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University Paris-Saclay, Villejuif, France
The role of tumor interaction with stromal components during carcinogenesis is

crucial for the design of efficient cancer treatment approaches. It is widely admitted

that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts

susceptibility and resistance to different types of treatments. Notable biological

processes that hypoxia functions in include its regulation of tumor heterogeneity

and plasticity. While hypoxia has been reported as a major player in tumor survival

and dissemination regulation, the significance of hypoxia inducible factors in cancer

stem cell development remains poorly understood. Several reports indicate that the

emergence of cancer stem cells in addition to their phenotype and function within a

hypoxic tumor microenvironment impacts cancer progression. In this respect,

evidence showed that cancer stem cells are key elements of intratumoral

heterogeneity and more importantly are responsible for tumor relapse and escape

to treatments. This paper briefly reviews our current knowledge of the interaction

between tumor hypoxic stress and its role in stemness acquisition andmaintenance.

Our review extensively covers the influence of hypoxia on the formation and

maintenance of cancer stem cells and discusses the potential of targeting

hypoxia-induced alterations in the expression and function of the so far known

stem cell markers in cancer therapy approaches. We believe that a better and

integrated understanding of the effect of hypoxia on stemness during carcinogenesis

might lead to new strategies for exploiting hypoxia-associated pathways and their

targeting in the clinical setting in order to overcome resistance mechanisms. More

importantly, at the present time, efforts are oriented towards the design of innovative

therapeutical approaches that specifically target cancer stem cells.
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1 Introduction

Cancer remains one of the leading causes of death worldwide.

The mortality rate associated with cancer is high because

subpopulations of cancer cells exhibit metastasis. Indeed, metastatic

invasion involves complex overlapping processes in which cells

undergo multiple steps of reprogramming to promote mechanisms

of repair, resistance to cell death, adaptation to changes in

metabolism, acquisition of stem cell-like properties, and ultimately,

survival. In addition to tumor plasticity and heterogeneity, these

subpopulations are further equipped with the capacity to resist

therapeutic strategies (1). Tumor heterogeneity refers to the

variations observed among tumors of the same type in different

patients. This diversity serves as the foundation for the development

of personalized treatment approaches aimed at maximizing

effectiveness. Furthermore, within a tumor there exists a cellular

heterogeneity due to the variable microenvironment shaping the

tumor. Hypoxia within solid tumors contributes to this heterogeneity

and shapes the behavior of a cell population. As a result, different

subpopulations of cancer cells may have differential responses to the

same therapy; therefore, the more heterogenous the tumor is, the

more likely it will resist therapy and be defined as a treatment-

resistant tumor. Within the tumor microenvironment, cancer stem

cells (CSCs) are supported by hypoxia and are known to be resistant

to therapy. These cells are key to cancer progression and

cancer recurrence.

In this review, we examine the existing understanding of the

effects of hypoxic stress within the tumor microenvironment (TME)

on tumor heterogeneity, plasticity, and resistance. We address the

mechanisms that lead to the generation of CSCs, focusing on the

potential role of hypoxia in stemness acquisition and maintenance.

Identifying CSCs populations within a tumor necessitates a clear

understanding of their molecular characteristics, as such we have

compiled a set of CSCs markers that are currently recognized as an

identifying factor and hence a possible target for therapy. We also

discuss the resistant mechanisms that these cells adapt in response

to therapy and accordingly, the putative therapeutic strategies

for targeting these multifaceted interactions of CSC with

TME components.
2 Hypoxia, a key factor regulating the
tumor microenvironment

The tumor microenvironment (TME) comprises tumor cells,

immune cells, signaling molecules, blood vessels and the

extracellular matrix (ECM) components (2). An important feature

of the TME of solid tumors is hypoxia that arises when oxygen

decreases below the level required to maintain tissue homeostasis.

The oxygen percentage varies depending on tumor type and has

been reported to be as low as 0.3% in pancreatic cancer (6.8%

normal tissue), and 1.9% in lung cancer (5.6% normal tissue) (3).

Hypoxia ensues due to a decrease in blood oxygen content, or to the

non-availability or improper structure of the blood vessels, that

could result from increasing proliferative rate of cancer cells (4, 5).
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The plastic nature of the TME, therefore, results in variations in the

severity (mild or severe) and duration of hypoxia (chronic

or intermittent).

HIF transcription factors are the main sensors for hypoxia. HIF are

comprised of HIF1, HIF2 and HIF3 and include three oxygen sensitive

alpha (a) subunits and three nuclear beta (b) subunits. HIFs form a

heterodimer of the two subunits a and b. Under normal oxygen

tension, the HIF-a subunit is inhibited by Factor Inhibiting HIF (FIH).

FIH is an asparagine hydroxylase that hydroxylates HIF and blocks its

association with transcriptional co-activators, thus inhibiting its

transcriptional activity (6–8). HIF is also degraded following

hydroxylation by prolyl hydroxylase (PHD). However, when exposed

to low oxygen concentrations, PHD and FIH are down-regulated

resulting in the stabilization of HIF-a. HIF-a subsequently

translocates to the nucleus, dimerizes with the b subunit and

activates the expression of genes that promote carcinogenesis.

HIF-1a is ubiquitously expressed and is degraded under normal

oxygen tension, whereas HIF-1b is a stable constitutively expressed

nuclear protein. Both proteins have similar DNA sequence

specificity, but they differ in their transactivation domains,

suggesting that each subunit has distinct roles. This distinct role

for HIF-1a and HIF-1b was demonstrated through deletion

experiments conducted in mice that showed that HIF-1a and

HIF-1b signaling in breast tumors control tumor dissemination in

a site-specific manner (9). HIF-1a binds to specific hypoxia

responsive elements (HRE) on target genes, it induces NFkB
activation resulting in the expression of targets including MIP-2/

CXCL2/3, CXCL1 and TNFa (10). Together these induce

proliferation of pre-cancerous lesions, thereby facilitating

tumorigenesis (11), including invasion of tissues, cell survival,

recurrence of tumors, and the formation of CSCs (12, 13).

HIF-2a is highly homologous to HIF-1a and is regulated in a

similar fashion through ubiquitin mediated proteasomal degradation,

however the expression pattern of the two proteins is distinct: HIF-2a
being expressed mainly in vascularized cells, several evidence points to

its role in mediating the remodeling and recruitment of vasculature

(14). HIF-2a is also found to mediate the chronic hypoxic response

(14). In addition to its roles in the induction of EMT (15), and CSCs

induction (16), HIF-2a is shown to be essential for T-regs development

(17). Furthermore, studies showed that a crosstalk between the

expression of HIF-1a and HIF-2a in T-regs contributes to a tumor-

suppressive activity (17).

