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therapy target for liver
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Background: Liver cancer is a leading cause of cancer-related deaths worldwide.

Lysosomal dysfunction is implicated in cancer progression; however, prognostic

prediction models based on lysosome-related genes (LRGs) are lacking in liver

cancer. This study aimed to establish an LRG-based model to improve prognosis

prediction and explore potential therapeutic targets in liver cancer.

Methods: Expression profiles of 61 LRGs were analyzed in The Cancer Genome

Atlas liver cancer cohorts. There were 14 LRGs identified, and their association

with clinical outcomes was evaluated. Unsupervised clustering, Cox regression,

and functional assays were performed.

Results: Patients were classified into high-risk and low-risk subgroups based on

the 14 LRGs. The high-risk group had significantly worse overall survival. Aberrant

immune infiltration and checkpoint expression were observed in the high-risk

group. Furthermore, HPS4was identified as an independent prognostic indicator.

Knockdown of HPS4 suppressed liver cancer cell proliferation and induced

apoptosis.

Conclusion: This study developed an LRG-based prognostic model to improve

risk stratification in liver cancer. The potential value of HPS4 as a therapeutic

target and biomarker was demonstrated. Regulation of HPS4 may offer novel

strategies for precision treatment in liver cancer patients.

KEYWORDS
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1 Introduction

Globally, LIHC ranks sixth among the most common cancers

(1, 2). There are projected to be more than one million cases of liver

cancer by 2030 (3). The number of patients who die from LIHC

each year exceeds half a million (4). In the early stages, LIHC has no

symptoms but rapidly progresses (5). At present, LIHC is mainly

treated with liver transplantation, hepatic resection, and medication

(6). LIHC can be surgically excised in only 10%–20% of patients, but

recurrences are common (7). The current drug therapy has limited

efficacy for LIHC because it is chemoresistant (8, 9). Despite the

application of new treatment strategies for LIHC, efficacy remains

unsatisfactory (10). Thus, identification of specific prognostic

markers is essential for guiding LIHC therapy and improving OS

of patients.

In all types of cells, lysosomes are membrane-bound

phospholipid bilayers that catabolize protein degradation and

recycle it through phagocytosis, endocytosis, and autophagy (11–

13). It has been reported that lysosome functions are drastically

altered during cancer progression, including alterations in lysosome

volume, localization, and composition within the cell (14, 15). In

addition, lysosomes have been found to be routed to the periphery

of the cell under multiple stimuli that can result in a variety of

pathological conditions (11). In malignant transformations,

lysosomes are juxtaposed to the plasma membrane, which

contributes to cell invasion and migration (16, 17). A number of

cancers show significant overexpression of lysosomal hydrolases,

which increases invasion of tumor. TMEM106B has been reported

to increase lysosomal hydrolase synthesis in lung cancer cells, which

is packaged into lysosomes and enlarge lysosomes (11). A

hyperinvasive microenvironment is created as lysosomes secrete

their protease cargo into the extracellular matrix under conditions

of calcium flux (18–20).

We identified 14 genes out of 61 lysosome-related genes (LRGs)

as significant predictors in LIHC. The 14 genes are ANKRD27,

AP3M1, BCL10, CD63, CTSC, GLA, HPS1, HPS4, NPC2, PPT1,

RAB7A, TPP1, VPS45, and RAMP3. The 14 lysosome-related genes

were screened to classify molecular subgroups by NMF consensus

clustering. The patients of LIHC from TCGA data were divided into

C1 and C2 clusters. In addition, we explored that the most common

CNVs are heterozygous amplifications and deletions of genes based

on the LRGs. Further analysis of the pathway prediction and

methylation was performed. An OS prognostic signature was

constructed using LASSO regression analysis based on the LRGs.

As an external verification database, we used the ICGC-LIHC

cohorts for training the prognosis model.

