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profiling of fecal metagenomes
for the early detection of
colorectal cancer

Xudong Wu1†, Zhimin Tang1†, Rongsong Zhao1, Yusi Wang2,
Xianshu Wang1, Side Liu2 and Hongzhi Zou1,3*

1Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China, 2Department of
Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China,
3Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic
Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen
University, Guangzhou, Guangdong, China
Objectives: This study aimed to identify colorectal cancer (CRC)-associated

phylogenetic and functional bacterial features by a large-scale metagenomic

sequencing and develop a binomial classifier to accurately distinguish between

CRC patients and healthy individuals.

Methods:We conducted shotgunmetagenomic analyses of fecal samples from a

ZhongShanMed discovery cohort of 121 CRC and 52 controls and SouthernMed

validation cohort of 67 CRC and 44 controls. Taxonomic profiling and

quantification were performed by direct sequence alignment against genome

taxonomy database (GTDB). High-quality reads were also aligned to IGC datasets

to obtain functional profiles defined by Kyoto Encyclopedia of Genes and

Genomes (KEGG). A least absolute shrinkage and selection operator (LASSO)

classifier was constructed to quantify risk scores of probability of disease and to

discriminate CRC from normal for discovery, validation, Fudan, GloriousMed, and

HongKong cohorts.

Results: A diverse spectrum of bacterial and fungi species were found to be

either enriched (368) or reduced (113) in CRC patients (q<0.05). Similarly,

metabolic functions associated with biosynthesis and metabolism of amino

acids and fatty acids were significantly altered (q<0.05). The LASSO regression

analysis of significant changes in the abundance of microbial species in CRC

achieved areas under the receiver operating characteristic curve (AUROCs) of

0.94 and 0.91 in the ZhongShanMed and SouthernMed cohorts, respectively. A

further analysis of Fudan, GloriousMed, and HK cohorts using the same

classification model also demonstrated AUROC of 0.80, 0.78, and 0.91,

respectively. Moreover, major CRC-associated bacterial biomarkers identified

in this study were found to be coherently enriched or depleted across 10

metagenomic sequencing studies of gut microbiota.
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Conclusion: A coherent signature of CRC-associated bacterial biomarkers

modeled on LASSO binomial classifier maybe used accurately for early

detection of CRC.
KEYWORDS

metagenomic sequencing, fecal microbiota, bacterial biomarker, microbial taxonomy,
functional pathways
1 Introduction

Colorectal cancer (CRC) ranks third in incidence and second in

mortality of all malignancies worldwide. It is predicted to surpass lung

cancer and breast cancer in incidence around 2030 and 2040,

respectively, to become the most dominant malignancy globally (1).

In 2016, the number of newly diagnosed cases and deaths reached

408,000 and 196,000 in China, makingCRC the secondmost common

malignancy and the fourth deadliest cancer in the country (2). Over

recent decades, CRC incidence and mortality rates have been

continuously rising as living standard improves and lifestyle changes.

Furthermore, over 50% of the new cases in China have been diagnosed

at advanced stage, leading to poor prognosis and survival (3). Several

approaches such as fecal immunochemical test (FIT), multitarget stool

DNA test, stool-based DNAmethylation test, and virtual colonoscopy

have been adopted for CRC detection and screening (4). Early

detection of CRC significantly reduces its mortality rate and hence

the disease burden of the malignancy.

In recent decade, CRC-associated microbial genera and

species have been identified by 16S rRNA or metagenomic

sequencing to be either enriched or depleted in fecal samples or

tissue specimens from CRC patients. Consistent composition

changes in gut microbiota have been identified by 16S rRNA

amplicon sequencing, and increased abundance of certain bacterial

genera has been reported in tumor tissues compared to adjacent

normal (5). Shah et al. analyzed the abundance of bacterial

species in stool and identified a dozen of effective bacterial genus

markers including Porphyromonas, Peptostreptococcus, Parvinonas,

Akkermansia, and Fusobacterium for CRC screening. More

importantly, a classifier constructed based on these microbial

markers and clinical information could discriminate CRC and

control with an area under the receiver operating characteristic curve

(AUROC) value of 0.833 (6). Most recently, Yang and colleagues

assessed fecal microbiota dysbiosis using 16S rRNA sequencing to

observe enriched and depleted genera in old- and young-onset CRC.

Random forest (RF) classifier constructed based on unique panels of

microbial markers could discriminate CRC cases and normal controls

on family and genus levels with AUROC values of 0.851 and 0.898,

respectively (7). Yu et al. took a step further in utilizing metagenomic
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sequencing to quantify fecal microbiome alterations and identified a

novel set of 20 bacterial genes to be used for CRC screening. The

selected genemarkers were able to discriminate CRC from control with

AUROC values of 0.71–0.77 among different ethnic cohorts (8).

Thomas et al. performed a meta-analysis of 969 fecal metagenomes

across Chinese, Austrian, American, German, and French cohorts and

found that seven common enriched bacterial species including

Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas

asaccharolytica, Parvimonas micra, Prevotella intermedia, and

Alistipes finegoldii. These microbial signatures achieved accurate CRC

prediction with an average AUROC of 0.84 (9). Furthermore, Coker

et al. discovered that a set of 14 fungal biomarkers in stool could also be

used to accurately predict CRC with higher AUROC of 0.74–0.93 in

independent discovery and validation cohorts (10). The most robust

predicting performance was achieved by Chen et al. using a panel of

eight serum metabolites associated with metagenomic profiles of gut

microbiome. The unique set of metabolomic biomarkers was selected

using a least absolute shrinkage and selection operator (LASSO)

algorithm and used for CRC prediction yielding AUROC of 0.98

and 0.92 for the modeling and validation cohorts (11). Taken together,

these accumulating evidence suggest that metagenomic profiles and

16S rRNA amplicons can be exploited for early and accurate detection

of CRC.