HIF-3a is less studied, and it has been shown to play a role in

cancer cell invasion and migration (18). And some research has

demonstrated a positive role for HIF-3a in non-small cell lung

cancer (NSCLC) (19). However recent work evaluated the

expression levels of HIF-3a in various types of cancer, and

interestingly found that in contrast to HIF-1a and HIF-2a, an
increase in expression levels of HIF-3a correlated with better

survival (20). Additional studies are needed to further dissect the

role of this protein and its interplay with HIF1 and HIF2 in

tumorigenesis of specific cancer types.

Moreover, the hypoxic TME is acidic because HIF1 regulates

tumor cells’ metabolic activities, nutrient sensing, and availability

(21). In tumor cells glycolysis results from the anaerobic breakdown

of glucose due to the lack of oxygen or from aerobic glycolysis
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https://doi.org/10.3389/fonc.2023.1222575
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zaarour et al. 10.3389/fonc.2023.1222575
(Warburg effect), which further leads to the production of lactate

resulting in an acidic microenvironment (21). HIF1 directly plays a

role in this process by increasing the expression of pyruvate

dehydrogenase kinase, that subsequently inhibits pyruvate

dehydrogenase and thereby represses oxygen consumption and

redirects pyruvate to be used in glycolysis (21). HIF1 also

enhances the expression of glucose transporters and glycolytic

enzymes (22). The resultant acidic TME has significant effects on

several cells including suppressing the immune response (23).

Finally, the variability in hypoxia directly impacts the behaviors

of the tumor vis a vis resistance to therapy and immune escape and

renders targeted treatment more challenging (3, 24). HIF protein

response to different types of hypoxias plays a role in this by

increasing the complexity of the TME. For example, HIF-1a
expression is an acute response and it gets degraded in chronic

hypoxia, whereas HIF-2a protein levels increase for longer

duration. HIF-2a on the other hand is more sensitive to mild

hypoxia (5%) compared to HIF-1a (25). In addition, the cyclic

nature of hypoxia differentially controls HIFs, HIF-1a increases in

cyclic hypoxia but HIF-2a decreases (26) but it is important to note

that it is very difficult to monitor and follow the spaciotemporal

hypoxia fluctuations in individual tumors. And it is evident that

better understanding of the hypoxia response in individual patients

would be necessary to initiate effective treatment strategies.
3 Hypoxia’s role in the induction and
maintenance of cancer stem cells

To adapt to hypoxic stress, cells activate several genes that

regulate many pathways (27). Hypoxia plays an important role in

the induction of epithelial to mesenchymal transition (EMT), where

epithelial cells acquire the capacity to migrate and invade

neighboring tissues (28). Hypoxia within the TME plays an

important role in CSCs initiation and maintenance (29). CSCs

drive tumor initiation, recurrence, metastatic potential, residual

disease, and therapy resistance. Furthermore, these cells maintain

properties of normal stem cells and are unique in that they are

capable of self-renewal and remaining undifferentiated (30).

Understanding the processes that give rise to and sustain CSCs is

therefore crucial as they are present across various cancer types and

targeting them could be detrimental to tumor survival.

While cancer occurs as a sporadic event, resultant from

environmental factors (carcinogens, chemicals, biological agents,

radiation) or as an inherited event, CSCs origins are debated, and

evidence supports that they could originate from existing stem cells

or develop following tumor formation. Because cancer can develop

from the gradual accumulation of mutations in a single specific cell

over a prolonged period, stem cells – that could have long lifespans

– have the potential to accumulate mutations that initiate cancer.

This is supported by early work where pathologists determined that

cancer tissues contain cells that exhibit properties of early

embryonic dormant tissue (31) that lead to the “embryonic rest”

hypothesis of cancer development which suggested that cancer may

arise from embryonic dormant cells that persist in developing

organs after embryogenesis (32).
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In the TME, hypoxia plays a key role in the acquisition of CSCs

and this occurs on several fronts. Under hypoxic conditions,

signaling pathways regulate stemness, pluripotency and viability

of CSC populations. For example, HIF-1a regulates stem cell

phenotypes through activation of signaling pathways including

Notch, TGF-/SMAD, NF-B, PI3K/Akt/mTOR, STAT3, MAPK/

ERK as well as via transcription factors including C/EBPd, SOX2
and c-MYC (33, 34) (Figure 1). In hypoxic areas, HIF-1a protein

has been shown to activate Notch, Wnt, and Hedgehog (Hh)

pathways target genes, inhibiting their differentiation and

stimulating stem cell self-renewal and multi-potency (39). The

Notch receptors, along with the Jagged or Delta ligand family,

translocate into the nucleus to create a DNA-binding complex.

Cofactors like mastermind-like (MAML), CSL, NICD, and p300,

together promote the activation of Notch target genes. This process

significantly contributes to the maintenance of the stem cell

population (39, 40). Furthermore, hypoxia and HIF factors have

also been shown to enhance the propagation of CSCs identified by

the upregulation of CSC markers including CD133, Sox2, Oct4,

CD44, and ALDH (34) (Figure 1). This suggests a particular role for

HIF in cancer cell phenotype and plasticity. Finally, hypoxia

through HIF-1a activation induces methylation of genes

promoting CSCs. Recent evidence has shown that mutated

DNMT3a, in a mechanistic manner, can activate specific

enhancers, resulting in localized DNA methylation and histone

acetylation changes. These alterations ultimately lead to disruptions

in stemness pathways (41). Moreover, epigenetic modifications of

the DNA packaging protein Histone H3 (H3Kme3 and H3K27Ac)

at the promoter region of IFN-g increases the expression of IFN

stimulated genes, including PD-L1 expression (42). PD-L1 in turn

promotes CSC expansion (43).

Another factor in the TME that contributes to tumor progression

and sustains CSCs is the intercellular communication between cancer

and stromal cells within the TME. Recent studies demonstrated that

non-CSCs could become CSC by processes mediated by secreted

factors. Indeed, proteins, cytokines, chemokines, microRNAs, and

other substances could be secreted by cancer cells to mediate tumor

maintenance and CSCs formation (44–46). It has been reported that

IL-6 present in the TME can induce non-CSCs to transform into

tumor stem cells (47, 48). Likewise, tumor associated mesenchymal

stem cells through direct contact with cancer cells have been shown to

promote CSCs features through pathways involving microRNAs (49).

