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Objective: To develop a deep learning (DL)model for predicting axillary lymph node

(ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.

Methods: A total of 271 US videos from 271 early breast cancer patients collected

from Xiang ’an Hospital of Xiamen University andShantou Central

Hospitabetween September 2019 and June 2021 were used as the training,

validation, and internal testing set (testing set A). Additionally, an independent

dataset of 49 US videos from 49 patients with breast cancer, collected from

Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was

used as an external testing set (testing set B). All ALN metastases were confirmed

using pathological examination. Three different convolutional neural networks

(CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the

models. The performance of the US video DL models was compared with that of

US static image DL models and axillary US examination performed by ultra-

sonographers. The performances of the DLmodels and ultra-sonographers were

evaluated based on accuracy, sensitivity, specificity, and area under the receiver

operating characteristic curve (AUC). Additionally, gradient class activation

mapping (Grad-CAM) technology was also used to enhance the interpretability

of the models.

Results: Among the three US video DL models, TIN showed the best

performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting

ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/

61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The

AUC of the US video DL model was superior to that of the US static image DL

model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology

confirmed the heatmap of the model, which highlighted important subregions

of the keyframe for ultra-sonographers’ review.
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Conclusion: A feasible and improved DL model to predict ALN metastasis from

breast cancer US video images was developed. The DL model in this study with

reliable interpretability would provide an early diagnostic strategy for the

appropriate management of axillary in the early breast cancer patients.
KEYWORDS

axillary lymph node metastasis, artificial intelligence, ultrasound video image, breast
lesion, deep learning model
Introduction

Breast cancer is the most commonly diagnosed cancer among

female malignancies worldwide and has become the leading cause

of cancer-related deaths (1). The involvement of axillary lymph

nodes (ALNs) is a crucial prognostic factor for breast cancer

patients, and accurate axillary staging is critical for evaluating the

disease status. Once ALN metastasis occurs, the clinical stage and

treatment regimen may change, which can significantly affect

patient prognosis (2, 3). However, the diagnosis of metastatic

ALNs from imaging can vary greatly depending on the imaging

results of different-level physicians/radiologists. Currently, the

standard procedure for diagnosing ALN status before surgery is

pathological examination of the lymph node obtained through

biopsy. Clearly, lymph node biopsy is an invasive procedure with

relatively complicated operation and is time-consuming (4–6).

Lymph nodes biopsy can probably cause complications such as

soft tissue infection, bleeding, seroma. Occasionally, it will cause the

subcutaneous effusion due to lymphatic fistula. In addition, the

technique has a false-negative rate ranging from 7.8% to 27.3%

(7–9).

General imaging studies a variety of non-invasive diagnostic

tools, including ultrasound (US) (10), magnetic resonance imaging

(MRI) (11), and mammography (12). Asian women, especially

young women, have denser breast tissue (13), and US has been

shown to be more suitable for the detection of breast lesions. Thus,

US is widely used as the first choice for breast disease screening due

to its convenience, non-invasiveness, real-time capabilities, absence

of radiation, and flexibility in performing ultrasound-guided

biopsies (14, 15). Usually, the US diagnosis of ALN is based on

the size or shape of the lymph node and the status of the lymphatic

gate, which can lead to significant variability due to the subjectivity

of examination and the interpretation skills of ultra-sonographers

(16). Previously, our group combined US findings and clinico-

pathological factors and accurately predicted probability of ALN

metastases. The model was further validated in a Dutch population

with predictive probability less than 12%. However, this approach is

still based on histopathological information including histological

grade, hormone receptor and Her2 status obtained from either core

needle biopsy or excision. Therefore, a new noninvasive method for

rapid, accurate, and objective evaluation of ALN metastasis in

breast cancer is urgently needed.
02
In recent years, artificial intelligence (AI) has been gradually

applied in breast imaging to improve workflows, perform automatic

image segmentation, enable intelligent diagnosis, and predict ALN

metastasis accurately (17–19). To avoid the complicated feature

extraction process and extract more abundant information from the

image, the deep learning (DL) method has been widely used in

medical image research in recent years (20, 21). DL transforms the

original image data into a higher-level, more abstract expression

through a hierarchical network and replaces the complex process of

manual extraction and feature design by obtaining hierarchical

feature information.