We further explored the association between LRGs, immune

checkpoints, and immune cells. Moreover, the TIDE scores of group

G1 were significantly higher than those of group G2. The

chemotherapy response in the two subtypes was also explored by

comparing the IC50s of doxorubicin and cisplatin. We developed

the nomogram by the univariate Cox regression model. Our result

demonstrated that HPS4 and a worse prognosis are strongly

associated with LIHC. We further explored the relation between

HPS4 and immune cells based on eight single-cell datasets. We
Frontiers in Oncology 02
found that HPS4 could reduce proliferation and apoptosis

significantly in liver cancer cells; it may be a promising

therapeutic target and biomarker for LIHC, and regulating its

activity may be an effective treatment strategy.
2 Materials and methods

2.1 Differential expression analysis of LRGs

We obtained 61 LRGs from the MSigDB (Supplementary

Table 1). Expression profiles and clinical information for LIHC

are provided via TCGA dataset (Supplementary Table 2). The raw

read counts of genes were converted to transcripts per million

(TPM) using STAR. Further analysis of LRG expression in LIHC

was carried out using version R 3.6.3 and ggplot2. Our statistical

significance criterion of log2(fold change) > 2 and adjusted p-value

<0.05 indicated a significant difference.
2.2 Nomogram construction

Our goal was to identify the right terms for the nomogram by

using univariate Cox regression analysis. For each variable, we

calculated p values, HRs, and 95% confidence intervals using the

“forestplot” R package. In order to predict 1-, 3-, and 5-year overall

recurrence, a nomogram was developed using univariate Cox

proportional hazards analysis. An individual’s recurrence risk can

be calculated using nomograms by the “rms” R package.
2.3 The association between LRGs and
gene mutation, CNV

Data about somatic mutations were provided by the UCSC

Xena server for the GDC TCGA-LIHC project. According to the

mutation order, the result was generated using the R package

“maftools”. Data from TCGA database were downloaded and

processed using GISTIC2.0, which can identify regions

significantly altered including amplification and deletion.
2.4 The analysis of correlation between
LRGs and immune infiltration

A TCGA dataset was downloaded to obtain LIHC clinical

information and RNA sequencing profiles (level 3). LRG gene

expression was correlated with immune scores using R’s

ggstatsplot package, and multigene correlations were analyzed

using R’s pheatmap package. To describe correlations between

quantitative variables that do not follow a normal distribution,

Spearman’s correlation analysis was used. R was used to implement

all the analysis methods, and a statistical significance level below

0.05 was considered statistically significant.
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2.5 Construct prognostic signature of LRGs

A TCGA dataset was downloaded to obtain LIHC clinical

information and RNA sequencing profiles (level 3). In addition to

converting count data to TPM, log2 (TPM+1) is normalized; it is

important to keep samples together that contain information

about the patient’s clinical status. A log-rank test was used to

compare survival rates between the two groups. TimeROC (v0.4)

was used to compare predictive accuracy between LRGs and risk

scores. The features were selected using LASSO regression, cross-

validated 10 times, and analyzed with the R package glmnet. With

the survival package and Cox regression analysis, a prognostic

model was constructed. We generated Kaplan–Meier curves with

log-rank p-values and 95% confidence intervals (CIs) using log-

rank tests. R was used to implement all the analysis methods, and a

statistical significance level below 0.05 was considered

statistically significant.
2.6 Identification of potential subtypes

80% of the samples were analyzed 100 t imes by

ConsensusClusterPlus R package (v1.54.0). Using the R software

package pheatmap (v1.0.12), we generated cluster heatmaps.

Heatmaps showing gene expression were retained for genes with

SD over 0.1. When the input gene number exceeded 1,000 after

sorting the SD, the top 25% were extracted. All analysis methods

and R packages were implemented in R version 4.0.3. 80% of TCGA

LIHC samples (n = 371) were used as a discovery cohort to identify

molecular subgroups. The remaining 20% of samples (n = 93) were

held out as an internal validation set, to evaluate the reproducibility

of the subgroups. Consensus clustering was run on the 80%

discovery cohort, identifying two stable subgroups. These two

subgroups were confirmed by testing their ability to classify the

held-out 20% of samples.
2.7 The correlation between subtypes
and immune

Evaluation of immune scores was conducted using

immunedeconv. We extracted the expression of immune

checkpoints including HAVCR2, PDCD1, CTLA4, LAG3

SIGLEC15, TIGIT, CD274, and PDCD1LG2. We predicted

potential ICB responses using the TIDE algorithm and calculated

mRNAsi based on the OCLR algorithm (21). Based on the mRNA

expression signature, 11,774 genes are present in the gene

expression profile. In order to map the dryness index to the

range, the minimum value was subtracted and divided by the

maximum value. R was used to implement all the analysis

methods, and a statistical significance level below 0.05 was

considered statistically significant.
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2.8 The association of LRGs and
drug sensitivity

