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PTCH1 and CTNNB1 emerge as
pivotal predictors of resistance
to neoadjuvant chemotherapy
in ER+/HER2- breast cancer

Gulnihal Ozcan1,2*

1Department of Medical Pharmacology, Koç University School of Medicine, Istanbul, Türkiye,
2Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
Introduction: Endeavors in the molecular characterization of breast cancer

opened the doors to endocrine therapies in ER+/HER2- breast cancer,

increasing response rates substantially. Despite that, taxane-based neoadjuvant

chemotherapy is still a cornerstone for achieving breast-conserving surgery and

complete tumor resection in locally advanced cancers with high recurrence risk.

Nonetheless, the rate of chemoresistance is high, and deselecting patients who

will not benefit from chemotherapy is a significant task to prevent futile toxicities.

Several multigene assays are being used to guide decisions on chemotherapy.

However, their development as prognostic assays but not predictive assays limits

predictive strength, leading to discordant results. Moreover, high costs

impediment their use in developing countries. For global health equity, robust

predictors that can be cost-effectively incorporated into routine clinical

management are essential.

Methods: In this study, we comprehensively analyzed 5 GEO datasets, 2

validation sets, and The Cancer Genome Atlas breast cancer data to identify

predictors of resistance to taxane-based neoadjuvant therapy in ER+/HER2-

breast cancer using efficient bioinformatics algorithms.

Results: Gene expression and gene set enrichment analysis of 5 GEO datasets

revealed the upregulation of 63 genes and the enrichment of CTNNB1-related

oncogenic signatures in non-responsive patients. We validated the upregulation

and predictive strength of 18 genes associated with resistance in the validation

cohort, all exhibiting higher predictive powers for residual disease and higher

specificities for ER+/HER2- breast cancers compared to one of the benchmark

multi-gene assays. Cox Proportional Hazards Regression in three different

treatment arms (neoadjuvant chemotherapy, endocrine therapy, and no

systemic treatment) in a second comprehensive validation cohort strengthened

the significance of PTCH1 and CTNNB1 as key predictors, with hazard ratios over

1.5, and 1.6 respectively in the univariate and multivariate models.

Discussion:Our results strongly suggest that PTCH1 and CTNNB1 can be used as

robust and cost-effective predictors in developing countries to guide decisions

on chemotherapy in ER +/HER2- breast cancer patients with a high risk of
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recurrence. The dual function of PTCH1 as a multidrug efflux pump and a

hedgehog receptor, and the active involvement of CTNNB1 in breast cancer

strongly indicate that PTCH1 and CTNNB1 can be potential drug targets to

overcome chemoresistance in ER +/HER2- breast cancer patients.
KEYWORDS

breast cancer, chemoresistance, taxane-based neoadjuvant chemotherapy, predictive
markers, precision medicine, bioinformatics
1 Introduction

Breast Cancer is the most frequent cancer and the leading cause

of mortality from cancer in women worldwide (1). Elaborate

investigation of the molecular mechanisms revealed the

significance of estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor (HER2) in

breast cancer. This knowledge enabled the classification of breast

cancer into three subtypes; ER+/HER2-, HER2+, and triple-

negative breast cancer (TNBC) which lacks all three receptors.

ER+/HER2- breast cancers constitute more than 70% of breast

cancer cases, mainly consisting of luminal A and luminal B PAM50

intrinsic subtypes (2). Luminal A-type breast cancer is characterized

by ER positivity, HER2 negativity, high expression of PR, and low

Ki67. Luminal B-type breast cancers are also ER+ cancers but HER2

status may be negative or positive, PR expression may be low, and

Ki67 may be high, in contrast to the luminal A-type (3, 4).

The mainstay of systemic therapy in ER+/HER2- breast cancers

is endocrine therapy. However, resistance to endocrine therapy is a

handicap in locally advanced breast cancer patients with high risk,

leading to inadmissible recurrence rates (5). In this patient group

taxane-based neoadjuvant chemotherapy is crucial to prevent

relapse, especially in luminal B-type ER+/HER2- breast cancers.

Neoadjuvant chemotherapy is crucial for down-staging the tumors

to achieve complete tumor resection and breast-conserving surgery

in locally advanced breast cancer patients with high recurrence risk.

Moreover, neoadjuvant chemotherapy may provide a chance to

guide decisions on adjuvant chemotherapy based on the response to

neoadjuvant therapy (3, 5, 6). Nonetheless, response rates to taxane-

based neoadjuvant chemotherapy are low in ER+/HER2- breast

cancer patients compared to HER2+ breast cancers and TNBC (4, 6,

7). Since chemotherapeutics come with a cost of non-specific

toxicities to normal tissues, deselecting patients who will not

benefit from neoadjuvant chemotherapy is crucial to refrain from

the unnecessary toxicities of chemotherapeutics.

The last two decades had witnessed intensive efforts to develop

multi-gene assays for guiding decisions on therapy for breast cancer

patients. Among several of these, Oncotype DX, MammaPrint,

Endopredict, Prosigna, and Breast Cancer Index are incorporated

into treatment guidelines as tools that may be used in patients

where decisions on systemic chemotherapy are indefinite after

primary clinical assessment (4). However, these multi-gene

expression assays were originally developed as prognostic assays
02
to estimate the risk of recurrence after endocrine therapy, but not to

predict whether high-risk patients will respond to chemotherapy.

Later trials on their predictive utility proposed these tests as tools

that can provide insight for decisions on systemic chemotherapy.

Despite that, the risk scores predicted by different multi-gene assays

are commonly discordant and the benefits they provide over the 4-

gene IHC assay (IHC4), which involves immunohistochemical

analysis of the ER, PR, HER2, and the proliferation marker Ki67,

is unclear. For instance, one of the most used benchmark assays,

Oncotype Dx, consists of two main gene groups: ER-related genes

and Ki67-related genes. If the expression of ER-related genes is

high, the patient is considered low risk and undergoes endocrine

therapy. On the other hand, patients with a high expression of Ki67-

related genes are considered high risk and undergo neoadjuvant

chemotherapy (8–12).

Another obstacle to the use of these multi-gene assays is their

costs. Although, countries in which public health insurance systems

reimburse these tests, like the United Kingdom and Germany, got

benefit in the prediction of patients who will not respond to therapy

(13, 14), limited coverage of health insurance systems in many

developing countries impediment the chance of incorporating these

tests into routine clinical management (15). For global health

equity, the identification of robust predictors of resistance that

can be cost-effectively incorporated into clinical management is

required in breast cancer. Such predictive markers may also provide

a chance for the selection of patients eligible for newly developed

molecular targeted agents in the first-line setting, before subjecting

them to the effects of chemotherapeutics.

In this study, we aimed to identify pivotal predictors for

resistance to taxane-based neoadjuvant therapy in ER+/HER2-

breast cancer that would guide decisions on neoadjuvant

chemotherapy. To this end, we analyzed five GEO breast cancer

datasets including a total of 513 patients. We identified the

enrichment of b-catenin (CTNNB1)-related oncogenic signatures

and 63 commonly upregulated genes associated with resistance. For

validation of the upregulation and predictive strength of these 63

genes, we utilized a cohort of 512 ER+/HER2- patients who had

undergone taxane-based systemic therapy in the ROC plotter

database developed by Fekete & Győrffy for the validation of

predictive markers in cancer (16). We validated that, 18 genes out

of 63 upregulated genes had high and significant predictive values

for residual disease in ER+/HER2- breast cancer. We comparatively

analyzed these 18 genes with the most used multi-gene assay
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signatures in this validation cohort and The Cancer Genome Atlas

(TCGA) dataset. With further analysis in a second cohort of 316 ER

+/HER2- breast cancer patients who underwent neoadjuvant

therapy in the KM plotter database by Győrffy et al. (17, 18), we

validated the significance of 4 out of 18 genes together with

CTNNB1 in relapse-free survival. Lastly, Cox Proportional

Hazards Regression put forward PTCH1 and CTNNB1 as key

markers of resistance to neoadjuvant therapy in ER+/HER2-

breast cancer. Figure 1 summarizes the algorithms we used to

identify these 2 robust predictors.
2 Materials and methods

2.1 Data collection and identification of
differentially expressed genes

To investigate the markers of resistance to taxane-based

neoadjuvant chemotherapy in ER+/HER2- breast cancer, we

analyzed GSE20194, GSE20271, GSE25055, GSE25065, and

GSE32646 datasets in GEO (https://www.ncbi.nlm.nih.gov/geo/).