In the current study, we conducted a metagenomic shotgun

sequencing of fecal samples from two hospital-based case–control

cohorts and analyzed the difference in relative abundance of bacterial

species and metabolic functions between CRC patients and healthy

individuals. Based on ZhongShanMed discovery cohort, we

constructed a binomial classifier that could achieve significantly

higher AUROC values than two other models in both

ZhongShanMed and another independent SouthernMed validation

cohort. Additionally, we examined the accuracy of CRC prediction

using the classifier by analyzing publicly available metagenomic

sequencing data from three Chinese cohorts. Finally, CRC-

associated bacterial features revealed by the current investigation

were assessed by meta-analysis across 10 fecal metagenome studies.
2 Materials and methods

2.1 Study design and cohorts

All subjects underwent standard colonoscopy examinations at The

Sixth Affiliated Hospital, Sun Yat-sen University (ZhongShanMed) and
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Nanfang Hospital (SouthernMed). The two studies were approved by

Institutional Review Board of respective hospitals (2013ZSLYEC-028

and NFEC-201705-Q1).Written informed consent was obtained for all

subjects. Patients with definitive diagnosis of CRC based on

colonoscopy examinations and pathological reports were recruited.

Individuals with negative colonoscopy outcome or carrying benign

lesion of hemorrhoids were included as normal controls. There was no

age restriction on the cohort, but subjects considered unsuitable for

colonoscopy, such as those with pregnancy, hypertension, or heart

diseases, were excluded. Clinical and pathological information for both

cases and controls were recorded for further bioinformatics and

statistical analyses. Patients or the public were not involved in the

design, conduct, reporting, and dissemination of our research.
2.2 Sample preparation, microbial DNA
extraction, and metagenomic sequencing

Fresh stool from each subject was collected before colonoscopy

examinations at each respective hospital. For DNA extraction, the

HiPure Stool DNA Kit (Magen, China) was used with some

modifications. Briefly, 1 ml of stool suspension in preservation

buffer was centrifuged at 15,000 rpm for 2 min. The pellet was

resuspended in 4M guanidine isothiocyanate and 5% sodium N-

dodecanoylsalcosinate and incubated for 1 h at 70°C with shaking at

1,800 rpm. The mixture was then centrifuged at 14,000 g for 1 min,

and the supernatant was collected. The resulting pellet was

suspended in 0.5 ml TENP and centrifuged at 14,000 g for 1 min.

The supernatant was collected, and the pellet was resuspended in

0.5 ml TENP and centrifuged again. The supernatant was combined

(approximately 1 ml) and subjected to one cycle of freezing at −80°C

for 60 min followed by thawing at room temperature. The mixture

was then centrifuged at 14,000 g for 1 min, and the supernatant was

collected and subjected to purification steps using HiPure Stool

DNA Kit based on manufacturer’s instructions. DNA concentration

was measured using a Qubit Fluorometer (Thermo Scientific, USA)

and NanoDrop spectrophotometer (Thermo Scientific, USA). The

quality of isolated DNA was examined by 1% agarose gel

electrophoresis. All DNA samples were stored in −20°C freezer

before subsequent processing.

For library preparation, microbial DNA samples were

fragmented by a Covaris M220 sonicator and size selected to

410–440 bp using DNA Clean Beads (MGI Tech Co. Ltd, China).

For metagenomic sequencing, 50 ng of fragmented microbial

genomic DNA was used. End-repair and A-tailing reactions and

ligation of UDB adapter (MGI Tech Co. Ltd, China) were prepared

with MGIEasy Universal DNA Library Prep Set (MGI Tech Co. Ltd,

China) according to manufacturer’s protocol. The library was

amplified with polymerase in MGIEasy Universal DNA Library

Prep Set for seven cycles and cleaned up on 1× DNA Clean Beads.

The sequencing library was sequenced on an MGISEQ-2000 (MGI

Tech Co. Ltd, China) using MGISEQ-2000RS high-throughput set

(PE150) (MGI Tech Co. Ltd, China). We obtained a total of 2,556

Gb with an average of 30M reads per sample before quality control

and preprocessing.
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All pair-ended reads underwent quality control to retain high-

quality reads for subsequent analysis (12). The KneadData (version

0.7.4) (13) and Trimmomatic (version 0.39) (14) programs were used

to remove low-quality reads and non-microbial sequences to retain

high-quality microbial sequencing reads (SLIDINGWINDOW:4:20

MINLEN:50 LEADING:3 TRAILING:3). The following non-

microbial genomes (hg38, mm10, rn6, susScr3, bosTau8, canFam3,

felCat8, and galGal4) were retrieved from UCSC Genome Browser.

The plasmid and vector sequences were collected and manually

curated from Plsdb and SURPIrt. The matched reads considered

potentially host associated and laboratory associated were removed

as contaminants.
2.3 Microbial taxonomic profiling
and tree construction

The custom database was reconstructed based on genome

sequences annotated by the genome taxonomy database (GTDB)

(15) and PathSeq (16). The high-quality reads were aligned to the

microbial genomic sequences in KLM2022 using BWA (17).