Cancer-associated fibroblasts (CAFs) release hepatocyte growth

factors (HGF) and annexin A1 which have the ability to revert

differentiated tumor cells back to stem cell-like phenotypes (50).

An additional example that highlighted the importance of

intercellular communications in tumorigenesis came from work

that demonstrated that macrophages, could secrete an increased

amount of the cytokine osteopontin (OPN) when cocultured with

CD44-positive cancer cells, that subsequently promoted

tumorigenicity (51). Macrophages secrete oncostatin-M, an IL-6

family cytokine, that can activate the dedifferentiation of non-CSCs

into aggressive CSCs (52). Cancer associated fibroblasts can also

modulate CSC plasticity through signaling pathways including IGF-

II/IGF1R; FAK and c-Met/FRA1/HEY1 (53–55). The activation of

NOTCH1 signaling by dermal fibroblasts derived frommesenchymal
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stem cells was observed to regulate both plasticity and stemness (56).

Therefore, the interaction of the microenvironment facilitates the

plasticity and stemness of these cells and can be modulated by

the secretome.
4 Cancer stem cells markers and
hypoxia inducible factors

Several specific markers are established to categorize cancer

stem cells, enabling their identification, purification, and potential

use for targeted therapies (Table 1). These markers’ expression is

regulated by spatial and temporal characteristics, indicating the

remarkable adaptability of these cells (152). In 1997, the first

evidence of the existence of CSCs surfaced from experiments that

demonstrated the existence of a subpopulation of CD34-expressing

cells in leukemia. These cells were capable of initiating tumors in

NOD/SCID mice that resembled the donor’s tumor (32). Following

this, in 2002 it was shown that cancer stem like sphere-forming cells

from human gliomas could induce tumors resembling the original

tumor when transplanted intracranially in nude mice (153, 154). As

the research progressed, additional specific markers of CSCs were

identified. The most common markers that are in use for CSC

isolation are CD133 (also known as PROM1), CD44, ALDH1A1,

CD34, CD24 (155, 156). Indeed, CD133 positive cells isolated from

colon carcinomas could grow as tumor spheroids in vitro as well as

initiate tumor growth when xenografted in immunodeficient mice

(157). Hypoxia and HIF transcription factors play a key role in the

expression of these markers, however the molecular mechanisms

leading to the increased expression is not yet understood for several

of these markers (Table 1). It should be noted that due to the

expression of a heterogeneous range of stem cell markers, cancer
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stem cells that originate from a hypoxic microenvironment may

exist in a distinct stem cell states or exhibit variations in the

expression of different sets of stem cell markers. Targeting CSCs

markers could be effective in treatment strategies. Indeed,

downregulation of CD133 using short hairpin RNAs led to slower

cell growth of human metastatic melanoma and slowed the

spheroid formation and metastatic potential of melanoma (158).
5 Mesenchymal stem cells within the
tumor microenvironment contribute
to resistance mechanisms

Hypoxia also influences mesenchymal stem cells (MSCs) features

including differentiation cell viability, proliferation capacity, migration,

and metabolism. It has been reported that the intratumoral MSC

(T-MSC) play a key role in tumor progression and immune regulation

(159, 160). T-MSC are either Bone Marrow-derived MSC that migrate

and infiltrate the TME (161, 162). Alternatively, as demonstrated in the

Wilm’s tumor, T-MSC represent the neoplastic mesenchymal tissue

that is originated by a common neoplastic stem cell that also generates

the blastemal and the epithelial components (163). T-MSCmay be also

directly generated by particular tumor cell subsets as reported in the

neuroblastoma (164) Immunohistochemical analysis and in vitro

studies show that T-MSC establish direct cellular crosstalk with the

tumor cells (159), and/or pro inflammatory cells suchM2macrophages

(165, 166). In addition, several tumor-associated inflammatorymarkers

such as COX-2, nitric oxide synthase and nitrotyrosine, may be

detected within the tumor stroma (159, 161, 165). In addition T-

MSC (tumor-associated mesenchymal stem cells), possess potent

immunosuppressive properties that can affect T cells (161), impair

the cytolytic functions of NK cells and induce the polarization of
FIGURE 1

The crosstalk between pathways signaling and markers of cancer stem cells (CSCs) stimulated by hypoxia. Under hypoxic condition, Notch, Wnt,
Hedgehog (Hh), NF-kB, TGF-b/SMAD, PI3K/AkT/mTOR and STAT3 pathways can be activated by HIF expression. In some cases, cross-talk between
pathways may promote markers expression (CD44, CD24, ALDH1, Patch-1, PROM1, Gli-1, SOX2, c-MYC, p65, TNF-a/b, COX2) that promote phenotypes
of CSCs and resistance to cancer therapeutics (35–38). Hh, Hedgehog; TGF-b, Transforming Growth Factor Beta; NF-kB, Nuclear factor-kB; PI3K,
intracellular phosphatidylinositol kinase; Akt, serine/threonine kinase; mTOR, mammalian target of rapamycin; STAT3, signal transducer and activator of
transcription 3; b-cat, b-catenin; COX2, cytochrome c oxidase subunit 2; ADLH, aldehyde dehydrogenase; TNF-a, Tumor Necrosis Factor Alpha; CD133,
Cluster of Differentiation 133; CD24, Cluster of Differentiation 24; CD44, Cluster of Differentiation 44.
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TABLE 1 Relationship of various cancer stem cell markers with hypoxia
in selected solid tumors (Lung, Breast, Pancreatic, Gastric, Prostate,
Bladder).

CSC
marker/
pathway

Type of
cancer

Hypoxia relationship Reference

Membrane

CD24 Lung,
Breast,
Pancreatic,
Gastric,
Prostate,
Bladder

The expression of CD24 is
induced by HIF1 through
binding to HRE element in the
CD24 promoter (57)

(58–61)

CD44 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

HIF-2a binds to CD44
enhancing HIF target gene
activation (62)

(59–61, 63)

CD47 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

HIF-1 directly binds to HRE
elements in CD47 (64)

(65–69)

ITGA6/
CD49f

Breast,
Gastric,
Colon,
Prostate

HRE elements in the ITGA6
promoter are specific for HIF-
1a or HIF-2a (70).