All datasets included mRNA-sequencing data from fine needle

aspiration biopsy (FNA) or core biopsy (CBX) samples collected

from patients before surgery and any systemic therapy (19–25).

Only patients with ER-positivity and HER2-negativity were

included in the analysis. We did not include patients with other
Frontiers in Oncology 03
receptor subtypes of breast cancer, patients who did not receive

taxane-based neoadjuvant therapy, or for whom information on the

chemotherapy and the response to therapy was not available.

Pathological complete response (pCR) was accepted as the

surrogate of sensitivity to chemotherapy and residual disease

(RD) was accepted as the surrogate of chemoresistance.

Information on the number of patients with RD or pCR,

chemotherapy regimens, and PAM50 intrinsic subtypes is

summarized in Supplementary Table 1.

To identify differentially expressed genes (DEGs) in

chemoresistant patients compared with chemosensitive patients,

we used the GEO2R web tool (https://www.ncbi.nlm.nih.gov/geo/

geo2r/). In total, we analyzed samples from 468 chemoresistant and

45 chemosensitive patients with ER+/HER2- breast cancer. Since

response rates to taxane-based chemotherapy are low in ER

+/HER2- breast cancer, the number of chemosensitive patients

was much lower compared to the number of chemoresistant

patients in all datasets. To avoid bias that could be caused by the

imbalance in the number of resistant vs. sensitive patients or the

inhomogeneous distribution of data, we applied log transformation

and force normalization to all datasets. The p-value cut-off was

selected as 0.05 for statistical significance. Genes with a log-fold

change smaller than -0.2 were accepted as downregulated genes and

genes with a log-fold change greater than 0.2 were accepted as

upregulated genes. The volcano plots for DEGs were plotted on

Image GP (http://www.ehbio.com/ImageGP). To identify the DEGs
FIGURE 1

The algorithm used in the study for identifying pivotal predictors in ER+/HER2- breast cancer. DEG, differentially expressed genes; NAC, neoadjuvant
chemotherapy; ROC, Receiver/Relative-operating characteristics; Tx, treatment. Created with BioRender.com.
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and ontologies shared by different datasets we analyzed the data on

Metascape (26) (https://metascape.org) and extracted the

circos plots.
2.2 Gene set enrichment analysis

To dissect the enriched hallmark gene sets and oncogenic

signature gene sets in ER+/HER2- breast tumors resistant to

taxane-based neoadjuvant chemotherapy, we performed gene set

enrichment analysis on Gene Set Enrichment Analysis software

GSEA_4.2.3 (27). First, we prepared the list of t values calculated in

GEO2R for the differential expression of each gene in non-

responsive patients compared to the responsive patients in each

dataset. Then we uploaded the pre-ranked t-value lists for each

dataset separately to the GSEA_4.2.3. We have chosen hallmark

gene sets (50 sets) or oncogenic signature gene sets (189 sets) from

Molecular Signatures Database (MSigDB) and ran the GSEA-

Preranked tool (28, 29). We evaluated the GSEA plots,

enrichment scores, normalized enrichment scores, and p-values

for each reference gene set to find out statistically enriched hallmark

genes and oncogenic signatures in 5 GEO datasets.
2.3 Functional annotation, enrichment, and
hierarchical clustering analysis

To identify the gene ontologies and pathways that the DEGs

were enriched, we analyzed the list of 63 commonly upregulated

genes in non-responsive patients on The Database for Annotation,

Visualization, and Integrated Discovery (DAVID) (Version 6.8)

(https://david.ncifcrf.gov/). The gene ontologies (GO-CC: cellular

compartments, GO-MF: molecular functions, and GO-BP:

biological processes) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways listed in the top enrichment clusters

were explored (p-value significance cut-off: 0.05).
2.4 Gene expression profiling and receiver
operating characteristic analysis

To validate the upregulation of key genes in patients who did

not respond to taxane-based therapy, and demonstrate their

specificity to ER+/HER2- breast cancer, we analyzed the data for

512 ER+/HER2- patients (437 non-responders vs 75 responders),

71 HER2+/ER- patients (31 non-responders vs. 40 responders), 204

TNBC patients (125 non-responders vs. 79 responders) who

received taxane-based chemotherapy on the ROC-plotter database

(16). The patients who received endocrine therapy or anti-HER2

therapy were not included in the gene expression profiling and ROC

curve analysis. Pathological complete response was considered as

the surrogate for responsiveness in both analysis types.

We evaluated the fold-change in gene expression in non-

responders vs. responders and p-values calculated with the Mann-

Whitney test (p-value cut-off=0.05). We also evaluated the

frequency of responders and non-responders at each quartile of
Frontiers in Oncology 04
gene expression. The graphs for this analysis were plotted in

GraphPad Prism 9. To validate the value of the key markers in

predicting resistance to taxane-based chemotherapy, we analyzed

the Receiver/Relative Operating Characteristic (ROC) curves of the

genes in the ROCplotter (16). The data for the true positive rate

(TPR), and true negative rate (TNR) calculated by the “pROC”

package in R was used to plot ROC curves with the “ggplot2”

package in R. We evaluated the area under the curve (AUC), ROC

p-values, and calculated the positive predictive values (PPV) and

negative predictive values (NPV) using the TPR, and TNR values

extracted from the ROC analysis.
2.5 Kaplan Meier survival analysis and Cox
proportional hazards regression

To investigate the effect of upregulated genes on survival we

analyzed the KM-survival for 316 ER+/HER2- breast cancer patients

who underwent neoadjuvant chemotherapy on the Kaplan-Meier

Plotter database (17). For all genes, we downloaded the gene

expression data (both categorical and continuous data) and

relapse-free survival data for these 316 patients to perform KM

survival analysis and Cox Proportional Hazards Regression. We built

the univariate and multivariate survival models and Cox

Proportional Hazards models with these genes using the ‘survival’

package in R. In KM analysis we included categorical expression of

genes as high or low. We plotted the KM-survival plots using the

‘survminer’ and ‘ggplot2’ packages in R. We extracted the log-rank

p-values for each model. The Proportional Hazards assumption for

Cox models was tested with the Schoenfeld test in R using the

‘survival’ and ‘survminer’ packages in R. The FDR-adjusted p-values

for Cox Proportional Hazards models were calculated by the

‘p.adjust’ package in R using the “Benjamini-Hochberg” method.

To validate the potential of PTCH1, and CTNNB1 as predictors

in ER+/HER2- breast cancer patients, we additionally extracted data

for 421 ER+/HER2- patients who had not undergone any systemic

therapy and 1087 ER+/HER2- patients who underwent endocrine

therapy in KM plotter database. We established Cox Proportional

Hazards models using PTCH1, and CTNNB1 as covariates in three

treatment arms: no systemic therapy, neoadjuvant chemotherapy,

and endocrine therapy. To build Cox models, we used the ‘survival’

package in R and included gene expression values as log2-

normalized continuous variables. We extracted the concordance

and log-rank p-values for each model. We also compared the

goodness of fit of each model compared to the null model with

ANOVA. We extracted the chi-square and p-values as an output of

this analysis.
2.6 Gene signature and gene
correlation analysis

We analyzed the correlation of the 18 gene list with Oncotype

Dx, EndoPredict, or MammaPrint signatures in TCGA breast

cancer data using the correlation analysis tool of GEPIA2 (http://

gepia2.cancer-pku.cn) (30). The Pearson method was used for
frontiersin.org
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correlation analysis. The housekeeping/reference genes in the

signatures were excluded from the analysis. The correlation of the

18 gene list and Oncotype Dx, and EndoPredict signatures with

ESR1, ERBB2, or ESR1 plus ERBB2 were also analyzed in GEPIA2.

For the Oncotype Dx signature, the ESR1, ERBB2, or ESR1 plus

ERBB2 was not included in the signature when correlation with

ESR1, ERBB2, or ESR1 plus ERBB2 was analyzed respectively.

To investigate the correlation between the expression of each

gene in the 18 gene list and Oncotype Dx genes, we extracted the

data for 316 ER+/HER2- breast cancer patients who underwent

neoadjuvant chemotherapy on the Kaplan-Meier Plotter database.