Taxonomic hierarchy information was retrieved from GTDB, and

a taxonomy tree was constructed using GraPhlAn (version 1.1.3)

(18). The species with an average abundance of 1E−5 or higher and

q≤1E−4 (meta-deconfounder analysis) are shown. The phylogenetic

levels including domain, phylum, family, genus, and species

were used.
2.4 Microbial functional profiling
and pathway characterization of
KEGG orthologs

The 9,879,896 gene sequences of IGC database were retrieved

and indexed (19). The high-quality reads were aligned against the

IGC datasets, and alignments were then filtered to only retain those

>95% sequence identity. Only the highest scoring alignments were

kept for each read. The relative abundance of each Kyoto

Encyclopedia of Genes and Genomes (KEGG) orthologous group

was estimated by summing the relative abundances of genes in the

same KEGG orthologous group as provided by MOCAT2 (20).

KEGG Orthology (KO) annotation information was retrieved

from KEGG, and a functional hierarchy tree was constructed using

GraPhlAn. Briefly, the KOs with q≤1E−4 (meta-deconfounder

analysis) are shown, and we manually curated the KEGG modules

listed under the categories of “Microbial metabolism in diverse

environments” and “Amino acid metabolism.”
2.5 Construction of microbiota models and
flux balance analysis

The AGORA reference reconstructions and the corresponding

genome sequences were retrieved from the online website, https://

www.vmh.life/, and the trimmed FASTQ files were aligned to the
frontiersin.org
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indexed AGORA reference sequences. Coverage profiles were

obtained by SAMTools (version 1.9) (21), and qualifications for

each sample were matched individually to the AGORA models on

the genus and species levels. Assuming a steady state for all fluxes in

the biological system, the growth rates were estimated by MICOM

in each sample, and the cooperative trade-off was applied to obtain

the approximate fluxes (22).
2.6 Confounder analysis

To evaluate and de-confound the effects of age, gender, and body

mass index (BMI), multivariate association with linear model

algorithm was used for multi-variable association testing between

phenotypes and microbial taxa (23, 24). Potential confounders with

continuous values were transformed into categorical data as quartiles.
2.7 Biomarker identification using three
prediction models

We constructed classification models based on the species

profiles using three different methods, LASSO logistic regression

(25), RF (26), and support vector machine learning (SVM). For

LASSO logistic regression, the models were trained by fivefold

stratified cross-validation testing. The caret R package (version

6.0.90) (27) was adopted to partition the discovery cohort data

(ZhongShanMed) into randomized training and testing sets in an

80%–20% manner. The binomial GLMnet models (version 4.1.3)

(28, 29) were then trained by 20 iterations of fivefold cross-

validation to optimize values of hyperparameter of penalty

(lambda, values range from 1E−5 to 1E−1) using Cohen’s Kappa

as the performance metric. For each training set, this yielded a

collection of two-classes (CRC and healthy control) binomial

classifiers. The accuracy of the model was then examined using

area under the receiver operating characteristic curve (AUROC)

values. The abundance threshold of 1E−5 and 1E8 were used as

abundance threshold and pseudo-count during log10

transformation, respectively, to avoid non-finite values. The

features were standardized as z-scores by centering to zero mean

and dividing by the standard deviation of each feature. Feature

contributions to the models were output as feature importance

and computed using the percentage absolute values of the

regression coefficients.

For RF prediction, abundance threshold of 1E−3 was adopted to

remove markers with low overall abundance, and relative

abundance was log10 transformed after padding a pseudo-count

of 1E−5 to avoid non-finite values. Two steps were carried out in the

RF models. In the first step, the optimal number of features was

determined using the recursive feature elimination method with

parameter step=1. In the second, the models were trained by

fivefold stratified cross-validation testing. The training datasets

were resampled for 20 times of partitions). Feature contributions

to the models were output as feature importance.
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For SVM prediction, same thresholds as RF were used for bacterial

relative abundance and pseudo-count during transformation. Two

steps were carried out in the SVM models. In the first step, the rank

of feature importance was determined using the mSVM-RFE algorithm

(https://github.com/johncolby/SVM-RFE) (30), and the 30 most

important features were selected. In the second, the models were

trained by fivefold stratified cross-validation testing. The training

datasets were resampled for 20 times of partitions. Feature

contributions to the models were output as feature importance.
2.8 POD calculation for metagenomic
datasets of Fudan, GloriousMed, and
HongKong cohorts

As the calculation of probability of disease (POD) was based on

species with relative abundance larger than 1E−5, the 16,544 species

were to be retrieved to accelerate the computation using a cutoff of

the average relative abundance of 1E−8 across all 284 sequenced

samples. We compiled corresponding genome sequences to

construct a custom database in which the customized datasets

included 15,993 bacteria, 65 archaebacteria, 144 fungi, and 341

viruses. Sequencing data from metagenomes from Fudan (7),

GloriousMed (31), and HK (9) cohorts were profiled and

modeled by LASSO regression analysis as follows.

For Fudan cohort, taxonomic profiling was performed on

sequencing data of 200 metagenomes retrieved from the National

Center for Biotechnology Information (NCBI) GEO (https://

www.ncbi.nlm.nih.gov/bioproject/PRJNA763023/). The relative

abundance was log-transformed and scaled by the corresponding

means and standard deviation of species in model training phrase

(ZhongShanMed Cohort). For each sample in the cohort, the POD

risk scores were calculated from 100 trained models and averaged;

then, the AUROC were estimated for the whole cohort, younger

group, and elderly group, respectively.