Current prediction models for ALN metastasis are based on

static two-dimensional ultrasound images. Sun et al. manually

delineated regions of interest (ROIs) on breast ultrasound images

and constructed deep learning models based on intratumor,

peritumor, and peritumor plus peritumor using the DenseNet

network (22). The results showed that the three deep learning

models had better prediction performance than their corresponding

radiomics models. Additionally, peri-tumor microenvironment

information can improve the accuracy of the ALN prediction

model performance.

A recent study reported the effectiveness of DL models using

three different networks to predict ALN metastasis in multicenter

breast cancer patients. The results showed that the diagnostic ability

of the DL model was also better than that of ultra-sonographers

(23). In another study, Zheng et al. used deep learning radiomics of

conventional ultrasound to extract depth features from static

images and shear wave elastography images and established a

deep learning image group model to predict ALN metastasis (24).

The diagnostic performance in predicting ALN status between

disease-free axilla and any axillary metastasis with an AUC of

0.902 (95% CI: 0.843-0.961). Therefore, deep learning has broad

application prospects in predicting the status of ALN metastasis in

breast cancer.

Previous studies were limited to analyzing ultrasound static

(single frame) images instead of sequential image acquisition of

video, which can cause the loss of many subtle or important US

lesion features in the keyframe, and even some subtle lesions may be

omitted (25). Additionally, hyperplastic glandular tissues or ribs

may be mistaken for masses, which can mislead the deep learning

model and result in misjudgment. Therefore, the aim of this study is

to construct a non-invasive, rapid, accurate, and objective
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prediction model of ALN metastasis in breast cancer patients based

on ultrasound video images. This model can guide the selection of

clinical tumor staging and surgical methods, thereby avoiding

unnecessary ALN biopsies in breast cancer patients. This study

aims to develop a DL model using videos that demonstrate

diagnostic performance comparable to that of experienced ultra-

sonographers. Unlike previous studies that relied on static images,

our model leverages the dynamic nature of video to capture more

subtle features of the breast and surrounding tissues. By

incorporating video data, we aim to improve the accuracy of ALN

metastasis prediction and reduce the need for invasive procedures

such as biopsy.
Materials and methods

Patients

This retrospective multicenter diagnostic study was approved

by the institutional review board of Xiang’an Hospital of Xiamen

University and Shantou Central Hospital, informed consent was

obtained from all participants (XAHLL2022060(2022) Research

041). Breast cancer US video data were acquired from 421

patients from Shantou Central Hospital, Guangdong, China, and

Xiang’an Hospital of Xiamen University, Fujian, China, from

September 2019 to June 2021. The inclusion criteria for the study

were as follows: (a) patients with breast cancer confirmed by

pathology; (b) clinical stage of T1-T2 and no distant metastasis;

(c) complete US videos of the breast lesions were obtained; (d)

patients without malignant tumors other than breast cancer; and (e)

no history of axillary surgery. The exclusion criteria were (a) ALN

involvement due to diseases other than breast cancer and (b)

treatment for breast cancer with hormonal therapy,

chemotherapy, or radiation therapy before surgery. The scanning
Frontiers in Oncology 03
and ultrasound diagnosis of the lesions was performed by ultra-

sonographers experienced in breast ultrasound diagnosis by using

the cross-plane screening method. Imaging data for the longitudinal

and transverse views of each lesion were stored in the ultrasound

equipment and then transferred to a hard disk for storage in a

picture archiving and communications system (PACS). A flowchart

describing the research process is shown in Figure 1.

Finally, 210 breast cancer US videos of 210 patients (121

without ALN metastasis and 89 with ALN metastasis) were used

as the training and validation set, and the other 61 US videos of

patients (34 without ALN metastasis and 27 with ALN metastasis)

were used as testing set A. Another independent testing set B

consisted of 49 breast cancer US videos of patients (38 without ALN

metastasis and 11 with ALN metastasis) from Shanghai’s tenth

Hospital of Tongji University, China, from July 2021 to April 2022.
Data analysis

Ultrasound examinations were performed by five ultra-

sonographers (two from Xiang’an Hospital of Xiamen University

and three from Shantou Central Hospital) who had 8-20 years of

experience in breast ultrasound. Ultrasound systems (GE

Healthcare, USA; Siemens, Munich, Germany; Philips,

Amsterdam, the Netherlands) were used to generate the

ultrasound images. Image quality control was done for all videos,

the L12-5 linear probe at a frequency of 12 MHz, the ultrasound

images were adjusted by gain, focus, and zoom as needed. We used

B-mode to examine the breast lesions and obtained transverse or

longitudinal images. After performing 2D US, the videos and some

single images with the fewest artifacts and the best quality was

chosen and stored image for analysis and all breast US images

extracted from systems were converted into DICOM format.