We performed the hierarchical clustering analysis of the correlation

matrices on Image GP using both the Pearson and the Spearman

methods (http://www.ehbio.com/ImageGP) (31). Additionally, we

extracted the data for correlation coefficients between all signature

genes in all breast cancer patients (n=1100), patients with luminal

A-type (n=568), and luminal B-type (n=219) breast cancer patients

in the TCGA dataset from TIMER.2.0 (http://timer.cistrome.org)

(32). We performed the hierarchical clustering analysis of the

correlation matrices on Image GP using the Spearman method.
3 Results

3.1 Oncogenic signatures and upregulated
genes associated with resistance to
taxane-based neoadjuvant chemotherapy

To identify the markers associated with resistance to taxane-

based neoadjuvant chemotherapy in ER+/HER2- breast cancer, we

analyzed GSE20194, GSE20271, GSE25055, GSE25065, and

GSE32646 datasets in GEO2R. These datasets included gene

profiling data from breast cancers with different subtypes (19–25).

We included and analyzed a total of 468 chemoresistant and 45

chemosensitive patients with ER+/HER2- breast cancer who

underwent taxane-based neoadjuvant chemotherapy. We

considered pathological complete response (pCR) as the surrogate

of chemosensitivity and residual disease (RD) as the surrogate of

chemoresistance. Supplementary Table 1 lists the number of patients

with RD or pCR in each dataset, with information on the source of

samples, PAM50 intrinsic classes, and chemotherapy regimens.

First, we performed gene set enrichment analysis for each dataset

to find out hallmark genes and oncogene signatures commonly

enriched in patients resistant to therapy. We utilized 50 hallmark

gene sets, and 189 oncogenic signature gene sets from Molecular

Signatures Database (MSigDB) (27–29). Although we could not

detect a hallmark gene set commonly enriched in all 5 GEO datasets,

oncogenic signature gene sets “MTOR UP.N4.V1_DN” and

“CYCLIN_D1.KE.V1.DN” were enriched at least in 3 out of 5 GEO

datasets (Figures 2A, B).

“MTOR_UP.N4.V1_DN” signature consists of genes

downregulated upon treatment of CEM-C1 T cell leukemia cells

with an MTOR inhibitor rapamycin (33). “CYCLIN_D1.KE.V1.DN”

gene signature includes genes downregulated in MCF-7 breast cancer

cells heterogeneously over-expressing a mutant form of Cyclin D1

(K112E) lacking the ability to activate cyclin-dependent kinase 4
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(CDK4) (34). Based on the significance of MTOR and CCND1 in

tumor progression and resistance to therapy in cancer including breast

cancer (35–38), we investigated whether MTOR and CCND1 have a

predictive significance for the pathological complete response to

taxane-based chemotherapy, in 437 non-responsive vs. 75 responsive

ER+/HER2- breast cancers patients in the ROC Plotter cohort. These

two genes were not differentially expressed in non-responsive patients

(Figures 2C, D), nor exhibit a predictive power in ROC analysis

(Figures 2E, F). High expression of these genes in 316 ER+/HER2-

breast cancer patients who had undergone neoadjuvant chemotherapy

was not associated with a decreased relapse-free survival in the KM

Plotter cohort (Figures 2G, H).

Interestingly, we observed three different b-Catenin (CTNNB1)-

related oncogenic signatures, “BCAT_GDS748_UP”, “BCAT.100_

UP.V1_UP” “BCAT_BILD_ET_AL _DN” enriched in GSE20194,

GSE20271, and GSE25055 datasets, although a single b-Catenin-
related oncogenic signature is not commonly enriched among the

datasets (Figures 3A, B). “BCAT_GDS748_UP” and “BCAT.

100_UP.V1_UP” signatures consist of genes upregulated in HEK293

cells which express a constitutively active b-Catenin (39). “BCAT_

BILD_ET_AL _DN” is established from the down-regulated genes in a

primary epithelial breast cancer cell model that overexpresses active b-
Catenin (40). b-Catenin is a crucial component of E-cadherin-

mediated cell-cell adhesion and canonical WNT pathway which has

high significance in mammary tissue development, breast cancer

formation, and metastasis (41). Unexpectedly, our analysis of ER

+/HER2- breast cancer patients in the ROC plotter cohort exhibited

down-regulation of b-Catenin in patients with residual disease

(Figure 3C). Despite that, the genes that are upregulated or

downregulated in the presence of constitutively active CTNNB1 are

enriched in non-responders in GEO datasets (Figures 3A, B), CTNNB1

exhibited a significant predictive value in the ROC analysis (Figure 3D),

and high expression of the CTNNB1 was associated with decreased

relapse-free survival in ER+/HER2- breast cancer patients who received

neoadjuvant chemotherapy (Figure 3E). Since relapse-free survival is a

better surrogate for response to therapy we evaluated these results in

favor of the possible involvement of CTNNB1 in resistance to taxane-

based chemotherapy. These results also suggested the importance of

the activity status of CTNNB1 besides the gene expression levels.

Then we explored upregulated genes and ontologies in

chemoresistant patients in GEO datasets (Supplementary Figures

1A-E). A low number of upregulated genes were shared in all 5

datasets (1 gene: XIST), or 4 datasets (4 genes: MLH3, TNFRSF25,

SNX1, RBM5). However, the overlap between the ontologies that the

upregulated genes enriched was high in all 5 datasets (Supplementary

Figure 1F). To investigate and compare the potential predictive power

of a larger list of genes, we compiled the list of genes upregulated in 3

or more datasets, which included 63 coding genes.
3.2 Functionally enriched gene ontologies
and pathways associated with resistance to
taxane-based neoadjuvant chemotherapy

To identify the pathways and gene ontologies at which the 63

upregulated genes were enriched, we performed functional
frontiersin.org
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annotation and clustering analysis in The Database for Annotation,

Visualization, and Integrated Discovery (DAVID) (Version 6.8)

(https://david.ncifcrf.gov/) (42). The 63 upregulated genes clustered

in 5 annotation clusters. The top annotation cluster with the highest

enrichment score included “protein kinase activity” and “protein
Frontiers in Oncology 06
phosphorylation” as the most prominent biological processes and

molecular functions (Supplementary Table 2). Ontologies related to

“endocytosis” and “regulation of transcription” were the other

prominent processes and molecular functions that the

upregulated genes enriched in other clusters.
B

C

D

E

F

G

H

A

FIGURE 2

Oncogenic signature genes enriched in ER+/HER2- breast cancer patients resistant to taxane-based neoadjuvant chemotherapy. GSEA enrichment
plots for (A) “MTOR_UP.N4.V1_DN” and (B) “CYCLIN_D1.KE.V1.DN” oncogenic signature gene sets in GSE20194, GSE20271, GSE25055, and GSE25065
datasets. The differential expression plot (left), and the frequency of responders and non-responders at each quartile of gene expression (right) for
(C) MTOR and (D) CCND1; and the ROC plots for (E) MTOR and (F) CCND1 in 437 non-responsive vs. 75 responsive ER+/HER2- breast cancer patients
who received taxane-based chemotherapy (ROC Plotter database). The pathological response was used as the surrogate of response to chemotherapy.
The KM plots for (G) MTOR and (H) CCND1 in 316 ER+/HER2- breast cancer patients who received taxane-based neoadjuvant chemotherapy (KM
Plotter database). AUC, Area under the curve; TPR, true positive rate; TNR, true negative rate; NES, normalized enrichment score.
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3.3 Validation of the differential expression
and predictive power of upregulated genes

To validate the upregulation of the 63 genes in chemoresistant

patients and investigate their predictive value for resistance to

taxane-based chemotherapy, we analyzed their differential

expression and ROC plots in a large cohort of breast cancer

patients in the ROC plotter developed by Fekete and Győrffy (16).

Among these 63 genes, we validated the significant upregulation of

18 genes in non-responders to taxane-based chemotherapy

(Figure 4). The ROC plots of these 18 genes also demonstrated a

statistically significant power to predict resistance to taxane-based

therapy in 437 non-responsive vs. 75 responsive ER+/HER2- breast

cancer patients (Figure 5). The area under the ROC curves (AUC)

was significantly higher than 0.5 for all 18 genes (p<0.01 for 2 genes

and p<0.001 for 16 genes). These genes with functional annotations

are listed in Supplementary Table 3. Among the 18 validated genes,

BLOC1S1, AP3B2, ZNF609, ZFYVE9, and RAP1GAP were the top 5

genes with the highest PPV and NPV (Table 1).
3.4 The specificity of the 18 upregulated
genes to ER+/HER2- breast cancer

Breast cancer is a heterogeneous disease with different responses

to treatment in different subtypes (4, 7). Therefore, distinct gene

lists may have different predictive strengths in different subtypes. To

test whether the predictive value of the 18 upregulated genes we
Frontiers in Oncology 07
identified is specific to the ER+/HER2- breast cancer, we tested the

predictive power of each gene also in HER2+/ER- and triple-

negative breast cancers (Table 1).

