were obtained when both local and systemic

modalities were delivered within a four-week window for patients

with M brain metastases who underwent SRS and received CTLA-4

or PD-1 inhibitors (65).
Conclusion

Recent evidence highlights a paradigm shift in our knowledge of

the BBB and its role in brain metastases treatment. While
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traditionally considered a protective barrier against immune cells,

emerging data suggests that certain immune cells and treatments

can penetrate the BBB, opening new avenues for therapeutic

interventions. As a result, the combination of SRS and

immunotherapy has gained significant interest as a potential

synergistic approach to combat brain tumors.

Radiation has been found to enhance the immune response, and

T-cell-mediated responses are crucial in controlling tumors post-

radiation locally and systemically. The potential benefit of combining

of SRS and ICIs are promising, including improved OS, reduced local

failure rates, and decreased risk of local recurrence, surpassing the

outcomes of either treatment as a monotherapy. However, it is

essential to acknowledge that existing data on this combination

primarily stems from single-center retrospective cohort studies,

warranting further investigation.

The optimal administration sequence of immunotherapy with

SRS remains uncertain and may vary depending on the specific

systemic immunotherapy agent utilized. As we delve deeper into

intricacies of this treatment combination, the possibility of

increased incidence of severe adverse events compared to

monotherapies still requires definitive determination.

In light of these advancements, we need to consider whether

SRS might lose its necessity in the treatment of brain metastases

due to the efficacy of immunotherapy. This question challenges us

to identify predictive factors that enable better patient selection for

initial immunotherapy, while reserving SRS for cases of

intracranial progression. Recognizing the importance of patient

selection, we must develop strategies to tailor treatment plans for

individual cases, optimizing therapeutic outcomes and reducing

treatment-related toxicities. For instance, recent findings

supporting the efficacy of immunotherapy in treating brain

metastases underscores its clinical relevance (103). Nonetheless,

it is crucial to remain cautious and focused on refining our

treatment approaches to strike a delicate balance between

efficacy and safety.

In conclusion, the synergistic integration of SRS and

immunotherapy holds immense potential in revolutionizing brain

metastases treatment. To fully harness the potential of this

combination, there is an imperative need to conduct additional

well-designed prospective studies that elucidate the intricate

interplay between SRS and ICIs. These studies hold the key to

establishing robust clinical guidelines and tailored treatment plans,

optimizing therapeutic outcomes for patients while mitigating the

risk of treatment-related toxicities.

As we pursue advancement in this dynamic field, we aspire to

propel the frontiers of neuro-oncology in patients facing the

challenges of brain metastases.
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