Women with breast disorders were referred for breast ultrasound
FIGURE 1

Patient recruitment workflow. In total, 271 US videos of 271 patients were included according to the inclusion criteria. The included patients were
examined by conventional US and had complete clinical information for this study.
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(BUS) and those with Breast Imaging Reporting And Data System,

BI-RADS) ≥4 had ultrasound-guided biopsy and surgical resection.
Deep learning model

All the clinical and pathologic data were obtained from the

medical records. Pathologic results of the breast cancer included

tumor clinical stage, tumor location, pathologic results of ALN

status and tumor type. Clinical data included patients age, tumor

size, BI-RADS category and pathologic results of ALN status with

and without metastasis were recorded.

The original breast ultrasound data obtained from the clinic was

relatively rough and there was a large amount of redundant

information such as equipment parameters and other information

around the imaging position. A series of pre-processing steps were

adopted to normalize the data before training models. The steps were

as follows: 1. Only the intermediate lesion position of the images was

retained by cropping and excluding marginal irrelevant information

and patient text data; 2. After adjusting the video to 256×256 pixels,

various complex sampling situations are simulated through random

horizontal flipping, elastic transformation, random cropping and other

data enhancement methods to enhance the data variety and model

generalization; 3. Scaled the video to 224×224 while the pixel values

were normalized to 0 ~ 1. Through a series of data augmentation

methods, the possibility that the input of the network was the same as

the image seen by the network before each training was significantly

reduced, and the diversity of data samples was further increased.
Interpretability of DL model

At present, CNNs are the most well-known type of DL in medical

image analysis (26). Our DLmodel mainly consisted of three modules

including feature extraction, feature fusion, and final classification

prediction, using the classical CNN network ResNet-3D as the

backbone (27), as shown in Figure 2. The basic network contained

five stages. The first stage was the preprocessing stage for the input,

including a simple convolutional layer and a max-pooling layer, and
Frontiers in Oncology 04
the subsequent four stages were composed of multiple residual blocks

to realize the core residual structure in ResNet. In the Feature Fusion

Module, unique interlaced offsets were provided for different frames

to fuse spatiotemporal information (28). In the training, we utilized

the widely adopted CrossEntropy Loss as the loss function in this

study, given its extensive application in various classification tasks

across the field. By employing the CrossEntropy Loss, which has

become a standard choice in such scenarios, we aimed to effectively

measure the disparity between predicted class probabilities and the

true labels, thus facilitating accurate model optimization.

H(p, q) = −oxp(x)logq(x) (1)

where p represents the true label and q represents the

predict value.

The network and code of this study were written and

implemented in Python using Pytorch. All deep learning algorithms

were trained in the same training setting and trained on the Linux

Server Ubuntu 18.04 LTS platform, GeForce RTX 3080 Ti GPU.

During the training process, the network weights were randomly

initialized and trained by the Adam optimizer, and the initial learning

rate was set to 1.0×10−4. We also trained the model on static images

for comparison, where the training process model was trained on

static images, using the same testing set (testing set A: 61 patients) as

the dynamic videos at inference time. 5-fold cross-validation was

made to make the experiment results more reliable and accurate. The

sample length T (Time channel) was set to 16 and the batch size was

set to 4, for a total of 300 training epochs. We selected three CNN

models of R2 + 1D (29), TIN (30) and ResNet-3D architectures for

comparison and analysis. For static image training, we used three

representative models ResNet, Inception V3, and VGG. The trained

DL models outputted the predicted probability of the presence of

lymph node metastasis according to US videos and chose the class of

the highest probability as the prediction result. The results were

measured based on the difference between the predicted output of

the best model trained by five-fold cross-validation and the true labels

of the testing set, and the corresponding accuracy, sensitivity,

specificity, ROC curves, and PR curves were calculated. In addition,

to better compare the performance of the models, we also compared

the results of dynamic videos with static images. Temporal Interlace
FIGURE 2

The overview of our DL model architecture. It mainly consists of three modules including feature extraction, feature fusion, and final classification prediction.
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Network (TIN) presents a simple but effective module for video