For GloriousMed cohort, metagenomic sequencing data of 166

subjects from the EBI ENA Browser (https://www.ebi.ac.uk/ena/

browser/view/PRJNA731589) were downloaded, and the taxonomic

profiling was performed using the custom database. The samples

with aligned reads smaller than 5M were filtered out, and the

relative abundance was log transformed and scaled by the

corresponding means and standard deviation of species in model

training phrase (ZhongShanMed Cohort). For each sample in the

cohort, the POD risk scores for 82 healthy and 76 CRCs were

calculated from 100 trained models and averaged; then, the

AUROCs were estimated for the whole cohort.

For the HK cohort, after the CRC samples with T2D were

filtered out, sequencing data of 83 remaining metagenomes were

downloaded from the EBI ENA Browser (https://www.ebi.ac.uk/

ena/browser/view/PRJEB10878). The taxonomic profiling using the

custom database were performed, and samples with aligned reads

smaller than 5M were excluded. The relative abundance was log-

transformed and scaled by the corresponding means and standard

deviation of species in model training phrase (ZhongShanMed
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Cohort). For each sample in the cohort, the POD risk scores for 38

healthy and 43 CRCs were calculated from 100 trained models and

subsequently averaged before AUROC values were estimated for the

whole cohort.
2.9 Identification of cross-cohort microbial
signatures through meta-analysis of
colorectal cancer datasets

The nine publicly available and geographically diverse

metagenomic studies of colorectal cancer were obtained in

CuratedMetagenomicData, and the corresponding taxonomic

profiling of the samples annotated by healthy or CRC were

retrieved. To incorporate our metagenomic datasets into this large

microbiome repository (32), the sequencing datasets were

annotated by MetaPhlAn2 (version 2.7.7) (33), and the taxonomic

profiling were obtained. Based on a total of 10 cohorts including

ours (Supplementary Table S8) (8, 32, 34), the meta-analysis of

standardized mean difference was performed for the identified

microbial species in metafor package (version 3.0.2) using the

random effects model (35).
2.10 Statistical analyses

A comparison between quantitative data was performed using the

Mann–Whitney U-test. Receiver operating characteristic (ROC) curve

was used to evaluate the performance of multi-variables that

differentiate between certain groups. The FDR-corrected p-values (q-

values) were obtained by de-confounder analysis using the

metadeconfoundR (version 0.2.8) (https://github.com/TillBirkner/

metadeconfoundR) pipeline implemented in the R package. The

principal coordinate analysis (PCoA) was performed based on the

Bray–Curtis dissimilarities at the species level using vegdist and adonis2

in a vegan package (version 2.5.7) (36). All p- and q-values were two-

tailed, and p<0.05 or q<0.05 was considered statistically significant. All

data were analyzed by R 3.6.1 software (http://www.R-project.org).
3 Results

3.1 Cohort information and study design

In total, 188 CRCs and 96 healthy controls were recruited from

two clinical sites. Clinical and pathological information for each

cohort were recorded and summarized in Supplementary Tables S1-

S3. The stool samples were subjected tomicrobial DNA isolation and

subsequently sequenced by metagenomic sequencing. The

ZhongShanMed subjects were randomly assigned to the training

phase (80% on average: 97 CRC and 42 control subjects) and the

testing phase (20% on average: 24 CRCs and 10 normal controls) in

100 runs. In the training and testing phases, we performed LASSO

regression analysis to identify the microbial markers associated with
Frontiers in Oncology 05
CRC risk and to discriminate CRC and control. We subsequently

used the classifier in the SouthernMed validation cohort with 67 CRC

and 44 control subjects to assess its strength of CRC prediction.

Furthermore, we obtained metagenomic sequencing data from

Fudan, GloriousMed, and HK cohorts to further evaluate the

predictive power of our LASSO regression model (Figure 1).
3.2 Gut microbiome shifts in CRC

We performed a stringent sequence similarity search of cleaned

reads against the customized integratedmicrobiome database created

fromGTDB, PathSeq, andNCBI by BWA (Supplementary Table S4).

An average of 99.69%, 0.07%, 0.03%, and 0.20% of total metagenomic

reads were mapped against the bacteria, archaea, fungal, and virus

genome sequences (Supplementary Figure S1), with bacterial taxa

monopolizing the gut microbiota.

We subsequently investigated the phylum distribution in

ZhongShanMed and SouthernMed cohorts, and the five most

abundant phylum compositions included Bacteroidota (56.02%),

Firmicutes (36.00%), Proteobacteria (2.98%), Verrucomicrobiota

(0.84%), and Fusobacteriota (0.83%) (Supplementary Figure 2A). The

Firmicutes/Bacteroidota (FB) ratio in CRC was not significantly

different from that in control (p>0.05, Supplementary Figure 2B),

and the alpha diversity of CRC microbiome were not significantly

different from that of control (p>0.05, Supplementary Figure 2C).

We further examined the impact of potential confounding factors

including age, gender, and BMI on CRC-related microbiome and

performed a de-confounding analysis (Supplementary Figures S3, S4).

Across the phyla of Proteobacteria, Fusobacteriota, Bacteroidota, and

Firmicutes, 481 species were found significantly enriched or depleted

in CRC (Figures 2A, B, Supplementary Table S5). Furthermore, the

PCoA of these bacterial and fungal species supported the notion that

CRC could be clearly distinguished from healthy controls (Figure 2C).