(71)

ICAM1/
CD54

Breast,
Gastric,
Prostate

Hypoxia upregulates CD54
(72)

(59, 73, 74)

PLAUR/
CD87

Lung,
Breast,
Pancreatic

Hypoxia increases the
expression of PLAUR (75)

(58, 76)

THY1/
CD90

Lung,
Breast,
Pancreatic,
gastric,
prostate

HIF-1 target genes (cytoines,
and growth factors) increase
the expression of Thy-1 (77)

(58, 78–81)

SLC3A2/
CD98

Lung,
Pancreatic,
Gastric,
Prostate

Hypoxia upregulates CD98
that promotes tumorigenesis
(82)

(83, 84)

KIT/CD117 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

Activated c-KIT enhances
nuclear HIF-1a levels (85)

(58, 86–89)

PROM1/
CD133

Lung,
Breast,
Pancreatic,
Gastric,
Prostate

Hypoxia can upregulate or
downregulate CD133 (90, 91)

(58, 92–94)

ALCAM/
CD166

Lung,
Breast,
Pancreatic,
Gastric,
Prostate

CD166-positive stem cells
acquire CSCs features and
drug resistance in response to
chemical induced hypoxia (95)

(58, 96–99)

EpCAM/
ESA

Lung,
Breast,

Hypoxia influences stem cell
characteristics and triggers

(101)

(Continued)
F
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TABLE 1 Continued

CSC
marker/
pathway

Type of
cancer

Hypoxia relationship Reference

Pancreatic,
Gastric

EMT via N-glycosylation of
EpCAM (100)

ABCB1 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

HIF-1a dependent regulation
(102)

(61, 103, 104)

ABCG2 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

Hif-1 results in the increased
expression of ABCG2,; HIF-2a
positively correlated with
ABCG2 expression (105)

(58, 105–108)

FZD Lung,
Breast,
Pancreatic,
Gastric,
Prostate

HIF1is required for the
expression of FZD (109) (109–111)

CXCR4 Lung,
Breast,
Pancreatic,
Gastric,
Prostate

Hypoxia stabilizes HIF-1a to
upregulate CXCR4 (112)

(58, 61, 113,
114)

PODXL1 Lung,
Breast,
Pancreatic,
Gastric

Not determined (58, 115, 116)

LOX Lung,
Breast,
Pancreatic,
Gastric

HRE elements in LOX
promoter specific to HIF-2a
(117)

(118–120)

TIE1

Lung,
Pancreatic,
Gastric

Tie1 expression is mediated by
HIF-1a binding to HRE
elements in the Tie1 promoter
(121)

(122–124)

Intracellular

ALDH1A1 Lung,
Breast,
Pancreatic,
Gastric,
Prostate,
Bladder

Hypoxia upregulates ALDH1
expression (125)

(126)

SOX2 Lung,
Breast,
Pancreatic,
Gastric,
Prostate,
Bladder

HIF-dependent demethylation
of SOX2 mRNA leading to
increased expression (127)

(128)

NANOG Lung,
Breast,
Pancreatic,
Gastric,
Prostate

HIF1 recruits NANOG to
activate transcription TERT.
TERT expression is required
for stem cell self-renewal (129)

(130)

POU5F1/
OCT4

Lung,
Breast,
Pancreatic,
Gastric

HIF-2a, induces the
expression of Oct-4 promoter
and induces its expression
(131)

(132)

(Continued)
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monocytes towards alternatively activated macrophages (M2) (164,

166–169) this may, in turn, further compromise the functions of NK

cell (168). Efficient tumor elimination requires a combined action both

on tumor cells and stromal components (159, 170). As future

perspective, to eliminate or disable T-MSC in vivo could involve

targeting of the mesenchymal marker TRC105 with the TRC105

monoclonal antibodies (mAb) exploiting their ability to induce

antibody-dependent cell mediated cytotoxicity (ADCC) (167, 170),

or inducing their senescence through the application of anti-cancer

drugs such as isoalantolactone which has demonstrated effectiveness

both in vitro and in vivo.
6 Mechanisms of CSCs resistance
to therapy

Hypoxia in the TME induces and maintains CSCs which are

equipped with mechanisms to evade treatment modalities. In

addition, hypoxia confers radiotherapy resistance through an

increase in reactive oxygen species (ROS). Although ROS,

induced by radiation therapy or hypoxia, triggers DNA damage
Frontiers in Oncology 06
and cell death, this effect is mitigated under hypoxic stress by the

induction of antioxidant HIF target genes resulting in ROS

buffering action (171).

CSCs populations resist therapy and could also increase in

response to therapy. Because CSCs are predominantly in the G0 or

resting phase of the cell cycle, they escape conventional treatment

regimens focused on eradicating proliferating tumor masses (172).

Unlike differentiated cells that undergo apoptosis, non-cancerous

stem cells do not, and this is important because it enables them to

restore and rebuild normal organs following damage. CSCs like

normal stem cells have mechanisms of resistance to apoptosis.

Indeed, CSCs express high levels of antiapoptotic proteins such as

Bcl-2 family proteins and inhibitors of apoptosis (173–176).

Overexpression of Bcl-2 protein in the hematopoietic system

results in an increase in hematopoietic stem cell number and

chemoresistance (177, 178). Furthermore, stem cells possess

asynchronous DNA synthesis activity and increased DNA repair

activity (179). During asynchronous DNA synthesis, the parental

‘immortal’ DNA strand consistently segregates with the stem cell

rather than the differentiating progeny. This segregation process

may be regulated by P53 (180). As a result, stem cells gain an

advantage by avoiding the accumulation of mutations related to

replication and the detrimental effects of DNA-damaging agents

and antiapoptotic proteins. Moreover, there are populations of stem

cell-like cells found in many tumors that have been shown to

express high levels of multidrug efflux pumps (MDR) or transporter

proteins/detoxification proteins, such as MDR1, ABCB1, ABCG2

(BCRP) that play a significant role in expelling cytotoxic drugs from

cells leading to high resistance to chemotherapeutic agents (179).

The overexpression of ABC protein is a critical protective

mechanism for CSCs in response to chemotherapy (152, 181).