With the help of the Genomics of Drug Sensitivity in Cancer

(GDSC), we were able to predict chemotherapeutic response based

on each sample. A prediction process was implemented using R

package “pRRophetic”. The half-maximal inhibitory concentration

(IC50) of samples was calculated using ridge regression. Using the

batch effect of battle and tissue type, the duplicate gene expression

values were summed up as a mean. R was used to implement all the

analysis methods, and a statistical significance level below 0.05 was

considered statistically significant.
2.9 Cell culture and transfection

From Procell (Wuhan, China), SK-hep-1 and Huh7 cells were

obtained without mycoplasma infection. At 37°C with 5% CO2, the

SK-hep-1 and Huh7 cell lines were cultured in MEM (Gibco, Grand

Island, NY) and DMEM (Gibco), respectively. The medium

includes 10% fetal bovine serum (FBS; Gibco), 100 U/mL

penicillin, and 100 mg/mL streptomycin (Invitrogen, Waltham,

MA). We transfected si-HPS4 and si-NC using Lipofectamine

2000 (Invitrogen). The cells were harvested 24 h after transfection.
2.10 Cell proliferation and apoptosis

Cells transfected with si-HPS4 were seeded in cell culture plates,

5,000 cells per well. A colony formation assay was performed by

inoculating 500 cells into six-well plates and growing them at 37°C

for 15 days. Following fixing the colonies with methanol and

staining them with hematoxylin, TRIzol (Invitrogen) was used to

extract RNA from liver cancer cells. All of the primer sequences and

small interfering RNA sequences are listed in Supplementary

Table 2. A 48- h transfection of si-HPS4 or si-NC was followed

by harvesting of SK-hep-1 and Huh7 cells. The cells were then

stained with FITC Annexin V Apoptosis Detection Kit (Meilunbio,

Dalian, China) and detected using flow cytometry (Beckman

Coulter, Brea, CA). We analyzed the results using the FCAP

Array software. A triplicate of each trial was conducted.
2.11 Single-cell RNA sequencing-
based analysis

We further explored the correlation between HPS4 and

immune cells based on eight single-cell datasets by the TISCH2

resource (22). We next analyzed the expression of HPS4 in the

hepatocyte population and hepatocellular carcinoma cells by single-

cell and HCL resources (23). We further explored the gene

expression levels in all cancer single-cell samples by the

CancerSCEM resource (24).
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3 Results

3.1 Identification of prognostic
molecular subgroups

There were 14 genes out of 61 lysosome-related genes (LRGs)

identified as significant predictors in LIHC. Among them, 13 are

risk factors, namely, ANKRD27, AP3M1, BCL10, CD63, CTSC,

GLA, HPS1, HPS4, NPC2, PPT1, RAB7A, TPP1, and VPS45,

whereas RAMP3 is a favorable factor (Figure 1A). According to

their cumulative distribution function and function delta area, k = 2
Frontiers in Oncology 04
appeared to be the best clustering value for the 14 genes (Figure 1B).

Initially, the 14 lysosome-related genes were screened to classify

molecular subgroups by NMF consensus clustering. The patients of

LIHC from TCGA data were divided into C1 and C2 clusters

according to the consensus map (Figure 1C). Heat maps of

differentially expressed genes show red for high expression and

blue for low expression (Figure 1D). An additional confirmation

was obtained by performing a principal component analysis (PCA)

(Figure 1E). The log-rank test was used to examine the survival of

the different groups by utilizing Kaplan–Meier curves (p < 0.0001)

(Figure 1F). We found that cluster 2 had a worse clinical prognosis
B

C

D E

F

A

FIGURE 1

Clustering of molecular subgroup based on the lysosome-related genes (LRGs) in liver hepatocellular carcinoma (LIHC). (A) There were 14 genes out
of 61 LRGs identified as significant predictors in LIHC. (B) K = 2 appeared to be the best clustering value for 14 genes by cumulative distribution
function and function delta area. (C) There were 14 lysosome-related genes screened to classify molecular subgroups by NMF consensus clustering.
(D) Heat maps of differentially expressed genes between the C1 and C2 clusters. (E) Principal component analysis (PCA). (F) Cluster 2 had a worse
clinical prognosis compared with cluster 1. Statistical analyses were conducted by one-way ANOVA, principal component analysis, and log-rank test.
p < 0.05 was considered statistically significant.
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compared with cluster 1. Our result demonstrated that LRGs were

associated with drug sensitivity based on the CTRP and GDSC

resources (Supplementary Figure 1). The differential genes between

cluster G1 and G2 were further explored (Supplementary Figure 3).
3.2 Analysis of LRG copy number variations
and immune correlations