Among them, 368 species were found to be enriched in CRC including

certain well-established species such as P. intermedia, Fusobacterium

hwasookii, P. micra, P. asaccharolytica, and Enterococcus faecalis

(q<0.05, Figure 2D). The other 113 species were found to be

depleted in CRC, most of which were not extensively studied, such

as Lachnospira genus and Proteus mirabilis (q<0.05, Figure 2E).

We found that species exhibiting negative effect on butyrate

production within the microbiome community were consistently

elevated in CRCs such as F. nucleatum, Fusobacterium periodonticum,

Peptostreptococcus stomatis, andMegasphaera elsdenii. In contrast, those

species who are producing butyrate efficiently from carbohydrates, were

consistently depleted, including R. intestinalis, Roseburia hominis,

Anaerostipes hadrus, and Faecalibacterium prausnitzii (q<0.05,

Supplementary Table S5) (37). In addition, we reported, for the first

time, that several CRC-associated species, which have not been

extensively studied, such as Eisenbergiella tayiq, Odoribacter

splanchnicus, Alistipes onderdonkii, Allisonella pneumosintes, CAG-83,

and Malassezia globosa, were significantly elevated in CRC (q<0.05). In

contrast, Romboutsia timonensis, Agathobacter faecis, R. intestinalis, and

TF01-11 were significantly depleted (q<0.05, Supplementary Table S5).
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3.3 Metabolic functional shifts in CRC

To investigate the functional and metabolic changes in gut

microbial communities, the clean reads were first aligned to the

IGC to obtain KEGGmodules. A total of 577 and 257 KO genes were

significantly elevated and depleted, respectively, in CRC versus

healthy controls (Supplementary Table S6; Figures 3A, B). In the

phenylalaninemetabolism, paaE (K02613) was significantly elevated.

In the tyrosine and tryptophan biosynthesis, hisC (K00817), trpD

(K00766) and trpA (K01695) were significantly depleted (q<0.05).

Notably, the genes involved in lysine degradation were significantly

elevated, such as kamD (K01844), atoA (K01035), atoD (K01034),

kdd (K18012), kamE (K18011), kal (K18014), dapD (K00674), kce

(K18013), and lysA (K01586) (q<0.05, Figures 3D, E). Notably, the

gene richness in healthy controls was not significantly different from

that of CRC based on IGC annotation (p>0.05, Figure 3C). We

further performed the community-flux balance analysis and found

that the secretion rate of butyrate acid were significantly reduced in

CRC than that in control cohort (p<0.05, Supplementary Figure S5).
3.4 Predicting performance of fecal
microbiome to classify CRC and control

We constructed a LASSO classifier and used the AUROC to

evaluate the performance of the classifier from the training set on

the held-out testing set. Because the held-out testing set samples were

not used for GLMnet training and tuning, the estimates represent

unbiasedmeasures of classification. Furthermore, the 100 independent

training and test sets avoided the training-set bias and achieved the

minimization of optimistic estimates. The control-versus-CRC
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binomial classifier was trained on the discovery datasets and then

assessed on the independent validation cohort. The probabilities from

100 models were averaged to calculate a single score and used for

AUROC estimation. The LASSO classifier achieved an AUROC of

94.27% (CI: 90.84%–97.70%) for ZhongShanMed (Figure 4) and an

AUROC of 91.45% (CI: 90.31%–92.60%) for SouthernMed (Figure 5).

At a POD cutoff of 0.642, the binomial classifier could detect stage I/II

and III/IV CRC with respective sensitivities at 66.7% and 90.9% and a

specificity at 90.4% in ZhongShanMed cohort. Sensitivities in

SouthernMed cohort were significantly increased, reaching 87.5% (I/

II) and 95.7% (III/IV) with a slightly lower specificity at 88.6%

(Supplementary Table S7).

We also adopted RF and SVM methods to construct different

classifiers to predict CRC, and the estimated AUROCs was slightly

lower than those from the LASSO model. In summary, the RF model

achieved AUROC of 84.14% (CI: 76.44%–91.84%) in ZhongShanMed

and 82.09% (CI: 79.94%–84.23%) in SouthernMed (Supplementary

Figures S6, S7), whereas the SVM model achieved an AUROC of

95.50% (CI: 92.38%–98.63%) in ZhongShanMed and 82.08% (CI:

80.12%–84.05%) in SouthernMed (Supplementary Figures S8, S9).

Finally, the classification power of the LASSO classifier was

evaluated for 449 metagenomes from three published studies (7, 8,

31). The POD scores were calculated by the LASSO model trained

on the ZhongShanMed datasets. As shown in Supplementary Figure

S10, the AUROC values were estimated at 79.99% (CI: 78.21%–

81.76%), 78.85% (CI: 77.68%–80.01%), and 82.10% (CI: 80.68%–

83.52%) for the whole group, the younger group (age≤50), and the

elderly group (age>50), respectively, in the Fudan cohort. In

addition, the AUROC estimates were similar for GloriousMed

cohort at 80.35% (CI: 78.92%–81.78%) and higher for HK cohort

at 91.73% (CI: 90.61%–92.85%) (Supplementary Figure S11).
FIGURE 1

Study design and workflow diagram. A total of 284 cases and controls were included in this study. ZhongShanMed cohort was randomly divided into a
training phase (accounted for 80%) and a testing phase (accounted for 20%) to identify the gut microbial markers. The strength of observed
associations of microbial markers with CRC were further independently verified in SouthernMed cohort. The publicly available Fudan, GloriousMed, and
HK datasets were retrieved from NCBI GEO database and EBI ENA browser and profiled for cross-platform validation of the LASSO predictive model.
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FIGURE 2