Indeed, numerous studies have reported that CSCs exhibit more

resistance to chemotherapy and/or radiotherapy compared to

differentiated tumor cells (182–184) in various types of cancer

including breast cancer (185), ovarian cancer (186), colon cancer

(157, 187) lung cancer (188, 189) and other deadly forms of cancers

such as pancreatic cancers (190), myeloma (191, 192) and leukemia

(193). In vivo and in vitro studies of common cancers have

demonstrated resistance of CSCs to standard chemotherapy

agents such as: oxaliplatin and 5-fluorouracil in colorectal cancers

(194), cisplatin and paclitaxel in ovarian cancers and docetaxel and

doxorubicin in breast cancers (195). These studies demonstrated

that these cells are less susceptible to chemotherapy when compared

to differentiated cells. A study by Chen et al. in 2012 showed that

after treatment with temozolamide (TMZ) there was complete

restoration of tumor cell population when CSCs were present

(196). An additional study conducted in breast cancer revealed

that taxane treatment could increase the generation of CSCs and

further contribute to therapy resistance (197). Furthermore, after

undergoing standard chemotherapy treatment with docetaxel,

doxorubicin, cyclophosphamide and trastuzumab, breast cancer

cells that are CD44+ and CD24- were found to exhibit resistance

to chemotherapy. Specifically, 12 weeks post-chemotherapy the

population of CD44+CD24-/low cells, increased from 4.7% to

13.6% while the proportion of epithelial cancer cells remained

relatively unchanged (198). These findings suggest that CD44
TABLE 1 Continued

CSC
marker/
pathway

Type of
cancer

Hypoxia relationship Reference

BMI1 Lung,
Breast,
Pancreatic,
Gastric,
Prostate,
Bladder

Hypoxia-induced increase
BMI-1 (133)

(134)

DCLK1 Lung,
Breast,
Pancreatic,
Gastric,
Prostate,
Bladder

Under hypoxia, HIF-1a
activates KDM3A52, which in
turn, increased DCLK1 mRNA
expression (135)

(61, 136–141)

PKM2

Lung,
Breast
Pancreatic,
Gastric,
Prostate,
Bladder

HIF-1a induces the expression
of PKM2 expression in
induced by HIF-1a through
binding HRE elements in the
PKM2 promoter (142)

(143–148)

KLF4

Lung,
Breast,
Pancreatic,
Gastric,
Prostate

KLF4 expression is induced by
HIF-1a through binding HRE
elements in the KLF4
promoter (149)

(150, 151)
CD24, Cluster of Differentiation 24; CD44, Cluster of Differentiation 44; CD47, Cluster of
Differentiation 47; ITGA6, Integrin Subunit Alpha 6; ICAM1, Intercellular Adhesion
Molecule 1; PLAUR, Plasminogen Activator, Urokinase Receptor; THY1, Thymocyte
Nuclear Protein 1; SLC3A2, Solute Carrier Family 3 Member 2; KIT, Receptor Tyrosine
Kinase; PROM1, Prominin 1; ALCAM, Activated Leukocyte Cell Adhesion Molecule;
EpCAM, Epithelial Cell Adhesion Molecule; ABCB1, ATP-Binding Cassette Transporter 1;
ABCG2, ATP-Binding Cassette Gene 2; FZD, Frizzled Class Receptor; CXCR4, C-X-C Motif
Chemokine Receptor 4; PODXL1, Podocalyxin-Like Protein 1; LOX, Lysyl Oxidase; ALDH,
Aldehyde Dehydrogenase; SOX2, Sex-Determining Region Y-box 2; OCT4, Octamer-Binding
Transcription Factor 4; POU5F1, POU class 5 homeobox 1 BMI1, B-Cell-Specific Moloney
Murine Leukemia Virus Integration Site 1; DCLK1, Doublecortin Like Kinase 1; PKM2,
Pyruvate Kinase; KLF4, Krüppel-Like Factor 4; Tie1, Tyrosine Kinase With Immunoglobulin
Like And EGF Like Domains 1.
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+CD24-/low cells may play a significant role in mediating

chemotherapy resistance in breast cancer.

Another important reason for cancers resistance to

chemotherapy drugs like cisplatin, etoposide, fluorouracil, and

gefitinib is the overexpression of cytosolic enzyme called aldehyde

dehydrogenase (ALDH) that protects cells from the toxic effects of

elevated levels of reactive oxygen species (ROS) (199, 200). ALDH

proteins scavenge free radicals generated by oxidative stress induced

by radiation or drugs (201). However, when the activity of ALDH is

inhibited in therapy-resistant CSCs, it results in the accumulation of

excessive ROS. This accumulation of ROS leads to DNA damage

and triggers apoptosis causing toxic effects on CSCs (199). patients

with resectable esophageal cancer who exhibit high expression

levels of ALDH1 are predicted to experience a poor response or

resistance to preoperative chemotherapy (202, 203). Moreover, the

CSC population can present clonal variation as well as distinct CSC-

driven clones that differ in their growth rate or resistance to therapy,

modeling tumor behavior. Finally, CSCs of various cancers not only

develop chemoresistance, but they also develop resistance to

radiation therapy leading to failure of treatments (204).

Therefore, targeting CSCs utilizing their unique cell surface

markers to develop antibodies or antibodies-drug conjugates

could be more effective (Tables 1–3) (158).
7 Hypoxia and autophagy in the
regulation of cancer stem cells

Autophagy is a self-eating mechanism that is activated in

response to stress in order to sustain homeostasis and cell

survival. Many studies addressed the role for autophagy in self-

renewal, pluripotency, and differentiation of normal stem cells (250,

251). In the context of cancer autophagy could function to either

prevent or promote cancer, depending on the cancer stage (252).

Furthermore, CSCs within a tumor are characterized by a high level

of autophagy. Autophagy is upregulated in mammospheres

(representing stem-like cells) compared to parental adherent cells

(253). In addition to breast CSCs (253, 254), autophagy has been

linked to CSCs in liver (255), pancreatic (256), osteosarcoma (257),

ovarian (258) and glioblastoma (259).

Ongoing research is focused on elucidating the mechanisms

through which autophagy contributes to the maintenance of

stemness, as well as understanding the reliance of stem cells on

autophagy (260). Numerous studies have shown that autophagy

regulates the maintenance of pluripotency and homeostasis of CSCs

under various pathophysiological conditions (260–262). Two

important autophagy proteins, Beclin1 and Atg4a, were found to

be critical for the maintenance and expansion of breast CSCs as well

as tumor development in nude mice (253, 254). In the same line of

thought, the suppression of autophagy by knocking down ATG5

and ATG7 drastically decreases the stemness characteristics of

colorectal CSCs. This is evident through the decrease of stemness
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TABLE 2 Examples of targeting approaches for cancer stem cells.

Targeting
Approach

Mechanism of
Action

Examples

Differentiation Induce CSCs to
differentiate into non-
tumorigenic cells

ATRA in acute promyelocytic
leukemia (APL). BMP pathway
activators (205, 206).