Among the 18 genes, fewer genes exhibited significant

predictive value in HER2+ cancers and TNBC, compared with ER

+/HER2- breast cancer. Despite the p-values for AUCs of some

genes such as AP3B2, BLOC1S1, NUDT13, PTCH1, and ZNF609

being statistically significant in all three breast cancer subtypes,

their significance in HER2+ cancers and TNBC were much lower

compared to that in ER+/HER2- breast cancer patients. PPV and

NPVs were also lower compared to that in ER+/HER2- breast

cancer. These results showed that the 18 gene signature has higher

predictive value and specificity in ER+/HER2- breast cancer.
3.5 Comparative analysis of the 18
upregulated genes with prognostic
signatures in breast cancer

Several multi-gene assays such as Oncotype Dx, EndoPredict,

and MammaPrint are being used as complementary tools to guide

decisions in the clinical management of breast cancer patients.

Although their primary benefit is to estimate the risk of recurrence

after endocrine therapy in ER+/HER2- breast cancers, some studies

suggested their utility also as predictive tools to estimate response to

systemic chemotherapy (10, 43–45). Therefore, we investigated the

correlation of our 18 gene list with these signatures. The analysis of

TCGA dataset demonstrated that the expression of the 18 genes is
B C D E

A

FIGURE 3

b-Catenin-related oncogenic signature genes enriched in ER+/HER2- breast cancer patients resistant to taxane-based therapy. (A) GSEA enrichment
plots for b-Catenin-related oncogenic signature genes in GSE20194, GSE20271, and GSE25055 datasets with (B) the table of statistical parameters.
(C) The differential expression (left), the frequency of responders and non-responders at each quartile of gene expression (right), and (D) the ROC
curves for CTNNB1 in 437 non-responsive vs. 75 responsive ER+/HER2- breast cancer patients who received taxane-based chemotherapy (ROC
Plotter database). (E) The KM plot for CTNNB1 in 316 ER+/HER2- breast cancer patients who received taxane-based neoadjuvant chemotherapy (KM
Plotter database). AUC, Area under the curve; TPR, true positive rate; TNR, true negative rate; NES, normalized enrichment score.
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correlated with the expression of Oncotype Dx, EndoPredict, and

MammaPrint signatures in 1100 breast cancer patients. The

correlation of the 18 gene list was highest with the Oncotype

Dx (Figure 6A).

Then we compared the correlation of the 18 genes, Oncotype

Dx and EndoPredict signatures with the expression of ER (ESR1),
Frontiers in Oncology 08
HER2 (ERBB2), and ER plus HER2 in breast cancer patients in

TCGA dataset. The 18 genes and the two signatures were correlated

with the expression of ER and ER plus HER2 in breast cancer

patients (Figures 6B–D). The correlation with HER2 was significant

only for the EndoPredict signature. It was noticeable that the

clustering pattern of patients in correlation analysis with ER,
B

C

D
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F

A

FIGURE 4

Validating the differential expression of the 18 upregulated genes in non-responders. The differential expression (left), and the frequency of
responders and non-responders at each quartile of gene expression (right) for (A) AP3B2, ARL2BP, BLOC1S1, (B) CAMKK2, ECM1, and ITGA10,
(C) ITPK1, NUDT13, PLA2G6, (D) PTCH1, RAP1GAP, and RGS11, (E) RGS12, RPS15A, SLC7A8, (F) ZFYVE9, ZNF214, and ZNF609. The analysis was
performed on data for 437 non-responsive vs. 75 responsive ER+/HER2- breast cancer patients who received taxane-based chemotherapy in the
ROCplotter cohort. The pathological response was used as the surrogate of response to chemotherapy. Resp.: Responders (blue), Non.:Non-
responders (red). *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001.
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HER2, and ER plus HER2 were very similar for the 18 gene list

(Figure 6B) and the two signatures (Figures 6C, D). Since the

correlation of the 18 genes was highest with Oncotype Dx

(Figure 6A), and the Oncotype Dx signature bears a comparable

number of genes (16 marker genes + 5 reference genes), we further

analyzed the characteristics of our 18 gene list comparatively with

Oncotype Dx.
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3.6 Comparative analysis of the 18 gene
list with the Oncotype Dx signature in
breast cancer

Despite that multi-gene signatures are used to calculate

recurrence scores based on multivariate statistical equations (8),

we wondered whether the individual predictive powers of the 18
B

C

D

E

F

A

FIGURE 5

ROC analysis of the 18 upregulated genes in non-responders. ROC plots for (A) AP3B2, ARL2BP, BLOC1S1, (B) CAMKK2, ECM1, and ITGA10,
(C) ITPK1, NUDT13, PLA2G6, (D) PTCH1, RAP1GAP, and RGS11, (E) RGS12, RPS15A, SLC7A8, (F) ZFYVE9, ZNF214, and ZNF609. The analysis was
performed on data for 437 non-responsive vs. 75 responsive ER+/HER2- breast cancer patients who received taxane-based chemotherapy in the
ROCplotter cohort. The pathological response was used as the surrogate of response to chemotherapy.
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gene list we identified are similar to the individual predictive powers

of Oncotype Dx genes in different subtypes of breast cancer. Hence,

we investigated the individual predictive powers of Oncotype Dx

genes in three breast cancer subtypes in the ROC plotter database.

The AUCs were significantly higher than 0.5 for only 8 genes

(p<0.05 for 2 genes and p<0.001 for 6 genes) in ER+/HER2- breast

cancer patients who received taxane-based chemotherapy (Table 2).

BCL2, ERBB2, GRB7, and SCUBE2 exhibited highest predictive

strength. SCUBE2 also emerged as a key predictor of

chemoresistance in breast cancer in our recent study (46). Only

one or two Oncotype Dx genes exhibited predictive value in HER2

+/ER- and TNBC subtypes, suggesting specificity of the signature

for the ER+/HER2- subtype. However, nearly half of the Oncotype

Dx genes did not exhibit a predictive value in ER+/HER2-

breast cancer.

Then we compared the differential expression of the 18 gene list

and Oncotype Dx signature in chemoresistant patients with

different breast cancer subtypes in the ROC plotter dataset. All

the genes in the 18 gene list were significantly increased in the ER

+/HER2- subtype and most of the fold changes (FCs) in HER2

+/ER- and TNBC subtypes were insignificant (Table 3). The FC for

almost all the Oncotype Dx genes was also insignificant in HER2

+/ER- and TNBC subtypes. However, only 7 out of 16 Oncotype Dx

genes were significantly upregulated in ER+/HER2- breast cancer.

These results, together with the comparison of the results in
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Tables 1, 2 suggest that the 18 genes we identified exhibit higher

individual predictive values and higher specificity to ER+/HER2-

breast cancer patients.

After that, we analyzed the Pearson correlation between each

gene in the 18 gene list (Figure 7A) and the Oncotype Dx signature

(Figure 7B) in 316 ER+/HER2- breast cancer patients who

underwent neoadjuvant chemotherapy. The 18 gene list formed 3

main clusters: a cluster of positively correlated genes (ITPK1,

ITGA10, ZFYVE9, PLA2G6, ARL2BP, and RGS12), a cluster of

uncorrelated or poorly correlated genes (AP3B2, CAMKK2,

ZNF214, NUDT13, PTCH1, and ZNF609) and a cluster of genes

negatively correlated with others in the 18 gene-list (RAP1GAP,

BLOC1S1, ECM1, RGS11, SLCA78, and RPS15A). Oncotype Dx

genes also formed 3 main clusters but with a different pattern: a

cluster of positively correlated genes (CCNB1, AURKA, MYBL2,

BIRC5, MKI67, and CTSL2), a cluster of uncorrelated or poorly

correlated genes (CD68, MMP11, BCL2, BAG1, and GRB7), and a

second cluster of positively correlated genes (ERBB2, ESR1, GSTM1,

SCUBE2, and PGR).

Although linear correlation for some genes is poor, they may

exhibit concordant increases or decreases in expression in tumor

samples. To investigate these kinds of monotonic relationships we

analyzed the Spearman correlation between each gene in the 18

gene list (Figure 7C) and the Oncotype Dx signature (Figure 7D) in

316 ER+/HER2- breast cancer patients. The 18 genes constituted
TABLE 1 The predictive power of the 18 upregulated genes in different breast cancer subtypes.