A comparison of LRG expression between normal and tumor

tissues was performed in LIHC. The LRG expression in tumors was

obviously higher than in normal tissues, whereas RAMP3 expression

was significantly lower in tumors (Figures 2A, C). A strong
Frontiers in Oncology 05
correlation was observed according to LRG expression, such as

RAB7A and AP3M1 which are most correlated (r = 0.72)

(Figure 2B). There was a significant positive correlation between

CNV and mRNA expression in most LRGs (Figure 2D). The copy

number variation (CNV) is prevalent in human cancers, contributing

to tumor development. We found that the most common CNVs are

heterozygous amplifications and deletions of genes, whereas

homozygous amplifications and deletions are much less common

(Figures 2E, G, H). The impact of tumor CNV levels on immune

evasion is particularly intriguing. Analyzing the differences in

immune infiltration between gene-set CNV groups, we estimate the

relationship between immune and gene- set CNV levels. In the

amplification group, NK cells, CD4 T cells, Tfh cells, Th2 cells,
B

C

D

E

F

G H

A

FIGURE 2

The copy number variation (CNV) of LRGs was correlated with immune cells. (A, C) A comparison of LRG expression between normal and tumor
tissues was performed in LIHC. (B) A strong correlation was observed according to the expression of LRGs. (D) There was a significant positive
correlation between CNV and most LRGs. (E, G, H) The most common CNVs are heterozygous amplifications and deletions of genes, whereas
homozygous amplifications and deletions are much less common based on the LRGs’ (F) The relationship between immune and gene set CNV level
was estimated. Statistical analyses were performed using t-test, Pearson correlation, and Fisher’s exact test. p < 0.05 was considered statistically
significant. **p < 0.01; ***p < 0.001.
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CD4 naïve cells, and macrophage, their infiltration scores all showed

a negative correlation with CNV, whereas that of Treg cells was

positively correlated with CNV in the group of amplification. The

macrophage, Tfh cell, and CD4 naïve cell infiltration scores were

negatively correlated with CNV in the group of deletion; however, the

B- cell score showed the opposite trend (Figure 2F).
3.3 Pathway enrichment analysis and DNA
methylation of LRGs

Further analysis of the CRGs’ GSVA (gene set variation

analysis) scores was performed. The GSVA is an unsupervised
Frontiers in Oncology 06
method for measuring variations in gene- set activity (represented

by GSVA scores) across cancer populations. By GSVA, the activity

of differential gene sets between tumor and normal samples is

analyzed. We found that the GSVA score was significantly increased

in LIHC (Figure 3A). There was a worse prognosis in LIHC for

patients with a high GSVA score (Figure 3B). In addition to the

GSVA score, we studied the correlation between tumor-related

pathways in the LIHC and the GSVA score. Our results

demonstrated that GSVA score was positively associated with

apoptosis and EMT pathway, and GSVA score was negatively

associated with hormone ER and RTK pathway (Figure 3C).

Additionally, LRG expression was associated with immune cell

infiltrates using Spearman’s correlation analysis. We found that
B C

D E F

G H

I

A

FIGURE 3

The analysis of pathway prediction and methylation. (A) The activity of differential gene sets between tumor and normal samples is analyzed based
on the GSVA (gene set variation analysis) scores. (B) There was a worse prognosis in LIHC for patients with a high GSVA score. (C) The correlation
between tumor-related pathways in LIHC and GSVA score was analyzed. (D) LRGs were associated with immune cell infiltrates using Spearman’s
correlation analysis. (E) The hypomethylation level was explored based on the LRGs. (F) The association between methylation and mRNA expression
was investigated. (G) The hypomethylation level of LRGs was associated with clinical prognosis. (H, I) The LRGs had a potential impact on pathway.
Statistical analyses included t-test, Pearson correlation, log-rank test, and enrichment analyses. p < 0.05 was considered statistically significant. *p <
0.05; #FDR ≤ 0.05.
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LRGs were negatively associated with Th17 cell, neutrophil, and