Identification of a set of gut microbes strongly associated with CRC. (A) Relative abundance of various species was assessed for significant elevation
or depletion (two-sided Mann–Whitney U-test) in CRC compared to healthy controls (ZhongShanMed and SouthernMed combined). Levels of
elevation or depletion for significant bacterial species are displayed as a heatmap (133 species shown, q<1E−4, also see Supplementary Table S5 for
details on a total of 481 species included, p<0.05). Species are ranked by effective size and direction of changes. (B) A total of top-ranked 227
deferentially abundant species (q<1E−3) are arranged as a phylogenetic tree and grouped according to the phyla of Firmicutes, Bacteroidota,
Fusobacteriota, Proteobacteria, and Firmicutes. The colored inner and outer circles show average relative abundance of these species for healthy
controls and CRC, respectively. (C) PCoA analysis was performed using the Bray–Curtis distances of arcsin(sqrt) transformed relative abundances for
CRC (red) and controls (blue) and was assessed by adonis2. (D, E) Box plots of 10 most enriched (D) or 10 most depleted (E) species in CRCs. The
y-axis for each box plot is logarithmic transformation of relative abundance of each species in CRC (red) and controls (blue).
Frontiers in Oncology frontiersin.org07

https://doi.org/10.3389/fonc.2023.1218056
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1218056
A

B D

EC

FIGURE 3

Identification of metabolomic alterations strongly associated with CRC. (A) Relative abundance of KEGG orthologous genes (KO genes) was assessed
for significant elevation or depletion (two-sided Mann–Whitney U test) in CRC datasets compared to healthy controls (ZhongShanMed and
SouthernMed combined). Significant changes in relative abundance of these KO genes are displayed as a heatmap (156 KO genes, q<1E–4, also see
Supplementary Table S6 for details on a total of 834 KO genes, p<0.05). KO genes are ranked by the significance of statistical analysis and direction
of changes. (B) A total of 156 deferentially abundant KO genes are arranged in a functional hierarchy tree and grouped mainly as amino acid
metabolism (red) and microbial metabolism in diverse environments (green). The colored inner and outer circles show average relative abundance
for healthy controls and CRC, respectively. (C) Gene richness comparison between CRC (red) and controls (blue) was performed for both cohorts
combined. (D, E) Box plots show the relative abundances of 10 most enriched (D) and 10 most depleted (E) KO genes in CRC. The y-axis for each
box plot is logarithmic transformation of relative abundance of each KO gene.
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3.5 Common microbial species
biomarkers across various
geographical and ethnic cohorts

We further performed the meta-analysis of a total of 10

colorectal cancer metagenomic datasets including ours to identify

the cross-cohort microbial signatures. The result showed that 73

and 9 (p<0.05, Supplementary Table S9) species/strains were

coherently enriched or depleted, respectively, in CRC versus

control subjects, despite the heterogeneity of effective size across

datasets (Figure 6). In particular, Bacteroides fragilis, P. micra,

Alistipes finegoldii, P. stomatis, F. nucleatum, P. asaccharolytica,

Gemella morbilorum, Solobacterium moorei, and Campylobacter

ureolyticus were found to be enriched in every study analyzed.

However, only two species, R. intestinalis and F. prausnitzii, were

found to be depleted strictly across all metagenomic studies.
4 Discussion

In our currentmulti-center study, we conducted a large-scale next-

generation sequencing of 284 metagenomes from two independent

hospital-based cohorts and a comprehensive metagenome-wide

association analysis to evaluate shifts in microbial compositions and
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metabolic functions in gut microbiota of CRC, in which the species

dysbiosis may provide a microcosm favorable to oncogenesis. Our

validation approach across wide-ranging geographical and ethnic

cohorts including our own confirmed a series of well-recognized

CRC-enriched bacterial species, such as F. nucleatum, B. fragilis, P.

micra, S. moorei, and P. stomatis (8, 38). In addition, we have identified

significant taxonomic alterations in some interesting and less-known

species including A. finegoldii, P. asaccharolytica, R. intestinalis, and F.

prausnitzii whose roles in CRC are worth further investigating (39).

Alistipes is an emerging genus in the Bacteroides phylum implicated in

pathogenesis of CRC and mental disorders. As a Gram-negative

anaerobic rod and infectious pathogen, P. asaccharolytica has only

recently been identified as a CRC-enriched bacterial species in gut

microbiome (39). Among CRC-depleted species, R. intestinalis and F.

prausnitzii are butyrate-producing bacteria associated with healthy gut

symbiosis and certain metabolic diseases such as diabetes (40).