classification. TIN does not learn temporal features, but fuses

spatio-temporal information by interleaving spatial features from

past to future and future to past. A differentiable sub-module can

calculate the offset of the interleaved features in the time dimension,

and can rearrange the features according to the offset, so that each

group of features is displaced by a different distance in the time

dimension. Thus, 3D convolution is replaced by convenient and fast

feature displacement operation to realize information exchange

between adjacent frames. This makes the number of parameters and

computation of the network much lower than that of ordinary 3D

convolutional networks, making the network as a whole

quite lightweight.
Clinical application of DL model

To obtain ultra-sonographers’ predictive performance on the

independent testing set, we performed an independent evaluation in

testing set B. Three ultra-sonographers of different levels of

experience in breast ultrasound were trained in how to perform

predictive analysis based on some typical characteristics, such as the

size of the lesions and the presence of lymphatic gate invasion (31),

calcifications (32), architectural distortions (33), margin, cortical

morphologic features, cortical medulla thickness, and blood

flow (34, 35). The clinical real-time workflow consisted of

three components. First, the ultra-sonographers were blinded

to the pathological information of the axillary lymph node

while they were scanning the axilla. Second, they analyzed

some typical characteristics of breast cancer US images

with the use of the American College of Radiology Breast

Imaging Reporting and Data System (BI-RADS) (36). Third, the

ultra-sonographers conducted a reexamination of the patient’s US

video. They utilized the trained DL model to directly input the test

image into the model, which provided an immediate output

indicating the metastatic status of the ALNs. Finally, we

compared the performance of ultra-sonographers with the

DL model.
Model interpretation

In this study, we utilized Grad-CAM technology to improve the

interpretability of our models, which was crucial for clinical

applications. To generate the heatmap, we evaluated sites of

interest for subsequent clinical examination. For each video and

static image, we fed them into the fully trained model and obtained

the feature map of the final convolutional layer. Then, we calculated

the heatmap by running Grad-CAM on this feature map. We

mapped the resulting heatmaps to visualize the areas of the

keyframe of videos that were most indicative of lesions of

metastasis. As show in Figure 3 the best TIN model focuses

more on the location of the nodules than the other two models

and the characteristics of the nodules are the most important

basis for predicting whether the nodules will metastasize. The
Frontiers in Oncology 05
technology and details are presented in the Supplementary

Information section.
Statistical analysis

Differences between variable groups were analyzed using the

Mann-Whitney U test. The chi-square test was used to compare

rates between different groups. The performances of the three

algorithms were evaluated by AUC, as well as the accuracy

(ACC), sensitivity (SEN), specificity (SPE), positive predictive

value (PPV), and negative predictive value (NPV). Intraobserver

and interobserver agreements were compared using the Kappa

value. All statistical analyses were two-sided, and P< 0.05

was considered statistically significant. We performed all

statistical analyses using MedCalc (v.20.0.26; https://

www.medcalc.org, Copyright MedCalc Software Ltd), Python

software (v.3.8.5150.0; http://www.python.org), and SPSS software

for Windows (v.20.0).
Results

Patient population and
clinical characteristics

We studied a total of 421 breast lesions and finally enrolled 271

women with 271 malignant breast lesions for analysis. The average

patient age was 52.90 years (range, 26–87 years) for the training and

validation set and 53.31 years (range, 26–78 years) for testing set A.