monocyte, whereas LRGs were positively associated with cytotoxic

cell, NK cell, Tfh cell, Treg cell, macrophage, CD8 T cell, Th1 cell,

NKT cell, and DC cell (Figure 3D). In addition, we found that PPT1,

HPS1, and RAMP3 were hypermethylated and CTSC, CD63, and

GLA have a hypomethylation level (Figure 3E). Methylation and

mRNA expressions were also investigated. We explored that most

of LRGs had a negative association with methylation including

ANKRD27, RAB7A, AP3M1, BCL10, NPC2, CTSC, HPS4, VPS45,

HPS1, PPT1, and CD63 whereas GLA had a positive association

with methylat ion (Figure 3F) . In the LIHC cohorts ,

hypomethylation of VPS45 had an association with a worse

prognosis whereas hypermethylation of GLA showed the opposite

situation (Figure 3G). Our results demonstrated that LRGs had

potential impact on pathways including the TSC/mTOR, RTK,

RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT, DNA

damage response, cell cycle, and apoptosis pathways. Most LRGs

could activate the apoptotic cell cycle and the EMT pathway,

inhibiting the RTK and TSC/mTOR pathways (Figures 3I, H).

Immunohistochemistry staining images from the HPA were

analyzed to further explore the LRG protein expression in LIHC.

Our results demonstrated that the expression of most LRG proteins

was higher in tumor tissues (Figure 4).
3.4 Development of an LRG-based
prognostic signature model

As part of this research, we evaluated the relationship between

LRGs and the prognosis of LIHC patients. Based on univariate Cox

regression, LRGs were selected for LASSO regression (Figures 5A,

C). An OS prognostic signature was constructed using LASSO

regression analysis for 10 genes of LRGs: risk score = (0.0817)

*BCL10+(0.0043)*CD63+(0.0601)*CTSC+(0.0502)*GLA
Frontiers in Oncology 07
+(−0.2469)*HPS4+(0.1112)*PPT1+(0.3027)*RAB7A+(-0.2508)

*RAMP3+(0.1498)*TPP1+(0.1685)*VPS45 (lambda.min = 0.0173).

There was a significant association between LRGs’ signature risk

score and poor overall survival in the study (HR = 2.312 (1.619–

3.301), log-rank p = 3.99e−06). In terms of AUCs, the 1-, 3-, and 5-

year ROC curves were accurate by 0.774, 0.737, and 0.723,

respectively. Survival of LIHC patients was significantly associated

with LRG-related risk signatures at the individual level (Figure 5E).

As an external verification database, we used the ICGC-LIHC

cohorts for training the prognosis model. Based on univariate

Cox regression, LRGs were selected for LASSO regression in the

ICGC-LIHC cohorts (Figures 5B, D). There was a significant

association between LRGs’ signature risk score and poor overall

survival in the ICGC-LIHC cohorts (HR = 3.696 (1.821–7.501),

log-rank p = 0.000296, Figure 5F). The association between

subtypes and ferroptosis and m6A was further performed

(Supplementary Figure 2). We also found that the relative

expression levels of macrophages were lower in the high-risk

group (Supplementary Figure 4).
3.5 Evaluation of subtype-specific immune
landscape and drug response

A comparison of LRG expression in the two subtypes was also

carried out. We found that most LRGs increased significantly in

group G1 whereas gene RAMP3 showed the opposite trend

(Figure 6A). In tumors with higher mRNAsi, the tumor has

dedifferentiated more and its cancer stem cells are more active.

With a better clinical prognosis, the G2 group had lower mRNAsi

scores whereas the G1 group had higher mRNAsi scores

(Figure 6B). Our results demonstrated that ANKRD27, AP3M1,

BCL10, CTSC, HPS1, HPS4, PPT1, RAB7A, TPP1, and RAMP3 had

a negative relation to immune infiltration of CD4 T cells using the
FIGURE 4

Immunohistochemistry staining images from the HPA resource were analyzed to further explore the LRGs protein expression in LIHC.
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EPIC algorithm. Moreover, ANKRD27, AP3M1, BCL10, CD63,

CTSC, GLA, HPS1, HPS4, NPC2, PPT1, RAB7A, TPP1, and VPS45

had a positive correlation with macrophage (Figure 6C).