Butyrate is considered a critical energy source for self-renewing

healthy intestinal epithelial cells and has anti-inflammatory and anti-

tumor effects, whereas its reductionmay lead to cancer (41, 42). In fact,

our pooled functional analysis of the metagenomic data revealed a

likely scenario of competition for reduced butyrate biosynthesis, which

may be partially compensated with an inefficient lysine–butyrate

pathway due to increased abundance of CRC-enriched bacteria such

as F. nucleatum. The above-mentioned CRC-associated bacterial
A B
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FIGURE 4

Identification of microbial markers associated with CRC by LASSO modeling in the training phase using ZhongShanMed cohort. (A) The POD-based
AUROC value was evaluated between CRC and Control in the training set. Gray area denotes ±1 standard deviation for AUROC value. POD index
was calculated using L1-regularized (LASSO) logistic regression model. (B) POD-score distribution across non-cancer individuals and cancer patients
(CTR, n=52; CRC, n=121). The box plot denotes 25th–75th percentiles, and the central mark indicates the median; p-value is calculated by a two-
sided unpaired Mann–Whitney test. (C) POD-score distribution across non-cancer individuals and cancer patients stratified by stage (Stage I, n=8;
Stage II, n=10; Stage III, n=27; and Stage IV, n=8). (D) POD-score distribution across non-cancer individuals and cancer patients stratified by tumor
anatomic location (CTR, n=52; CRC, colon, n=53; rectum, n=58). (E) POD-score distribution across non-cancer individuals and cancer patients
stratified by gender (female: CTR, n=25, CRC, n=77; male: CTR, n=27, CRC, n==44). (F) Metagenomic markers for detecting patients with CRC from
healthy controls identified from LASSO classifiers. The boxes represent 25th–75th percentiles with black lines indicating the median, whiskers
extending to the maximum and minimum values within 1.5× the interquartile range, and dots denoting outliers. The boxes are marked in red for
overrepresentation and in blue for underrepresentation (p<0.05) in CRC patients compared to the healthy controls.
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species were also revealed by meta-analysis of multiple global cohorts

across different ethnicities and geographical regions (39). Notably,

Clostridium symbiosum, a consistent CRC-enriched species, is missing

from our analysis possibly due to cohort heterogeneity caused by

different ethnic background, dietary preference, and other

environmental factors. Nevertheless, the panel of these universal

bacterial markers can be robust across different populations in

diagnosing CRC (39) and potentially used globally for the accurate

screening of this malignant disease.

By modeling the changing profiles of these microbial species and

subspecies, we used three classification methods to discriminate CRC

metagenomes from those of healthy individuals. RF is a powerful

machine learning model that has been widely attempted for

distinguishing CRC from control in metagenomic studies (8, 34, 43).

It has achieved AUROC values of 0.83–0.96 in discovery cohorts of

Austrians, Chinese, and Japanese with fixed panels of microbial

markers, but the accuracy has not been validated within independent

cohorts using the same RF classifier. Our RF regression analysis

achieved a similar prediction accuracy of AUROC values of 84.14%
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and 82.09% in our ZhongShanMed and SouthernMed cohorts,

respectively. The CRC-prediction panel consists of 22 bacterial

species including some major CRC-associated bacteria such as B.

fragilis, R. intestinalis, and Clostridium. However, F. nucleatum was

not on the panel. In contrast, SVM achieved a much higher AUROC

value of 95.50% in ZhongShanMed cohort with a unique panel of 28

bacterial species. However, AUROC value was drastically reduced to

82.08% in SouthernMed cohort as the POD scores for various

metagenomes were significantly spread out in both CRC and control

groups. In our study, LASSO achieved robust predicting performance

in both ZhongShanMed and SouthernMed cohorts originated in the

same city of Guangzhou in the southern part of China. The classifier

also achieved a good performance in Fudan (AUROC, 79.99%) and

GloriousMed (AUROC, 80.35%) cohorts whose samples were

collected mainly from the eastern region of China. Furthermore, the

classifier achieved a high accuracy of CRC prediction in HK cohort

(AUROC, 91.73%), as Hong Kong is a city in the vicinity of

Guangzhou. Certain bacterial species with the top-ranked LASSO

importance on the 32-species panel included Malassezia globosa, also
A B
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FIGURE 5

Independent validation and diagnostic performance of fecal microbial markers for CRC in SouthernMed external validation cohort. (A) The POD-
based AUROC value between CRC and control in the validation set. Gray area denotes ±1 standard deviation for AUROC. (B) The POD values were
compared between CRC and control in the independent validation phase (CTR, n=44; CRC, n=67). The box denotes 25th–75th percentiles, and the
central mark indicates the median; p-value is calculated by two-sided unpaired Mann–Whitney test. (C) POD-score distribution across non-cancer
individuals and cancer patients stratified by stage (CTR, n= 44; CRC, Stage I, n=6; Stage II, n=10; Stage III, n=17; and Stage IV, n=6). (D) POD-score
distribution across non-cancer individuals and cancer patients stratified by tumor anatomic location (CTR, n= 44; CRC, colon, n=29; rectum, n=37).
(E) POD-score distribution across non-cancer individuals and cancer patients stratified gender (female, CTR, n=26, CRC, n=33; male, CTR, n=18,
CRC, n=34).
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one of the fungal markers used for CRC detection (10), and P.

intermedia, P. stomatis, and F. nucleatum, three notoriously enriched

bacterial species often used to predict CRC. Higher AUROC values

achieved in the current study by LASSO binomial classifier help

increase the overall sensitivity of CRC detection to 87% (78/90) with

specificity at 90% (86/96) in the combined cohorts of ZhonShanMed

and SouthernMed. In particular, the classifier can accurately

discriminate patients with early-stage cancers (I/II) from healthy

individuals at sensitivity of 76% (26/34), higher than the value from

a serum-based mSEPT9 test at 45.7%–64.3% (44), comparable to a

reported value for FIT at 81.6% (45) and amultitarget stoolDNA test at

80%–84% (46), but lower than 87% achieved by a single-target fecal

mSDC2 test (47). These findings suggested that fecal microbiota-based

biomarkers were potentially feasible in predicting CRC risks with high

accuracy in populations from proximal geographical regions. The gut

CRC-related microbiome signatures can be delineated by appropriate

modeling and may be used as good risk assessment and personalized

screening strategies to improve the detection capability of at-risk

populations and to aid diagnosis by colonoscopy screening.