Among them, 9 (3.32%) patients had noninvasive carcinoma, 242

(89.3%) patients had invasive ductal carcinomas, and 9 (3.32%) had

invasive lobular carcinomas. The mean tumor size was 0.23 cm

(0.21-0.24 cm) for the training and validation set and 0.20 cm (0.18

cm-0.22 cm) for testing set A. Of the 271 patients, 133 (49.08%) had

T1-stage tumors, and 138 (50.92%) had T2-stage tumors. The ALN

of 116 (42.80%) patients was metastasized, and 155 (57.20%)

patients had no lymph node metastasis. A detailed summary of

patient demographics and tumor characteristics is provided

in Table 1.
DL model-based US videos showed
better performance than DL
model-based static images

We used three deep learning networks, TIN, R2 + 1D, and

ResNet3D, to build the prediction model based on US videos. The

change curve of the loss function during the training of the dynamic

video model is shown in labels "A-D" of Figure 4. Additionally, we

also built the prediction model based on US static images using

ResNet50, InceptionV3, and VGG19 networks. Among the three

US video DL models, the TIN network showed the best

performance, with an accuracy, sensitivity, and specificity of

85.25% (52/61), 76.19% (16/21), and 90.00% (36/40), respectively.
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The AUC of the TIN model was better than that of the ResNet50

model (0.914, 95% CI: 0.843-0.985 vs. 0.856, 95% CI: 0.753-0.959,

P< 0.05), as shown in Figure 5. The ResNet50 network showed the

best performance among the US static image DL models, with an

accuracy, sensitivity, and specificity of 80.33% (49/61), 66.67% (14/

21), and 87.50% (35/40), respectively. The ResNet network is widely

recognized for its extensive adoption as a classical model, primarily

due to its incorporation of residual connections. These connections

play a vital role in facilitating the smooth propagation of gradients

and enhancing information flow across deeper layers.

Consequently, this effectively addresses the issue of vanishing

gradients. By leveraging this advantage, ResNet50 is capable of

training deeper networks while maintaining performance levels,

thereby capturing intricate features and achieving enhanced

accuracy. In general the training of static images ignores the

temporal correlation information between image frames, which is

crucial for the prediction of whether the lymph node is metastatic or

not, resulting in worse training results for the static image model.

Detailed performance of the US video DL model and US static

image model are provided in Table 2.
Frontiers in Oncology 06
DL model-based US videos achieved
equal performance compared
with ultra-sonographers

The performance of the US video DL model (TIN) in predicting

lymph node metastasis was compared with that of three breasts ultra-

sonographers with varying levels of experience using the pathological

reference standard. For independent testing set B, consisting of 49

lesions, the senior ultrasonographer had an accuracy of 79.59% (39/

49), the sensitivity of 63.64% (7/11), and specificity of 84.21% (32/38),

while the DL model had an accuracy of 83.67% (41/49), the sensitivity

of 54.55% (6/11), and specificity of 92.11% (35/38). As shown in

Table 3, the ROC curves for the DLmodel and the ultra-sonographers,

as seen in Figure 6, demonstrated that the ultra-sonographers achieved

AUCs of 0.609 to 0.726 based on image classification alone, while the

AUC of the DL model (TIN) was 0.773 (95% CI: 0.630-0.915, P<0.05),

which was equal to or slightly higher than that of the ultra-

sonographers with different levels of experience. However, there was

no statistically significant difference between the DL model and ultra-

sonographers. The external test set exhibits a distinct data distribution
FIGURE 3

The visual class activation diagram of the prediction results of dynamic video models. The brighter the color, the better the visibility of the model.
The best TIN model focuses more on the location of the nodules than the other two models, and the characteristics of the nodules are the most
important basis for predicting whether the nodules will metastasize.
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from the original test set, while test set B has a smaller data volume

in comparison to the initial test set. As a result, there is a slight

decrease in performance when evaluating test set B as compared to

test set A.
Model interpretation

The heatmaps generated by the US video DL model and US

static image model are shown in Figure 7. The green and blue
Frontiers in Oncology 07
backgrounds represent the low forecast range, while the darker the

feature color, the higher the attention of the model. This indicates

that the trained model accurately identifies the areas that contribute

the most to the final prediction result, which is also confirmed

by clinicians. The focus heatmap continues to highlight the

key elements in the current image, demonstrating that the

characteristics of malignant lesions have been well studied and

serve as the basis for LNM classification. These heatmaps have great

clinical value in guiding subsequent clinical examination and

treatment planning.
TABLE 1 Demographic Data for 271 Patients.