Furthermore, the TIDE algorithm showed low efficacy of immune

checkpoint blockade therapy (ICB) based on high TIDE scores. As a

result, the TIDE scores of group G1 were significantly higher than

those of group G2 (Figure 6D). We found that subtypes had a

significant association with immune cells including B cell, CD4 T

cell, CD8 T cell, endothelial cell, macrophage, and NK cell.

Macrophages in the G1 group had lower immune scores than

those in the G2 group (Figure 6E). Furthermore, the subtypes

were significantly related to immune checkpoints, with the G1

group having a greater abundance of immune checkpoints than

the G2 group (Figure 6G). The chemotherapy response in the two

subtypes was further explored by comparing the IC50s of

doxorubicin and cisplatin. A significant decrease in chemotherapy

response was observed in G1 compared with G2 based on IC50 of

doxorubicin and cisplatin (Figures 6F, H).
Frontiers in Oncology 08
3.6 HPS4 as a potential therapeutic
target in LIHC

A univariate Cox regression model was used to develop the

nomogram (Figure 7A). On the basis of its c-index of 0.71, it

displayed relatively good predictive ability (Figure 7B). According

to the calibration plots, the predicted OS and observed OS at 1, 3,

and 5 years were well concordant (Figure 7C). As HPS4 and a worse

prognosis are strongly associated with LIHC, we further explored

whether HPS4 contributes to liver cancer proliferation. SK-hep-1

and Huh7 cells were treated with si-HPS4 to interfere with HPS4

expression (Figure 7D). Moreover, apoptosis could contribute to

tumor cell growth; the level of apoptosis in liver cancer cells was also

detected using flow cytometry. A significant increase in apoptotic

cells was observed when HPS4 was knocked down by si-HPS4

(Figure 7E). The interference of HPS4 with SK-hep-1 and Huh7

cells significantly decreased proliferation by the colony formation

assay (Figures 7F). Furthermore, we analyzed the association
B

C D

E F

A

FIGURE 5

Prognostic signature construction for LRGs. (A, C) Based on univariate Cox regression, LRGs were selected for LASSO regression. (B, D) As an
external verification database, we selected the ICGC-LIHC cohorts for training the prognosis model. (E) Survival of LIHC patients was significantly
associated with LRG-related risk signatures at the individual level in the TCGA-LIHC cohorts. (F) There was a significant association between LRGs’
signature risk score and poor overall survival in the ICGC-LIHC cohorts. Statistical analyses utilized LASSO regression, log-rank test, and time-
dependent ROC analysis. p < 0.05 was considered statistically significant.
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between HPS4 and a proliferation marker (MKI67). We found that

HPS4 was positively related to MKI67 (Figures 7G). Collectively,

HPS4 may be a promising therapeutic target and biomarker for

LIHC, and regulating its activity may be an effective

treatment strategy.
3.7 Analysis of single-cell RNA
sequencing data

We further explored the relation between HPS4 and immune

cells based on eight single-cell datasets. Our results demonstrated

that HPS4 had a significant correlation with CD8 T cell, B cell, and
Frontiers in Oncology 09
macrophage (Figure 8A). We next analyzed the expression of HPS4

in the hepatocyte population. We found that HPS4 was expressed in

cluster 1, cluster 3, cluster 6, cluster 8, cluster 10, cluster 11, and

cluster 17. Their corresponding cell populations are activated T cell,

sinusoidal endothelial cell, myeloid cell, dendritic cell, smooth

muscle ce l l , hepatocyte_APOA2 high, and epithel ia l

cell_SCGB3A1 high (Figures 8B–D). Similarly, we found that

HPS4 was also expressed in hepatocellular carcinoma cells

including HEP3B217, HUH6, JHH6, JHH7, LI7, SNU423, and

SNU449 (Figures 8E–G). The gene expression level was explored

in all cancer single-cell samples. HPS4 was highly expressed

in GBM, LUAD, PDAC, and AML rela t ive to other

tumors (Figure 8H).
B
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FIGURE 6

The subtypes had a correlation with immune and immune response. (A) A comparison of LRG expression in the two subtypes was also carried out.
(B) With a better clinical prognosis, the G2 group had lower mRNAsi scores. (C) LRGs were associated with immune infiltration by the EPIC
algorithm. (D) TIDE scores of group G1 were significantly higher than those of group G2. (E) The subtypes had a significant association with immune
cell. (G) The G1 group having a greater abundance of immune checkpoints than the G2 group. (F, H) The chemotherapy response in the two
subtypes was further explored by comparing the IC50s of doxorubicin and cisplatin. Statistical analyses were conducted by t-test, Pearson
correlation, log-rank test, and ANOVA. p < 0.05 was considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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4 Discussion

Globally, LIHC ranks sixth among the most common cancers.