ER +/HER2 - HER2 +/ER - TNBC

Genes AUC P-value PPV NPV AUC P-value PPV NPV AUC P-value PPV NPV

AP3B2 0.692 3.2E-13 0.663 0.667 0.623 4.3E-03 0.625 0.598 0.596 2.3E-03 0.580 0.580

ARL2BP 0.609 2.3E-05 0.627 0.633 0.537 2.2E-01 0.600 0.574 0.523 2.5E-01 0.564 0.541

BLOC1S1 0.705 6.1E-15 0.670 0.716 0.604 1.5E-02 0.624 0.626 0.587 5.3E-03 0.584 0.586

CAMKK2 0.617 1.1E-05 0.609 0.633 0.545 1.8E-01 0.632 0.568 0.539 1.3E-01 0.564 0.557

ECM1 0.663 8.6E-10 0.640 0.674 0.502 4.8E-01 0.568 0.540 0.550 7.3E-02 0.608 0.570

ITGA10 0.601 2.5E-04 0.613 0.598 0.591 2.9E-02 0.632 0.581 0.557 5.0E-02 0.563 0.549

ITPK1 0.654 3.1E-08 0.630 0.652 0.614 7.7E-03 0.588 0.616 0.552 6.2E-02 0.573 0.559

NUDT13 0.587 8.2E-04 0.570 0.593 0.623 4.4E-03 0.639 0.663 0.585 5.3E-03 0.567 0.563

PLA2G6 0.638 5.0E-08 0.644 0.656 0.553 1.4E-01 0.598 0.568 0.523 2.5E-01 0.528 0.532

PTCH1 0.646 8.1E-08 0.636 0.656 0.666 1.6E-04 0.663 0.667 0.597 2.1E-03 0.576 0.627

RAP1GAP 0.676 4.20E-12 0.648 0.674 0.569 7.6E-02 0.578 0.607 0.532 1.8E-01 0.542 0.561

RGS11 0.649 2.8E-08 0.608 0.602 0.577 5.5E-02 0.588 0.630 0.627 6.4E-05 0.586 0.584

RGS12 0.572 2.9E-03 0.620 0.579 0.503 4.7E-01 0.587 0.574 0.564 3.0E-02 0.571 0.569

RPS15A 0.576 2.3E-03 0.560 0.560 0.532 2.6E-01 0.570 0.545 0.561 3.6E-02 0.563 0.580

SLC7A8 0.65 7.0E-09 0.634 0.617 0.560 1.0E-01 0.600 0.560 0.561 3.6E-02 0.549 0.551

ZFYVE9 0.665 1.8E-09 0.653 0.657 0.556 1.2E-01 0.579 0.620 0.611 4.9E-04 0.607 0.636

ZNF214 0.6 1.2E-04 0.621 0.610 0.531 2.7E-01 0.519 0.521 0.551 6.8E-02 0.552 0.548

ZNF609 0.661 1.4E-10 0.660 0.642 0.621 4.9E-03 0.600 0.611 0.595 2.2E-03 0.577 0.573
frontier
The results for which the p-value for AUC was 0.001<p<0.05 were underlined, and p<0.001 were written in bold. Number of patients: ER+/HER2-: non-responders: 437, responders: 75; HER2
+/ER-: non-responders: 31, responders:40; TNBC: non-responders:125, responders:79. Analysis was performed on ROC Plotter database.
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two main clusters of positively and monotonically correlated genes.

The larger cluster included ITGA10, ITPK1, PLA2G6, ZFYVE9,

ARLB2BP, ZNF214, NUDT13, PTCH1, RGS12, CAMKK2, AP3B2,

and ZNF609. The smaller cluster consisted of RAP1GAP, RGS11,

SLC7A8, BLOC1S1, and ECM1 (Figure 7C). The Oncotype Dx

signature exhibited 2 clusters of positively and monotonically
Frontiers in Oncology 11
changing clusters of similar size. These 2 clusters, one composed

of ESR1-related genes, and the other composed of genes associated

with proliferation like MKI67 and CCNB1 exhibited changes in the

opposite direction in ER+/HER2- breast cancer patients

(Figure 7D).To understand whether this pattern of correlation

within the 18-gene list and Oncotype Dx is specific to ER
B
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A

FIGURE 6

Comparative analysis of the 18 gene list with multi-gene assay signatures in TCGA breast cancer patients. (A) Correlation between the 18 gene list
and Oncotype Dx, EndoPredict, and MammaPrint signatures respectively in 1100 breast cancer patients in TCGA dataset. Correlation of (B) 18 gene
list, (C) Oncotype Dx, and (D) EndoPredict signatures with ER (ESR1), HER2 (ERBB2), and ER plus ERBB2 respectively in breast cancer patients. The
housekeeping/reference genes in all the signatures were excluded from the analysis. For the Oncotype Dx signature, the ESR1, ERBB2, or ESR1 plus
ERBB2 was not included in the signature when correlation with ESR1, ERBB2, or ESR1 plus ERBB2 was analyzed respectively in (6c). The blue dashed
circles show the main cluster of patients with high expression of 18-genes or two signatures in the y-axis, together with high ESR1 expression (left
graph), low ERBB2 expression (middle), and high ESR1+ERBB2 expression (right graph) in the x-axis. The red dashed circles show patients with lower
expression of the 18 genes or two signatures in the y-axis, and low ESR1(left), high ERBB2 (middle), and low ESR1+ERBB2 (right) expression in the x-
axis. x- and y-axis represent log(transcript per million) values for gene expression.
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+/HER2- breast cancer patients, we performed a similar Spearman

correlation analysis in TCGA breast cancer data (Figure 8).

We observed that the pattern of correlation of 18 genes was

different in all breast cancer patients in the TCGA dataset with

lower correlation coefficients in general (Figure 8A) compared to

that in the cohort of ER+/HER2- breast cancer patients (Figure 7C).

The pattern of the Spearman correlation matrix was also different in

luminal A- or luminal B- type breast cancers in the TCGA dataset

(Figures 8 B, C). On the other hand, the Oncotype Dx signature

exhibited nearly the same correlation pattern in all TCGA breast

cancer patients and luminal A-type breast cancer patients

(Figures 8D, E) as in the cohort of ER+/HER2- breast cancer

patients (Figure 7D). The pattern in luminal B-type breast cancer

was different from that in other cohorts (Figure 8F). These results

suggested that the 18 gene list we identified may be more

representative of ER+/HER2- breast cancer patients, while

Oncotype Dx similarly represents all breast cancer subtypes,

Luminal A type, and ER+/HER2- breast cancer.
3.7 The effect of 18 genes in the
relapse free survival of ER+/HER2- breast
cancer patients

Pathological complete response is often used as a surrogate of

treatment response to neoadjuvant chemotherapy. Since its

assessment within the period of clinical studies is relatively easy,
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pCR gained widespread use as a primary endpoint in many clinical

trials to facilitate and accelerate the drug discovery process.

However, recent studies question its efficacy as a predictor of

patient survival and reveal varying surrogacy of pCR in distinct

breast cancer subtypes (47–49). To identify reliable predictors of

resistance to neoadjuvant chemotherapy we investigated the effect

of 18 genes in relapse-free survival of 316 ER-/HER2- patients in the

KM plotter cohort. We validated that high expression of 4 out of 18

genes, namely AP3B2, ITGA10, ITPK1, and PTCH1 is associated

with a significantly decreased relapse-free survival (Figures 9A–E).

Then we performed multivariate survival analysis using these

four genes as categorical variates (Figures 9F–O). The survival

models were statistically significant for gene combinations

AP3B2/ITPK1, AP3B2/PTCH1, ITPK1/PTCH1, AP3B2/ITGA10/

ITPK1, AP3B2/ITPK1/PTCH1, and ITGA10/ITPK1/PTCH1

(Figures 9G, H, K, L, N, O). AP3B2/ITPK1 model remarkably had

the greatest significance in the log-rank test (Figure 9G).
3.8 The effect of AP3B2, ITGA10, ITPK1,
PTCH1 and CTNNB1 as continuous
covariates in the relapse free survival
of ER+/HER2- breast cancer patients

Despite that KM survival curves are efficient tools to assess the

impact of gene expression on patient outcome, the cut-offs used to

allocate patients to low-expression and high-expression groups
TABLE 2 The predictive power of Oncotype Dx genes in different breast cancer subtypes.