Characteristics Total Training and
Validation Sets Testing set A P-value

Total patients 271 210 (77.5%) 61 (22.5%)

Age 0.321

< 50 years old 88 (32.47%) 65 (30.95%) 23 (37.70%)

≥ 50 years old 183 (67.53%) 145 (69.05%) 38 (62.30%)

Tumor size (cm) 0.22 0.23 0.20 0.540

(0.21-0.23) (0.21-0.24) (0.18-0.22)

ALN of images 0.794

No lymph node metastasis 155 (57.20%) 121 (57.62%) 34 (55.74%)

Lymph node metastasis 116 (42.80%) 89 (42.38%) 27 (44.26%)

Clinical stage 0.548

T1 (≤ 20 mm) 133 (49.08%) 101 (53.46%) 32 (45.90%)

T2 (≥ 21 mm) 138 (50.92%) 109 (47.54%) 29 (54.10%)

Tumor location

Central 4 (1.48%) 3 (1.43%) 1 (1.64%) 0.739

Inner upper quadrant 91 (33.58%) 73 (34.76%) 18 (29.51%)

Outer upper quadrant 100 (36.90%) 73 (34.76%) 27 (44.26%)

Inner lower quadrant 28 (10.33%) 23 (10.95%) 5 (8.20%)

Outer lower quadrant 48 (17.71%) 38 (18.10%) 10 (16.39%)

BI-RADS category 0.457

4A 43 (15.87%) 31 (15.30%) 12 (19.67%)

4B 67 (24.72%) 49 (21.86%) 18 (29.51%)

4C 94 (34.69%) 77 (36.61%) 17 (27.87%)

5 67 (24.72%) 53 (26.23%) 14 (22.95%)

Tumor pathology 0.076

DCIS 4 (1.48%) 3 (1.43%) 1 (1.64%)

LCIS 2 (0.74%) 1 (0.48%) 1 (1.64%)

Invasive ductal 242 (89.30%) 189 (90.00%) 53 (86.88%)

Invasive lobular 9 (3.32%) 4 (1.90%) 5 (8.20%)

Other pathology types 14 (5.16%) 13 (6.19%) 1 (1.64%)
fron
DCIS, ductal carcinoma in situ; LCIS, Lobular carcinoma in situ.
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Discussion

For the past three decades, sentinel lymph node biopsy (SLNB)

has been established as a standard of care for clinical node-negative

breast cancer patients, allowing for the avoidance of axillary lymph

node dissection (ALND) when SLNs are not involved with metastases
Frontiers in Oncology 08
(37). Moreover, ALND can also be omitted in selected patients with

T1 or T2 breast cancer and fewer than two positive sentinel lymph

nodes who undergo breast-conserving surgery (38). However,

accurately predicting the metastatic status of ALN pre-operatively

and/or intra-operatively remains challenging, despite numerous

studies evaluating the risk of LN metastases. Therefore, there is a
B

C D

A

FIGURE 4

The figure shows the change curve of the loss function during the training of the dynamic video model. Subfigure (A, B) are Acc and loss curve for
300 training epoches. Subfigure (C, D) are Acc and loss curve for 300 validating epoches. TIN and ResNet converged well and stabilized at a small
value of 0.2-0.3 in 300 training rounds. R2 + 1D converges relatively, but the trend is not obvious enough and the convergence value is about 0.6,
which is a big gap. This also explains why its results on the test set are significantly lower than those of the other two models.
FIGURE 5

Comparison of receiver operating characteristic (ROC) curves between two models (video vs. static image) for predicting ALN metastasis.
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critical need to accurately predict the metastatic status of ALNs in a

non-invasive manner. In this study, we aimed to utilize DL models

with US video images in combination with clinicopathological factors

to achieve the goal of predicting lymph node metastasis.

US has shown great promise in the assessment of ALN status in

patients with early breast cancer, however, with the features of

unclear margins, irregular shapes, or loss of fatty hilum, only

visualized nodes can be analyzed and most of negative ALN with

micro metastasis or without suspicious imaging features are missed

(5). The accurate detection of lymph node micro metastasis is

essential for guiding surgical decision making, and adjuvant

therapy. Recent advances in AI models, such as DL technology,

have been applied to breast US imaging (18, 39), and some studies

have reported the effectiveness of DL models using a convolutional

neural network (CNN) for the prediction of clinical ALN

metastasis, with AUCs ranging from 0.72 to 0.89 (23, 40).