Despite the application of new treatment strategies for LIHC,

efficacy remains unsatisfactory. Thus, identification of specific

prognostic markers is essential for guiding LIHC therapy and

improving OS of patients. It has been reported that lysosome

functions are drastically altered during cancer progression,

including alterations in lysosome volume, localization, and

composition within the cell. A number of cancers show

significant overexpression of lysosomal hydrolases, which

increases invasion of the tumor (11). It is therefore imperative to

understand how LRGs affect LIHC and determine if they serve as
Frontiers in Oncology 10
prognostic indicators. There has not been any reporting on a

prognostic model based on LRGs.

To verify the efficacy of lysosome-related genes on the prognosis

of hepatocellular carcinoma, we identified 14 genes out of 61

lysosome-related genes (LRGs) as significant predictors in LIHC.

The 14 genes are ANKRD27, AP3M1, BCL10, CD63, CTSC, GLA,

HPS1, HPS4, NPC2, PPT1, RAB7A, TPP1, VPS45, and RAMP3.

The 14 lysosome-related genes were screened to classify molecular

subgroups by NMF consensus clustering. The patients of LIHC

from TCGA data were divided into C1 and C2 clusters. We found

that cluster 2 had a worse clinical prognosis compared with cluster

1. In addition, we explored that most common CNVs are

heterozygous amplifications and deletions of genes based on the
B C
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A

FIGURE 7

Identifying HPS4 as novel therapy target for LIHC. (A) A univariate Cox regression model was used to develop the nomogram. (B) The nomogram
displayed relatively good predictive ability. (C) The predicted OS and observed OS at 1, 3, and 5 years. (D) SK-hep-1 and Huh7 cells were treated with
si-HPS4 to interfere with HPS4 expression. (E) A significant increase in apoptotic cells was observed when HPS4 was knocked down by si-HPS4.
(F) The interference of HPS4 with SK-hep-1 and Huh7 cells significantly decreased proliferation by the colony formation assay. (G) The association
between HPS4 and a proliferation marker (MKI67). Statistical analyses included Cox regression, log-rank test, t-test, and Pearson correlation. p <
0.05 was considered statistically significant. ***p < 0.001.
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LRGs. The impact of tumor CNV levels on immune evasion is

particularly intriguing. We also analyzed the differences in immune

infiltration between gene-set CNV groups. Further analysis of the

pathway prediction and methylation was performed. An OS

prognostic signature was constructed using LASSO regression

analysis based on the LRGs. As an external verification database,

we used the ICGC-LIHC cohorts for training the prognosis model.

Tumor-associated immune responses are regulated and

determined by immune cells in the tumor microenvironment

(25–27). We also explored the association between LRGs and

immune cells. According to some studies, declining CD4+ T cell
Frontiers in Oncology 11
counts can contribute to liver cancer development (28, 29), whereas

our results demonstrated that ANKRD27, AP3M1, BCL10, CTSC,

HPS1, HPS4, PPT1, RAB7A, TPP1, and RAMP3 had a negative

relation to immune infiltration of CD4 T cells using the EPIC

algorithm. We found that subtypes had a significant association

with immune cells including B cell, CD4 T cell, CD8 T cell,

endothelial cell, macrophage, and NK cell. Several cancer types

show a correlation between macrophage density and poor

prognosis, suggesting that macrophages play a key role in tumor

progression (30–32). Macrophages in the G1 group had lower

immune scores than those in the G2 group. Furthermore, the
B
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FIGURE 8