Inhibition of
Self-renewal

Block CSCs’ ability to
self-renew and proliferate

Notch pathway inhibitors (e.g.,
DAPT, RO4929097). Wnt
signaling pathway inhibitors
(e.g., LGK974, ICG-001) (207)

Targeting
Surface Markers

Specific antibodies or
ligands targeting CSC-
specific surface markers

CD44-targeting antibodies in
breast cancer. CD133-targeting
agents in brain tumors (208,
209)

Metabolic
Targeting

Exploiting distinct
metabolic pathways in
CSCs

Metformin targeting CSCs in
breast cancer. Salinomycin
targeting CSCs in colorectal
cancer (210, 211)

Targeting/
Modulation of
Signaling
Pathways

Interfering with crucial
signaling pathways
driving CSCs
Inhibits critical signaling
pathways that maintain
CSC self-renewal and
survival.

Hedgehog pathway inhibitors
(e.g., Vismodegib in basal cell
carcinoma)
STAT3 inhibitors (e.g.,
Napabucasin in pancreatic
cancer). Notch signalling
pathway inhibitors in breast
cancer.
Hedgehog pathway inhibitors
in medulloblastoma (207, 212–
214).

Combination
Therapy

Simultaneously targeting
CSCs and bulk tumor
cells

Combination of CD47-blocking
antibodies with chemotherapy.
Combination of CSC-targeting
agents with radiotherapy (215,
216)

Immunotherapy Enhances the immune
system’s ability to
recognize and attack
CSCs by targeting
specific antigens on their
surface.

Chimeric Antigen Receptor
(CAR) T-cell therapy targeting
CD19 in leukemia. Dendritic
cell vaccines targeting CSC-
specific antigens (217, 218)

Drug Resistance
Inhibition

Targets mechanisms that
confer drug resistance to
CSCs, making them
more susceptible to
standard therapies.

ABC transporters inhibitors
like Verapamil to overcome
CSCs’ efflux pump-mediated
resistance, BCL-2 inhibitors in
leukemia to counter apoptosis
resistance (219).

Nanoparticle-
based Delivery

Utilizes nanoparticles to
deliver therapeutic agents
specifically to CSCs,
increasing treatment
efficacy and reducing
systemic toxicity.

Targeted liposomal delivery of
siRNA against CSC-associated
genes.
Encapsulation of
chemotherapeutic drugs in
nanoparticles for CSC-targeted
therapy (220).

Epigenetic
Modulation

Alters the epigenetic
landscape of CSCs,
affecting their gene
expression patterns and
cellular functions.

DNA methyltransferase
inhibitors (e.g., Decitabine) in
leukemia, HDAC inhibitors in
solid tumors (221, 222)
ATRA, all-trans retinoic acid; BMP, bone morphogenetic protein; HDAC, Histone
deacetylase.
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markers such as OCT4, SOX2, and NANOG, the induction of

cellular senescence, and the decline of the proliferative capacities of

CSCs in tumors (263). In another study, it was shown that

inhibition of autophagy by knockdown of ATG7 or BECN1

modified the CD44+/CD24low/- (stem cell phenotype) population

of breast cancer cells by regulating CD24 and IL-6 secretion (264).

Indeed, IL-6 secretion was crucial for CSC maintenance,

mammosphere formation, and conversion of non-CSCs into

CSCs in different breast cell lines and a prostate cell line (264,

265). Moreover, autophagy inhibition decreased the secretion of IL-

6 (264), most likely via JAK2/STAT3 signaling pathway, which was

preferentially active in breast cancer cells compared with other

tumor cell types (266). It is worth noting that, STAT3 has been

reported to regulate the expression of multiple autophagy genes,

including ATG3, BECN1, and BNIP3 (267). In a study involving a

mouse model of breast CSCs two distinct signaling pathways were

identified (268) (Figure 2). Yeo and colleagues isolated two

subpopulations of breast CSCs, one luminal one (ALDH+) and

one mesenchymal one (CD29high/CD61+). Intriguingly, stemness

markers (ALDH, CD29, CD61) were downregulated in both

populations following depletion of FIP200 (a component of ULK1

complex), which was correlated with decreased EGFR/STAT3 and

TGF beta/SMAD signaling (268). Taken together, these findings

indicate that the activation of STAT3 signaling could play an

important role in the development of CSCs.
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Other research suggested that the fate of various CSCs could

also be regulated by FoxO3a protein, a member of the Forkhead box

O protein family. Indeed, the modulation of FoxO3a in breast

cancer, affected CSC markers expression and had an impact on the

formation of mammospheres as well as breast cancer-initiating

potential (269). Moreover, the knockdown of FoxO3a led to an

increase in the self-renewal capacity of the prostate, colorectal, and

ovarian cancer stem cells as well as their tumorigenic potential

(270–272). FoxO3a, which integrates the signals from Akt and Erk

pathways, also plays a pivotal role in the control of differentiation

and tumorigenicity of glioma CSCs (273). Several studies showed

that FoxO transcription factors (including FoxO3a) are able to

induce the expression of multiple ATG genes (267). Additionally,

cytosolic FoxOs are able to regulate autophagy by interacting

directly with cytosolic autophagy protein (267)(Figure 2).

Nevertheless, further investigation is necessary to understand how

FoxO-dependent autophagy and FoxO-dependent regulation of

stemness are interrelated in tumorigenesis. Recently, a new link

between autophagy and stemness was discovered, showing that

Forkhead box A2 (FOXA2) is highly expressed in ovarian CSCs and

modulates autophagy. Inhibition of autophagy induces FOXA2

downregulation and impairment of the self-renewal ability of

ovarian CSCs.
TABLE 3 Current therapies targeting cancer stem cell pathways.

Therapy Targeted
Pathway(s)

Cancer Type(s) Publication/
Trial

Notch
inhibitors

Notch signaling
pathway

Various solid tumors (223–225)

Hedgehog
inhibitors

Hedgehog
signaling
pathway

Basal cell carcinoma,
medulloblastoma

(223, 226–229)

VEGF
inhibitors

VEGF studies (230–232)

ALDH
inhibitors

ALDH enzyme Breast cancer, lung
cancer, etc.