ER +/HER2 - HER2 +/ER - TNBC

Genes AUC P-value PPV NPV AUC P-value PPV NPV AUC P-value PPV NPV

AURKA 0.579 3.5E-03 0.588 0.616 0.527 2.9E-01 0.548 0.542 0.503 4.6E-01 0.523 0.527

BAG1 0.558 1.6E-01 0.677 0.585 0.646 1.1E-02 0.757 0.638 0.531 3.3E-01 0.596 0.585

BCL2 0.701 3.7E-14 0.651 0.670 0.559 1.1E-01 0.587 0.594 0.553 6.1E-02 0.545 0.545

BIRC5 0.513 3.3E-01 0.535 0.526 0.502 4.8E-01 0.546 0.554 0.51 3.8E-01 0.538 0.532

CCNB1 0.574 7.7E-02 0.596 0.628 0.503 4.8E-01 0.576 0.537 0.596 9.4E-02 0.621 0.593

CD68 0.531 1.4E-01 0.535 0.535 0.561 1.0E-01 0.571 0.622 0.537 1.4E-01 0.584 0.553

CTSL2 0.6 1.5E-04 0.605 0.571 0.545 1.8E-01 0.619 0.555 0.544 1.0E-01 0.552 0.558

ERBB2 0.644 2.3E-08 0.626 0.645 0.551 4.1E-01 0.569 0.533 0.511 3.7E-01 0.521 0.519

ESR1 0.595 6.2E-04 0.571 0.569 0.555 1.3E-01 0.582 0.554 0.582 8.1E-03 0.624 0.591

GRB7 0.646 1.7E-08 0.657 0.663 0.54 2.1E-01 0.566 0.574 0.571 1.8E-02 0.588 0.565

GSTM1 NA NA NA NA NA NA NA NA NA NA NA NA

MKI67 0.506 4.2E-01 0.513 0.517 0.522 3.3E-01 0.571 0.552 0.506 4.3E-01 0.546 0.544

MMP11 0.531 1.5E-01 0.527 0.523 0.562 9.9E-02 0.545 0.545 0.532 1.8E-01 0.548 0.579

MYBL2 0.549 3.9E-02 0.545 0.556 0.52 3.4E-01 0.524 0.517 0.528 2.0E-01 0.538 0.533

PGR 0.531 2.9E-01 0.568 0.554 0.53 3.4E-01 0.571 0.579 0.599 8.5E-02 0.638 0.653

SCUBE2 0.628 6.7E-07 0.590 0.641 0.557 1.2E-01 0.581 0.561 0.534 1.6E-01 0.538 0.532
frontier
The results for which the p-value for AUC was 0.001<p<0.05 were underlined, and p<0.001 were written in bold. The housekeeping/reference genes ACTB, GAPDH, GUSB, RPLP0, and TFRC in
Oncotype Dx signature were excluded from the analysis, and the data was not available (NA) for GSTM1. Number of patients: ER+/HER2-:non-responders: 437, responders: 75; HER2+/ER-:
non-responders: 31, responders:40; TNBC: non-responders:125, responders:79.
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substantially affect the results. To assess the impact of gene

expression on patient outcomes independent of cut-offs, we

performed Cox Proportional Hazards regression using AP3B2,

ITGA10, ITPK1, and PTCH1 as continuous covariates. We also

included CTNNB1 in the analysis since CTNNB1-related signatures

were enriched in ER+/HER2- breast cancer patients resistant to

taxane-based therapy and high expression of CTNNB1 was

associated with decreased survival in ER+/HER2- breast cancer

patients (Figures 3A, B, D). We established univariate and

multivariate Cox Proportional Hazards regression models of these

genes using the relapse-free survival data of 316 ER+/HER2- Breast

Cancer patients who underwent neoadjuvant chemotherapy

(Table 4). Nearly half of the univariate and multivariate models

fitted survival data significantly, and nearly all of them achieved

significantly better fits compared to the null model in ANOVA.

The Cox models which included PTCH1 and CTNNB1 like

PTCH1+CTNNB1, AP3B2+PTCH1+CTNNB1, ITGA10+PTCH1

+CTNNB1, and ITPK1+ PTCH1+CTNNB1 achieved the best

concordance and Log-rank p values (Table 4). Moreover, PTCH1

and CTNNB1 displayed the highest hazard ratios, 1.534 and 1.563

respectively in the univariate Cox Proportional Hazards with

significant p- and adjusted p-values (Table 5). Their hazard ratios
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increased further in the multivariate model including AP3B2,

ITGA10, ITPK1, PTCH1, and CTNNB1 as covariates and the

Schoenfeld test validated the proportional hazards assumption

(Supplementary Figure 2). These results put forth PTCH1 and

CTNNB1 as the markers with the highest predictive potential.

Lastly, we validated the potential of PTCH1 and CTNNB1 as

predictive biomarkers for neoadjuvant chemotherapy in ER

+/HER2- breast cancer patients, by performing Cox Proportional

Hazards Regression in two additional treatment arms: patients with

no systemic therapy and patients who underwent endocrine therapy

(Table 6). PTCH1 and CTNNB1 were associated with increased risk

specifically in ER+/HER2- breast cancer patients who underwent

neoadjuvant chemotherapy, while their hazard ratios were smaller

than 1 and/or statistically insignificant in patients with no systemic

therapy and patients who underwent endocrine therapy (Table 6).

These findings supported that PTCH1 and CTNNB1 have predictive

significance rather than prognostic significance. The hazard ratios

for PTCH1 and CTNNB1 in the neoadjuvant chemotherapy arm

further increased in the multivariate model suggesting an

interaction between these two genes. These findings indicated that

PTCH1 and CTNNB1 may have a high potential as predictors of

resistance to taxane-based neoadjuvant chemotherapy.
TABLE 3 The differential expression of 18 gene list vs. Oncotype Dx signature genes in taxane-resistant patients with different breast cancer subtypes.

18-gene ER +/HER2 - HER2 +/ER - TNBC Oncotype Dx ER +/HER2 - HER2 +/ER - TNBC

Genes FC P-value FC P-value FC P-value Genes FC P-value FC P-value FC P-value

AP3B2 1.8 1.2E-11 1.3 1.1E-02 1.3 5.2E-03 AURKA 1.2 5.2E-03 1.1 5.8E-01 1 9.2E-01

ARL2BP 1.5 1.2E-06 1.1 4.4E-01 1.1 5.1E-01 BAG1 1.2 2.9E-01 1.7 3.4E-02 1.3 6.8E-01

BLOC1S1 1.4 3.9E-13 1.1 3.3E-02 1.1 1.1E-02 BCL2 2.1 1.2E-12 1 2.3E-01 1.2 1.3E-01

CAMKK2 1.2 4.0E-04 1.1 3.5E-01 1.1 2.6E-01 BIRC5 1 6.4E-01 1 9.6E-01 1 7.7E-01

ECM1 1.2 5.3E-08 1.2 9.7E-01 1.1 1.5E-01 CCNB1 1.3 1.8E-01 1 9.7E-01 1.5 2.1E-01

ITGA10 1.2 3.8E-04 1.3 6.0E-02 1.1 9.4E-02 CD68 1.1 2.8E-01 1.2 2.1E-01 1.3 2.8E-01

ITPK1 1.6 2.6E-07 1.2 1.9E-02 1.1 1.3E-01 CTSL2 1.2 4.3E-04 1.1 3.6E-01 1.1 2.0E-01

NUDT13 1.1 7.4E-03 1.3 1.1E-02 1.3 1.3E-02 ERBB2 1.3 3.3E-07 1 8.2E-01 1.1 7.4E-01

PLA2G6 1.3 1.4E-08 1.3 2.7E-01 1.1 5.0E-01 ESR1 1.2 8.3E-04 1.1 2.5E-01 1.1 1.7E-02

PTCH1 1.3 1.2E-07 1.6 6.4E-04 1.4 4.6E-03 GRB7 1.5 2.6E-07 1 4.1E-01 1.2 4.0E-02

RAP1GAP 1.7 7.6E-09 1.2 1.5E-01 1.0 3.5E-01 GSTM1 NA NA NA NA NA NA

RGS11 1.1 2.1E-03 1.1 1.1E-01 1.7 2.1E-04 MKI67 1.1 8.2E-01 1 6.5E-01 1 8.7E-01

RGS12 1.3 1.2E-04 1.0 9.5E-01 1.2 6.2E-02 MMP11 1 2.8E-01 1.5 2.0E-01 1.1 3.5E-01

RPS15A 1.3 1.1E-02 1.1 5.1E-01 1.1 7.6E-02 MYBL2 1.1 8.2E-02 1 6.9E-01 1.1 4.1E-01

SLC7A8 2 1.4E-07 1.2 2.1E-01 1.2 7.5E-02 PGR 1 5.8E-01 1 6.6E-01 1.1 1.9E-01

ZFYVE9 1.4 5.0E-09 1.3 2.5E-01 1.3 1.2E-03 SCUBE2 1.7 6.0E-06 1.1 2.4E-01 1.3 3.3E-01

ZNF214 1.2 3.6E-05 1.3 5.3E-01 1.4 1.4E-01

ZNF609 1.5 4.8E-10 1.2 1.3E-02 1.3 5.5E-03
fron
The results for which the p-value for FC (fold-change) was 0.001<p<0.05 were underlined, and p<0.001 were written in bold. The housekeeping/reference genes ACTB, GAPDH, GUSB, RPLP0,
and TFRC in Oncotype Dx signature were excluded from the analysis, and the data was not available (NA) for GSTM1. Number of patients: ER+/HER2-:non-responders: 437, responders: 75;
HER2+/ER-: non-responders: 31, responders:40; TNBC: non-responders:125, responders:79.
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4 Discussion