However, these studies were based solely on ultrasound static

(single frame) images, which may have resulted in the loss of

many subtle or important lesion features and even caused the

neglect of small lesions, as reported previously. In contrast, our

study analyzed US videos containing multiple frames of

images from the same patient while also considering the

correlation between different frames. For video processing,

additional temporal convolutions are employed. These

convolutions help capture motions and temporal dependencies
Frontiers in Oncology 09
across consecutive frames. They typically involve 3D

convolutions, where filters have both spatial and temporal

dimensions. These additional operations enable deep learning

models to capture temporal patterns, motion information, and

long-term dependencies (41, 42). By combining the features

between frames, the model to capture temporal relationships,

dependencies, and patterns that may not be apparent when

considering individual frames in isolation. As a result, the

inclusion of temporal information through feature fusion

enhances the overall performance of video-based tasks.

We demonstrated that our DL model achieved better

performance than static images previously studied, resulting in

higher accuracy (85.25% vs. 80.33%) and specificity (90.00% vs.

87.50%). Furthermore, compared to senior ultra-sonographers in

testing set B, the DL model also showed higher accuracy (83.67% vs.

79.59%) and specificity (92.11% vs. 84.21%). These significant

improvements suggest that this model may be useful in a clinical

setting for predicting lymph node metastasis, potentially assisting

ultra-sonographers in making decisions regarding appropriate

axillary rescanning. This DL model might have great potential to

serve as a noninvasively imaging biomarker to replace SLND and/or

ALND for patients with early-stage breast cancer. Especially, the

model could assist breast surgeons to make clinical decisions for

appropriate axillary management, e.g., omission of SLN biopsy in

the node negative patients.
TABLE 3 The performance of the DL models for predicting lymph node metastasis compared with the ultrasonographers.

Finding A (ALN) B (ALN) C (ALN) DL model (breast)

ACC (%) 67.35 (33/49) 73.47 (36/49) 79.59 (39/49) 83.67 (41/49)

SEN (%) 45.45 (5/11) 54.55 (6/11) 63.64 (7/11) 54.55 (6/11)

SPE (%) 73.68 (28/38) 78.94 (30/38) 84.21 (32/38) 92.11 (35/38)

PPV (%) 33.33 (5/15) 42.86 (6/14) 53.85 (7/13) 66.67 (6/9)

NPV (%) 82.35 (28/34) 85.71 (30/35) 88.89 (32/36) 87.50 (35/40)

Kappa 0.169 ± 0.148 0.305 ± 0.150 0.449 ± 0.147 0.499 ± 0.153
A, Junior; B, Attending; C, Senior; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
TABLE 2 The prediction of ALN status results (US video vs. US static image).

Image type Model
Testing set A (N=61)

ACC% SEN% SPE% PPV% NPV% F1-Score Kappa

US video TIN 85.25 (52/61) 76.19 (16/21) 90.00 (36/40) 80.00 (16/20) 87.8 (36/41) 0.7805 0.669

R2 + 1D 63.93 (39/61) 66.67 (14/21) 62.50 (25/40) 48.28 (14/19) 78.12 (25/32) 0.5600 0.627

ResNet3D 83.61 (51/61) 61.90 (13/21) 95.00 (38/40) 86.67 (13/15) 82.61 (38/46) 0.7222 0.610

US static image ResNet50 80.33 (49/61) 66.67 (14/21) 87.50 (35/40) 73.68 (14/19) 83.33 (35/42) 0.7000 0.554

InceptionV3 72.13 (44/61)
66.67
(14/21)

75.00 (30/40) 58.33 (14/24) 81.08 (30/37) 0.6220 0.403

VGG19 65.57 (40/61)
85.71
(18/21)