(223, 233)

CD44-
targeted
therapy

CD44 protein Breast cancer,
pancreatic cancer

(223, 234)

BMI1
inhibitors

BMI1 gene/
protein

Various solid tumors,
leukemias

(223, 235)

STAT3
inhibitors

STAT3
signalling
pathway

Glioblastoma, breast
cancer, colorectal
cancer

(223, 236–239)

Wnt
pathway
inhibitors

Wnt signalling
pathway

Colorectal cancer (240–247)

CXCR1/2
inhibitors

CXCR1 and
CXCR2
receptors

Colorectal cancer,
pancreatic cancer

(248, 249)
VEGF, vascular endothelial growth factor; ALDH, Aldehyde Dehydrogenase; CD44, Cluster of
Differentiation 44; BMI1, B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1;
STAT3, signal transducer and activator of transcription-3; Wnt, windless/integrated; CXCR1/
2 C-X-C chemokine receptor type ½.
FIGURE 2

Hypoxia activated pathways in cancer stem cells. HIF-1a activates
AKT via PI3-Kinase, leading to the activation of mTOR-C1, AMPK and
FOXO activation by HIF-1a leads to inhibition of mTORC1 and
autophagy activation. Hypoxia activates the JAK/STAT pathway via
HIF-1a resulting in the activation of autophagy and cancer stem
cells maintenance/generation.
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In glioblastoma, several regulators of autophagy are highly

expressed in tumors with a mesenchymal signature. Notably, the

key regulator of selective autophagy p62/SQSTM1 and DNA

damage-regulated autophagy modulator 1 (DRAM1) are both

highly expressed in glioma CSCs (GSCs). Knockdown of DRAM1

and p62/SQSTM1 in GSCs leads to alteration of cellular

bioenergetics and inhibits their migratory and invasive abilities.

Moreover, these data suggest that the RAS/MAPK pathway may

positively modulate autophagy in GSCs (274). However, other

studies indicate that autophagy can regulate the differentiation of

GSCs. The enhancement of autophagy promotes differentiation,

whereas inhibition of autophagy suppresses differentiation (275,

276). Thus, it is unclear whether autophagy regulates stemness in

glioma stem cells and it requires further elucidation.

Interestingly, in hematological malignancies, autophagy’s

function could be reversed depending on the type of progenitors

and the state of leukemia expansion (tumor initiation vs

progression). In chronic myeloid leukemia (CML), inhibition of

autophagy by silencing ATG7 or ATG4B curbs the expansion of

CML CD34+ stem/progenitor cells (277, 278). Conversely, in acute

myeloid leukemia (AML), monoallelic loss of a key autophagy gene

Atg5 is sufficient to accelerate the disease progression and

aggressiveness in a mouse AML model (279). Altogether, this

evidence highlights that CSCs are often characterized by an

increase in autophagy that maintains their pluripotency.

However, different signaling pathways could be responsible for

autophagy-dependent CSCs maintenance. Probably the

mechanisms that underlie these activities depend on the cell type

or malignancy degree. Therefore, the governing role of autophagy in

CSCs is complex, and additional research is necessary.
8 Targeting cancer stem cells
is a promising approach to
cancer treatment

CSCs are accountable for not only the formation, progression,

and spread of tumors but also for resistance to treatment. Therefore,

targeting CSCs specifically may be an appropriate approach to

combat cancer. Because CSCs are used as a detection index, the

availability of assays that allow detection and identification of CSCs

after tumor initiation is of high relevance to guide treatment

modalities. Furthermore, as chemotherapy or radiotherapy are

known to target dividing cells, development of improved

screening and targeting strategies could bring new perspectives to

cancer exploration and cancer therapy (Table 2). While targeting

CSCs holds promise, it also presents significant challenges. The

development of therapies that selectively target CSCs without

affecting normal stem cells remains a huge challenge. The

identification and isolation of CSCs can be complex due to their

heterogeneity and dynamic nature. However, the pursuit of CSC-

targeted therapies in the context of hypoxic cancer environments

presents an exciting avenue for advancing cancer treatment

strategies and improving patient outcomes. In hypoxic cancer
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environments, targeting cancer stem cells (CSCs) has gained

considerable attention as a promising approach to cancer

treatment due to the following facts:
1. CSCs Contribute to Tumor Progression and Recurrence:

Cancer stem cells are thought to be responsible for

initiating tumors, driving their growth, and contributing

to disease recurrence after treatment. They possess self-

renewal and differentiation capabilities, allowing them to

regenerate the entire tumor hierarchy. Targeting CSCs aims

to disrupt this regenerative potential and halt tumor

progression.

2. Resistance to Conventional Therapies: CSCs have been

shown to exhibit increased resistance to various

conventional cancer treatments, such as chemotherapy

and radiation therapy. This resistance is due to their

slow-cycling nature, enhanced DNA repair mechanisms,

and expression of drug efflux transporters. By targeting

CSCs, researchers aim to overcome the limitations posed by

treatment-resistant cell populations.

3. Tumor Heterogeneity and Plasticity: Hypoxic environments

in tumors can promote genetic and phenotypic

heterogeneity, contributing to therapy resistance. CSCs

are often associated with this heterogeneity and plasticity,

making them a key target for therapy to prevent the

emergence of treatment-resistant cell populations.

4. Microenvironmental Adaptation: CSCs are known to adapt

to the hypoxic tumor microenvironment by upregulating

hypoxia-inducible factors (HIFs) and other survival

mechanisms. Targeting these adaptations can sensitize

CSCs to therapy and disrupt their ability to survive under

adverse conditions.

5. Reducing Relapse: Eliminating CSCs can reduce the

likelihood of disease relapse. If CSCs are not effectively

targeted, they can remain dormant and later give rise to new

tumors, contributing to relapse and metastasis.

6. Long-Term Treatment Efficacy: By targeting CSCs, the goal

is to achieve long-term treatment efficacy by eradicating the

cell population responsible for initiating and sustaining the

disease. This approach could lead to more durable

responses and improved patient outcomes.

7. Combination Strategies: Targeting CSCs can be combined

with conventional therapies to create synergistic effects. By

targeting both the bulk of the tumor and the CSC

subpopulation, treatment effectiveness may be enhanced.

8. Personalized Medicine: Understanding the molecular

characteristics of CSCs and their responses to hypoxia

can facilitate the development of personalized treatment

strategies. Tailoring treatments to target CSCs based on

individual patient profiles could enhance treatment

outcomes.

9. Emerging Therapeutic Approaches: Researchers are actively

exploring innovative approaches to target CSCs, including
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Fron
the use of specific antibodies, nanoparticles, gene therapies,

and small molecules that inhibit key signaling pathways

responsible for CSC maintenance.