Several multi-gene assays have been developed over the last two

decades to guide decisions on systemic therapy (12). The gene

signatures in these assays were derived frommixed cohorts of breast

cancer patients for prognostic purposes to estimate the risk of

recurrence and distant metastasis after therapy (50). Based on the

risk scores calculated with these assays, the ER+/HER2- breast

cancer patients undergo only endocrine therapy in the low-risk

group, or systemic chemotherapy in the high-risk group (4).

However, the prognostic value of these assays does not necessarily

indicate a predictive value. The discordance in the risk scores

calculated with different assays and the lack of regimen-specific

predictions for chemotherapy are big limitations. Additionally,

breast cancer is a heterogeneous disease with variant responses to

treatment in different subtypes (8, 12, 43). Distinct gene signatures

may have different predictive strengths in different breast cancer

subtypes. Therefore, predictors specific to distinct molecular
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subtypes of breast cancer are crucial. Moreover, high costs make

it impossible to incorporate multi-gene assays into routine clinical

practice in developing countries. These limitations were the primary

motives for us to conduct this study.

In this study, we focused specifically on the ER+/HER2- breast

cancer and markers specific to taxane-based chemotherapy. We

analyzed multiple cohorts of ER+/HER2- breast cancer patients

who underwent taxane-based neoadjuvant therapy. Our analysis

revealed 18 markers of resistance to taxane-based chemotherapy, all

of which are significantly upregulated in chemoresistant patients

and have statistically significant positive predictive and negative

predictive powers. Furthermore, we validated that the predictive

strength of the 18 genes is specific to ER+/HER2- breast

cancer patients.

In clinical practice, Oncotype Dx and MammaPrint are the

most frequently used first-generation multi-gene assays, and

EndoPredict and Prosigna are the most used second-generation

multi-gene assays for ER+/HER2- breast cancer (4). The accuracy of
B

C D

A

FIGURE 7

The correlation between genes in the 18 gene list and the Oncotype Dx signature in ER+/HER2- breast cancer patients. Pearson correlation
between the expression of (A) 18 genes and (B) Oncotype Dx genes in 316 ER+/HER2- breast cancer patients who underwent neoadjuvant
chemotherapy (KM plotter database). Spearman correlation between the expression of (C) 18 genes and (D) Oncotype Dx genes in 316 ER+/HER2-
breast cancer patients who underwent neoadjuvant chemotherapy (KM plotter database). The housekeeping/reference genes ACTB, GAPDH, GUSB,
RPLP0, and TFRC in the Oncotype Dx signature were excluded from the analysis.
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the first-generation multi-gene assays to predict recurrence after

endocrine therapy is higher in the first five years after treatment.

The second-generation multi-gene assays like EndoPredict are more

accurate in predicting late recurrences compared to the first-

generation tests (8). Since first- and second-generation tests offer

different accuracies, and each test uses a non-overlapping set of

genes, we investigated the correlation of our 18-gene list with multi-

gene assays of different generations. Our analysis suggested a higher

correlation of the 18-gene list with Oncotype Dx in breast

cancer patients.
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Oncotype Dx signature is predominated by two groups of genes,

one group related to hormone receptors, and another group of

proliferation markers. It is now widely accepted that high

expression of ER and the related genes is associated with better

prognosis and sensitivity to endocrine therapy in breast cancer. On

the other hand, high expression of proliferation markers such as

Ki67 is associated with a worse prognosis but sensitivity to

chemotherapy (4, 8). This information is the basis for the IHC4

assay of ER, PR, HER2, and Ki67. Oncotype Dx draws expression

data from a set of genes highly clustered with ER and Ki67, instead
B

C

D

E

F

A

FIGURE 8

Correlation between genes in the 18 gene list and the Oncotype Dx signature in TCGA breast cancer patients. Spearman correlation heatmap of the
expression of 18 genes in TCGA (A) all breast cancer patients (n=1100), (B) luminal-A type breast cancer patients (n=568), and (C) luminal-B type
breast cancer patients (n=219). Spearman correlation heatmap of the expression of Oncotype Dx genes in TCGA (D) all breast cancer patients
(n=1100), (E) luminal-A type breast cancer patients (n=568), and (F) luminal-B type breast cancer patients (n=219). The housekeeping/reference
genes ACTB, GAPDH, GUSB, RPLP0, and TFRC in the Oncotype Dx signature were excluded from the analysis.
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of testing only these individual genes like the IHC4 assay. This may

provide some robustness to Oncotype Dx (8, 51). However, our

analysis in the validation set of ER+/HER2- breast cancer patients

and the 1100 breast cancers in TCGA dataset demonstrated that the

expressions of the ER group genes in the Oncotype Dx signature are

substantially correlated with each other, and proliferation markers

are strongly correlated with each other, these two clusters being

negatively correlated. Therefore, in practice, the predictive

advantage of Oncotype Dx over IHC4 may be limited.
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The 18 gene list we identified in this study may have several

advantages over multigene assays like Oncotype Dx. First, the

constituents of the 18 gene list are highly independent in terms of

biological functions compared to the components of the Oncotype

Dx signature. Therefore, it may capture information from an

extensive subset of biological processes associated with

chemoresistance. Secondly, the Oncotype Dx may be more

efficient in predicting resistance to endocrine therapy rather than

chemotherapy, since ER-related genes constitute a big part of the
B C

D E F
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A

FIGURE 9

The effects of AP3B2, ITGA10, ITPK1, and PTCH1 on relapse-free survival of ER+/HER2- breast cancer patients. KM survival plots for the (A) null model,
(B) AP3B2, (C) ITGA10, (D) ITPK1, (E) PTCH1, (F) AP3B2 and ITGA10, (G) AP3B2 and ITPK1, (H) AP3B2 and PTCH1, (I) ITGA10 and ITPK1, (J) ITGA10 and
PTCH1, (K) ITPK1 and PTCH1, (L) AP3B2, ITGA10, and ITPK1, (M) AP3B2, ITGA10, and PTCH1, (N) AP3B2, ITPK1, and PTCH1, (O) ITGA10, ITPK1, and
PTCH1, in 316 ER+/HER2- breast cancer patients who underwent neoadjuvant chemotherapy. H: high, L: low.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1216438
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ozcan 10.3389/fonc.2023.1216438
signature. On the other hand, the 18 gene list we derived specifically

from the data of patients who underwent taxane-based

chemotherapy may be more accurate in predicting resistance to

chemotherapy. Therefore, these 18 genes may have a higher

predictive strength to guide the clinical decision on systemic

chemotherapy in ER+/HER2- breast cancer patients. However,

the size of the cohorts was a limitation to validate that. Therefore,

prospective studies in larger cohorts are needed.
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One other limitation of the development of predictive gene

signatures is the use of pathological complete response as the

surrogate of responsiveness to the therapy. Since the observation

and evaluation of the pathological complete response after therapy

are advantageous over the follow-up of relapse-free or overall

survival, it is commonly used as the primary outcome in clinical

studies to speed up the drug discovery process. However, emerging

evidence suggests that its surrogacy may be different in distinct
TABLE 4 The statistical significance measures for Cox Proportional Hazards Regression Models.

Gene/Genes
COX-PH Model Fit ANOVA

Concordance Log-rank p Sig. Chi-Sqr Pr(>|Chi|) Sig.