It is increasingly evident that dysbiosis of the intestinal microbiota

is associated with higher risk of CRC onset. A large number of clinical

trials have been developed to apply our recent research findings for the

microbiome-based early detection and screeningof CRC.CRCbiome is

a large-scale ongoing prospective sub-study within a randomized CRC
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screening trial in Norway expected to be completed in 2030 (https://

ClinicalTrials.gov; NCT01538550) (48). By analyzing metagenomic

sequencing data of fecal samples from participants who have been

tested positive by FIT, the trial aims to identify microbiome markers

and develop CRC classifier for early detection of advanced colorectal

lesions. Another interesting prospective cross-sectional study in Hong

Kong, which is actively recruiting trial participants with average risk of

CRC, employs a panel of four bacterial gene markers called “M3” to

evaluate the diagnostic accuracy for precancerous lesions and

advanced neoplasia using quantitative PCR method (NCT05405673)

(49). Notably, the panel will be tested head to head with FIT to

compare their overall sensitivity for the detection of CRC and

adenomas. In addition to the evaluation of microbiome by

metagenomic sequencing and qPCR, 16S rRNA amplicons

sequencing has also been utilized in an active clinical trial to assess

the relationship of gut microbiota and specific polyp types including

serrated, hyperplastic, and cancerous polyps (NCT03297996).

Furthermore, as an extension of recent published research work by

Chen and colleagues (11), a clinical trial started most recently in April

will use liquid chromatography-mass spectrometry (LC-MS) to test a

panel of gut-microbiome-related serum metabolites for screening of

advanced adenomas and CRC. Evidently, these trial outcomes have

critical implications in microbiome-based early detection and risk

prediction of CRC in the future. On the one hand, microbiome or
FIGURE 6

Identification of CRC-associated bacterial markers across 10 validation cohorts. The enriched, depleted, and unchanged markers are indicated by
red, blue, and gray boxes, respectively. Only markers with significance of p<0.05 across all 10 cohorts are demonstrated.
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microbiome-related biomarkers, combined withmethylation markers,

FIT, and other methods, have the potential to improve the sensitivity,

specificity, and accuracy of CRC detection and screening. On the other

hand, the microbiome composition can inform risk prediction model

of CRC to help determine which patients are at highest risk of having

adenomas or cancer (NCT04185779).
5 Limitations

Certain limitations are associated with our present investigation.

First, we employed MGISEQ-2000 sequencing platform, which is

different from Illumina HiSeq or NextSeq used in most other studies

and validation cohorts from Fudan, GloriousMed, and HK. Although

the former has been reported to exhibit cross-platform consistency,

accuracy, and reproducibility compared with the latter, approximately

2.02%–3.25% of genes were found to have significant differences in

relative abundance between the two platforms (50). Hence, it is possible

that the different platforms affect the outcome of relative abundance of a

low proportion of genes and CRC-associated taxonomic profiling.

However, since the identities of these genes were not revealed, the

definitive effects on the relative abundance of fecal metagenomics were

difficult to evaluate and quantify. Nevertheless, our study of CRC-

associated species common across all 10 studies indeed support the

notion that MGI platform is applicable to metagenomic studies.

Second, shifts of POD scores in control subjects towards those of

CRC were observed in Fudan and GloriousMed cohorts, lowering

AUROC values for these two cohorts. We speculated that the relative

lower AUROC values of public validation datasets were mainly caused

by the fluctuation of microbial community structure attributed from

different life and dietary habits but not the slightly platform-based

differences in relative abundance. A reasonable explanation is that the

initial LASSO modeling was not able to capture the exact and optimal

bacterial features in healthy individuals, indicating that additional

control subjects in the discovery cohort may be needed for

metagenomic sequencing and regression analysis to obtain an

improved outcome for CRC prediction for cohorts residing in wider

geographical regions. However, it is indeed difficult to definewhat is the

canonicalmicrobial community structure of large populations. A recent

Dutch study recruited 2,937 healthy subjects for metagenomic

sequencing to characterize the landscape of gut microbes shaped up

by a host of factors in genetics, exposome, lifestyle, and diet (51). Third,

a follow-up validation in a prospective case–control cohort either by

metagenomic sequencing to test the performance of LASSO binomial

classifier or quantitative PCR method by selecting a panel of bacterial

markers is still lacking in the current study.
6 Conclusions

Overall, our multi-center study of fecal metagenomes reveals in

detail a common state of gut microbial dysbiosis in CRC

populations across different ethnicities. We identified fecal
Frontiers in Oncology 12
microbial markers for distinguishing CRC from healthy controls

and validated the strength of observed associations based on

LASSO/RF/SVM classification models. We demonstrate that

panels of 20–40 fecal microbiota-based microbial biomarkers have

a robust sensitivity in detecting CRC with a suitable machine

learning model at work. Although additional clinical validations

and explicit experimental evidence underlying microbiome

dysbiosis are much needed, our present study may aid the clinical

transformation of microbiota-based strategies into precision

screening and diagnosis in real-world practice.
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