10. Advancements in Research: As our understanding of CSC

biology and the impact of hypoxia on these cells improves,

more precise and effective targeting strategies can be

developed.
Shown in Table 2 are examples of approaches developed to

target and eradicate cancer stem cells and in Table 3 are current

therapies targeting CSC pathways. By inhibiting signaling pathways

specific to cancer stem cells researchers can prevent cancer stem

cells from surviving and multiplying (223).

Developing immunotherapeutic approaches to target specific

markers on cancer stem cells could be highly effective (280–283),

however, it is important to note that as CSCs and normal stem cells

share common markers, these types of treatments may result in

adverse non desirable effects and therefore would have to be

addressed prior to execution. Through differentiation therapy

CSCs are induced to differentiate into non-tumorigenic cells. By

doing so, researchers can prevent cancer stem cells from

proliferating and spreading (284–286). The use of natural

compounds such as curcumin, resveratrol, and sulforaphane are

being investigated for their potential as CSCs targeting agents

because they have been shown to have anti-CSCs properties

(287). Finally, nanoparticles can be designed to selectively target

CSCs for direct delivery of therapeutic agents resulting in improved

efficacy and reduced toxicity (288–290).
9 Targeting quiescence as a novel
cancer stem cell targeting strategy

Another potential strategy to target CSCs is by inducing them to

exit their quiescent state, which is a state of dormancy that allows

CSCs to resist chemotherapy and radiation and enter the cell cycle

(291). By targeting quiescence, it may be possible to sensitize CSCs to

conventional therapies and reduce the risk of tumor recurrence.

Several approaches have been proposed to target quiescence in CSCs.

One strategy is using drugs to target the signaling pathways that

regulate quiescence, such as the Notch, Wnt (223), and Hedgehog

pathways. Another approach is to use drugs that interfere with the

interactions between CSCs and their microenvironment, which play a

critical role in maintaining CSC quiescence (292–294). In addition to

drug-based approaches, physical and mechanical cues can also be

used to target CSC quiescence. For example, mechanical stress or

compression can induce CSCs to exit their quiescent state and

become more susceptible to chemotherapy. Another approach is to

target the unique metabolic features of quiescent CSCs. CSCs

generate energy mainly through glycolysis, (Warburg effect) and

this results in rapid ATP production, in the presence of abundant

glucose. As quiescent cells they have different metabolic requirements

than proliferating cells, which can be exploited for therapy. For

example, targeting the metabolism of quiescent CSCs with drugs

that inhibit mitochondrial metabolism or fatty acid oxidation has
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been shown to selectively kill these cells (295). Overall, targeting

quiescence represents a promising strategy for destroying CSCs and

improving the effectiveness of conventional cancer therapies.

However, more research is needed to fully understand the

mechanisms underlying CSC quiescence and to develop effective

strategies for targeting this state. While there is still much to learn

about CSC biology and quiescence, ongoing research in this area

holds great promise for the future of cancer treatment.
10 Novel therapies for targeting CSCs
in the tumor microenvironment and
future perspectives

Despite significant efforts and progress made in comprehending

cancer over the years, the fact remains that tumors can relapse,

metastasize, and recur. While the discovery that tumors possess a

heterogeneous population of cells, a subset of which with stem cell-

like characteristics, was fascinating and promising, their actual

significance in clinical settings was still uncertain. Numerous

studies provided increasing evidence for the clinical significance

of CSCs and for the important role of hypoxia in supporting

stemness. Given CSCs presence in tumors, it is reasonable to

assume that targeting them could be the most effective approach

to achieve complete cancer elimination. In 2016, Piero and

Debashish demonstrated that stem cells make up 4 to 7% of the

cells within colorectal tumors, and that patients with this

population have a greater likelihood of relapse, even in the

second stage of the disease. Furthermore, chemotherapy does not

appear to benefit these patients (296). Therefore, developing a more

effective method to analyze CSCs within a tumor will be important.

Many pathways that CSCs utilize for their survival have been

identified and studied and they present a viable option as cancer

therapy targets. Clinical trials are underway to assess the

effectiveness of agents targeting stemness pathways, such as Wnt,

TGFb, Notch, Hedgehog, and JAK/STAT, for a broad spectrum of

cancers. These agents are being evaluated alone or in combination

with conventional therapies, with the goal of completely eradicating

the cancer (Tables 2, 3) (297).
11 Conclusion

The cellular and metabolic TME is currently attracting a lot of

interest given its key role in carcinogenesis. In addition, strong

evidence has been provided indicating that tumor heterogeneity

represents a serious obstacle for therapy. Carcinogenesis and

resistance mechanisms seem to be overlapping, carcinogenesis

could endow cells with resistance, but resistance may not dictate

carcinogenesis, and to determine conclusively if one mechanism

contributes solely to carcinogenesis or resistance exclusively would

have to be tested in one context excluding the other, which is not

usually tested as most research assumes overlap of the two. Hypoxia

clearly can exert several effects on the emergence and function of

cancer stem cells, that play roles in both carcinogenesis and
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resistance. In this respect, the microenvironmental hypoxia is able to

induce the alteration of gene expression, and HIF proteins can

modulate several CSCs characteristics. It has been reported that

microenvironmental hypoxia is able to mediate its effects by several

potential mechanisms: altering gene expression, the activation of

oncogenes, inactivation of tumor suppressor genes, reducing genomic

stability and clonal selection. Significant scientific efforts are currently

dedicated to understanding the complexity of the crosstalk between

the tumor and its hostile hypoxic microenvironment in order to avoid

tolerance and attenuate resistance of the tumor cells.

Here we briefly reviewed the current advances in the

understanding of hypoxia and its role in stemness acquisition and

how tumor hypoxia and its associated pathways may interfere with

CSCs plasticity that impacts their phenotype and function and how it

may offer a potential target that could be exploited therapeutically.

Clearly, CSC are of particular interest because they are believed to be

the clonogenic core of the tumor and therefore represent the cell

population that drives growth and progression. We believe that a better

elucidation of the hypoxia inducing stemness can clearly help the

design of more adapted anti-cancer therapies approaches. This review

could help the design of innovative therapeutic treatment approaches

by considering the interlink between TME and CSC plasticity and may

also contribute to further understand the huge complexity of tumor

plasticity in response to anti-cancer therapies. Therefore, the putative

targeting of the hypoxic CSC niche would be highly effective for

controlling tumor metastasis and dormant CSCs. Thus, it would be

of paramount importance to identify potential actionable targets. The

challenging targeting of tumor stemness in the context of TME

complexity remains, however, a considerable challenge.
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