The analysis of single-cell RNA sequencing. (A) HPS4 had a significant correlation with CD8 T, B cell, and macrophage based on eight single-cell
datasets. (B–D) HPS4 was expressed in cluster 1, cluster 3, cluster 6, cluster 8, cluster 10, cluster 11, and cluster 17. Their corresponding cell
populations are activated T cell, sinusoidal endothelial cell, myeloid cell, dendritic cell, smooth muscle cell, hepatocyte_APOA2 high, and epithelial
cell_SCGB3A1 high. (E–G) HPS4 was also expressed in hepatocellular carcinoma cells including HEP3B217, HUH6, JHH6, JHH7, LI7, SNU423, and
SNU449. (H) The HPS4 expression level was explored in all cancer single-cell samples. Correlation, clustering, and differential expression analyses
were performed. p < 0.05 was considered statistically significant.
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TIDE algorithm showed low efficacy of immune checkpoint

blockade therapy (ICB) based on high TIDE scores (21, 33). As a

result, the TIDE scores of group G1 were significantly higher than

those of group G2. A profound advance in cancer therapy has come

from the discovery that immunocheckpoint molecules overexpress

in the tumor microenvironment and contribute to antitumor

immunity evasion (34–36). Furthermore, the subtypes were

significantly related to immune checkpoints, with the G1 group

having a greater abundance of immune checkpoints than the G2

group. The resistance to chemotherapy contributes significantly to

cancer mortality (37, 38). Thus, the chemotherapy response in the

two subtypes was further explored by comparing the IC50s of

doxorubicin and cisplatin. A significant decrease in chemotherapy

response was observed in G1 compared with G2 based on the IC50

of doxorubicin and cisplatin.

We developed the nomogram by the univariate Cox regression

model. Our result demonstrated that HPS4 and a worse prognosis

are strongly associated with LIHC. SK-hep-1 and Huh7 cells were

treated with si-HPS4 to interfere with HPS4 expression. The

interference of HPS4 with SK-hep-1 and Huh7 cells significantly

decreased proliferation and colony formation. Moreover, apoptosis

could contribute to tumor cell growth; the level of apoptosis in liver

cancer cells was also detected using flow cytometry. A significant

increase in apoptotic cells was observed when HPS4 was knocked

down by si-HPS4. We found that HPS4 was positively related to

MKI67 whereas MKI67 is an important marker of proliferation

(39). As a tool for studying cell types and states, single-cell RNA

sequencing (scRNA-seq) is becoming increasingly important. We

further explored the relation between HPS4 and immune cells

based on eight single-cell datasets. Our results demonstrated that

HPS4 had a significant correlation with CD8 T, B cell, and

macrophage. We found that the genes were mainly expressed in

activated T cell, sinusoidal endothelial cell, myeloid cell, dendritic

cell, smooth muscle cell, hepatocyte_APOA2 high, and epithelial

cell_SCGB3A1 high. Collectively, it turns out that HPS4 may be a

promising therapeutic target and biomarker for LIHC, and

regulating its activity may be an effective treatment strategy.

The study has some limitations. There is still a lack of

understanding of how HPS4 impacts proliferation or apoptosis of

liver cancer cells. This is our next endeavor to further explore how

HPS4 regulates LIHC in vivo and in vitro.
5 Conclusion

A prognostic model based on LRGs was developed in this

study to predict the prognosis of patients with LIHC. HPS4,

which could affect proliferation and apoptosis of liver cancer

cells, may be a promising therapeutic target and biomarker for

LIHC. HPS4 may be a promising therapeutic target and

biomarker for LIHC, and regulating its activity may be an

effective treatment strategy.
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SUPPLEMENTARY FIGURE 1

LRGs were associated with drug sensitivity based on the CTRP (a) and GDSC
resource (b). Statistical analysis was performed using Pearson correlation. P <

0.05 was considered statistically significant. *P < 0.05; **P < 0.01; *** P
< 0.001.

SUPPLEMENTARY FIGURE 2

The association between subtypes and ferroptosis and m6A. Enrichment
analysis and correlation tests were conducted. P < 0.05 was considered

statistically significant. *P < 0.05; **P < 0.01; *** P < 0.001.
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SUPPLEMENTARY FIGURE 3

The differential genes between cluster G1 and G2; (a) The volcano plot; (b)
heat map of differential genes; (c) Pathway enrichment analysis. P < 0.05 was

considered statistically significant. *P < 0.05; **P < 0.01; *** P < 0.001.
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SUPPLEMENTARY FIGURE 4

Correlation between high and low risk groups and immune cells. Correlation
analysis was conducted using Pearson correlation. P < 0.05 was considered

statistically significant. *P < 0.05; **P < 0.01; *** P < 0.001.
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