60.05 (22/40) 50.00 (18/36) 88.00 (22/25) 0.6320 0.348
front
US video models of R2 + 1D, TIN and ResNet-3D architectures, US static image models of ResNet50, InceptionV3 and VGG19 architectures.
ACC, accuracy; SEN, sensitivity, SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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To the best of our knowledge, our study is the first to

demonstrate the effectiveness of DL model in predicting ALN

metastases using ultrasound (US) video images. While previous

studies have used deep learning techniques for lymph node

classification, they mainly focused on magnetic resonance

imaging (MRI) images and CT (40, 43). Yu et al (44). developed
Frontiers in Oncology 10
an effective preoperative MRI radiomics evaluation methodology

for ALN status in patients with early-stage invasive breast cancer,

utilizing machine learning methods. A multiomic signature, which

combined tumor and lymph node MRI radiomics, clinical and

pathologic traits, and molecular subtypes, exhibited superior ALN

status prediction performance, with AUCs of 0.90, 0.91, and 0.93
FIGURE 6

Comparison of receiver operating characteristic (ROC) curves between the ultra-sonographers and DL model.
FIGURE 7

The visual activation diagram of the prediction results of the static image model. The brighter the place, the higher the model’s attention. It can be
seen that all models basically pay attention to the characteristics of the nodule area, but they are not concentrated enough. Among them, Inception
V3 and VGG19 models focus on the left side of the nodule, which also affects the final prediction results to some extent.
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across the training, external validation, and prospective-

retrospective validation cohorts respectively. Zhang et al (45), on

the other hand, established and verified a multiparametric MRI-

based radiomics nomogram for predicting axillary sentinel lymph

node (SLN) burden in early-stage breast cancer before treatment.

The developed radiomics nomogram, which integrated radiomics

signature and MRI-determined ALN burden, demonstrated good

calibration in predicting SLN burden, with AUCs of 0.82, 0.81, and

0.81 across the training, validation, and test cohorts respectively.

Wu et al (46). formulated and assessed non-invasive models

leveraging contrast-enhanced spectral mammography (CESM) to

estimate the risk of non-sentinel lymph node (NSLN) metastasis

and axillary tumor burden among breast cancer patients with 1-2

positive sentinel lymph nodes (SLNs). The radiomics nomogram

for NSLNmetastasis status prediction yielded an AUC of 0.85 in the

test set and 0.82 in the temporal validation set. Yang et al (46).

created a deep learning signature based on staging CT to

preoperatively predict sentinel lymph node metastasis in breast

cancer. The deep learning signature presented an impressive

discriminative capability, with an AUC of 0.801 in the primary

cohort and 0.817 in the validation cohort.

The use of US video images offers several advantages over MRI,

such as cost-effectiveness, wider availability, and no need for

contrast agent administration. Additionally, since the usual

practice involves ultrasound-guided biopsy after MRI findings,

our study further supports the potential of US images in

developing robust DL algorithms. These algorithms have practical

value in predicting lymph node status, assisting in decision-making,

and improving patient management.

Importantly, this DL model offers several advantages for

evaluating the status of ALNs. First, it can provide a probability

of ALN metastasis for input breast US video images, potentially

preventing misdiagnosis of axillary malignant lymph nodes by

junior ultra-sonographers with less than 5 years of experience.

Second, the interpretability of the DL model is increased through

the attention heatmap generated by CAM, which is a tool for

visualizing CNN networks. The attention heatmap allows us to

see which regions in the image were relevant to this class (47).

Therefore, we can infer which keyframe of the input videos is

focused on by the DL model using the attention heatmaps. Third,

the DL model’s performance allows rescanning of patients with

negative axillary lymph node ultrasound. The attention heatmap of

the metastatic nodes represented evidence of DL model

classification and could assist in clinical decision making by

directly identifying the ROI.

However, this study had several limitations. First, the DL model

was developed for predicting the probability of ALN metastasis in

early breast cancer patients with lesion ultrasonic videos. Ultra-

sonographers still need to identify lymph nodes on US and input

the videos. Second, this was a retrospective study, and the dataset

was limited. Some of the patients with negative lymph nodes may

have positive lymph nodes if followed up for a long enough time.

Third, this study was based on three centers, and more external

validation studies are necessary.
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In conclusion, based on US video images, we developed a

prediction model of ALN metastasis in early breast cancer

patients using deep learning approach and obtained

good performance in the independent external validation

cohort. The model may provide an effective diagnostic reference

for metastasis in early breast cancer patients clinical use.
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