AP3B2 0.559 1 0.0008 0.978

ITGA10 0.556 0.4 0.8412 <2e-16 ***

ITPK1 0.603 0.2 0.5873 <2e-16 ***

PTCH1 0.625 0.01 * 6.4123 <2e-16 ***

CTNNB1 0.602 0.02 * 2.4801 <2e-16 ***

AP3B2 + ITGA10 0.540 0.5 4.0103 0.045 *

AP3B2 + ITPK1 0.597 0.4 0.4428 <2e-16 ***

AP3B2 + PTCH1 0.630 0.02 * 4.975 <2e-16 ***

ITGA10 + ITPK1 0.606 0.5 5.3101 <2e-16 ***

ITGA10 + PTCH1 0.626 0.03 * 6.4228 <2e-16 ***

ITPK1 + PTCH1 0.633 0.03 * 0.2529 <2e-16 ***

AP3B2 + CTNNB1 0.624 0.05 2.3355 <2e-16 ***

ITGA10 + CTNNB1 0.616 0.02 * 1.9464 <2e-16 ***

ITPK1 + CTNNB1 0.625 0.04 * 0.6459 <2e-16 ***

PTCH1 + CTNNB1 0.660 0.003 ** 6.7732 <2e-16 ***

AP3B2 + ITGA10 + ITPK1 0.579 0.6 11.8057 0.0005 ***

AP3B2 + ITGA10 + PTCH1 0.619 0.06 6.4765 <2e-16 ***

AP3B2 + ITPK1 + PTCH1 0.630 0.05 0.2698 <2e-16 ***

ITGA10 + ITPK1 + PTCH1 0.635 0.07 0.6456 <2e-16 ***

AP3B2 + ITGA10 + CTNNB1 0.613 0.06 0.2395 <2e-16 ***

AP3B2 + ITPK1 + CTNNB1 0.625 0.09 0.8286 <2e-16 ***

AP3B2 + PTCH1 + CTNNB1 0.661 0.008 ** 6.7832 <2e-16 ***

ITGA10 + ITPK1 + CTNNB1 0.616 0.06 6.022 <2e-16 ***

ITGA10 + PTCH1 + CTNNB1 0.669 0.006 ** 6.5044 <2e-16 ***

ITPK1 + PTCH1 + CTNNB1 0.672 0.007 ** 0.0773 <2e-16 ***

AP3B2 + ITGA10 + ITPK1 + PTCH1 0.627 0.1 5.4122 0.020 *

AP3B2 + ITGA10 + ITPK1 + CTNNB1 0.614 0.1 0.7987 <2e-16 ***

AP3B2 + ITGA10 + PTCH1 + CTNNB1 0.664 0.01 * 6.4861 <2e-16 ***

AP3B2 + ITPK1 + PTCH1 + CTNNB1 0.669 0.02 * 0.2227 <2e-16 ***

ITGA10 + ITPK1 + PTCH1 + CTNNB1 0.672 0.01 * 0.0798 <2e-16 ***

AP3B2 + ITGA10 + ITPK1 + PTCH1 + CTNNB1 0.666 0.03 * 0.2139 0.643
frontiers
Sig., significance; *, p<0.05; **, p<0.01; ***, p<0.001.
in.org

https://doi.org/10.3389/fonc.2023.1216438
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ozcan 10.3389/fonc.2023.1216438
breast cancer subtypes, with questionable efficacy as a predictor of

patient survival (47–49). Since publicly available datasets mostly

report pathological complete response as the surrogate of therapy

response and the number of patients in the datasets which included

relapse-free survival or overall survival was limited, the initial steps

of our algorithm for feature selection were mostly based on

pathological response as the surrogate of response. This further

limit the strength of the 18 genes we identified in this study.

However, regarding this limitation, we further analyzed the

impact of these 18 genes on relapse-free survival in another

validation cohort with data on relapse-free survival.

Our KM-survival analysis of 316 ER+/HER2-patients who had

undergone neoadjuvant chemotherapy validated the poor

prognostic effect of AP3B2, ITGA10, ITPK1, and PTCH1 as

categorical variates out of 18 genes (Figures 9A–E). The

multivariate survival models which included these four genes as

dual or triple combinations were also significant mostly

(Figures 9F–O), AP3B2/ITPK1 gene pair achieving the lowest log-

rank p-values (Figure 9G). These findings suggested that AP3B2,

ITGA10, ITPK1, and PTCH1 may be markers of resistance to

taxane-based neoadjuvant chemotherapy in ER+/HER2- breast

cancer patients. However, the evidence for their use as markers is

insufficient yet. Therefore, a thorough investigation of both

expression and mutation status together with molecular
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interactors of these genes should be performed to understand

their role in chemoresistance in breast cancer.

The key finding of this study is the emergence of PTCH1 and

CTNBB1 as key predictors for resistance to taxane-based

neoadjuvant therapy in ER+/HER2- breast cancer. Our Cox

Proportional Hazards analysis revealed that PTCH1 and CTNBB1

pose the highest risk for resistance, with hazard ratios over 1.5 in ER

+/HER2- breast cancer patients. Their hazard ratios further

increased over 1.6 in the multivariate model in the neoadjuvant

therapy group. PTCH1 and CTNNB1 did not exhibit an increased

risk in the control group and endocrine therapy group, further

strengthening the predictive potential of PTCH1 and CTNNB1 in

ER+/HER2- breast cancer. These findings together with the

knowledge on the biology of these genes strongly support their

predictor role in chemoresistance.

PTCH1 is a transmembrane receptor for sonic hedgehog

(SHH). In the unbound form, PTCH1 captures the protein

“smoothened” (SMO) which has proliferative action. The binding

of SHH leads to the degradation of PTCH1, hence releasing the

SMO. Then SMO dissociates Glioma-associated oncogene GLI

from SUFU, activating the transcription of target genes with

tumorigenic action. Due to this mechanism, PTCH1 is known as

a tumor suppressor (52). However, increased expression of PTCH1

was detected in several cancers including ovarian carcinoma, lung,
TABLE 5 Hazard Ratios for AP3B2, ITGA10, ITPK1, PTCH1, and CTNNB1 in univariate and multivariate Cox Proportional Hazards Regression Models.

Gene
Univariate Models Multivariate Model

HR Lower 95. Upper 95. Pr(>|z|) Adj.p HR Lower 95. Upper 95. Pr(>|z|) Adj.p

AP3B2 1.004 0.780 1.292 0.978 0.978 0.920 0.646 1.309 0.641 0.792

ITGA10 1.213 0.795 1.851 0.370 0.462 1.200 0.618 2.331 0.591 0.792

ITPK1 1.236 0.864 1.770 0.246 0.410 1.069 0.653 1.751 0.792 0.792

PTCH1 1.534 1.109 2.123 0.009 0.045 1.541 1.073 2.214 0.019 0.047

CTNNB1 1.563 1.074 2.273 0.019 0.047 1.667 1.106 2.512 0.014 0.047
frontie
HR, Hazards ratio; Lower 95. and Upper 95. represent lower and upper boundaries of 95% confidence interval, Adj.p: FDR adjusted p-values calculated by the “Benjamini-Hochberg” method.
TABLE 6 The hazard ratios for PTCH1, and CTNNB1 in three different arms of treatment in ER+/HER2- breast cancer patients.

Treatment Arms
Gene

Univariate Models Multivariate Model

HR Lower 95. Upper 95. Pr(>|z|) HR Lower 95. Upper 95. Pr(>|z|)

No systemic tx (n=421)

PTCH1 0.875 0.752 1.018 0.084 0.873 0.749 1.018 0.082

CTNNB1 0.846 0.647 1.106 0.221 0.843 0.645 1.105 0.217

Neoadjuvant Ctx (n=361)

PTCH1 1.534 1.109 2.123 0.009 1.605 1.133 2.273 0.007

CTNNB1 1.563 1.074 2.273 0.019 1.630 1.109 2.395 0.012

Endocrine tx (n=1087)

PTCH1 0.927 0.835 1.029 0.153 0.931 0.838 1.035 0.187

CTNNB1 0.779 0.654 0.928 0.005 0.782 0.657 0.932 0.005
HR: Hazards ratio, Lower 95. and Upper 95. represent lower and upper boundaries of 95% confidence interval respectively.
The results for which there is a statistically significant increase in HR are written in bold.
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and prostate cancer (53, 54). More importantly, PTCH1 acts as a

multidrug resistance pump, expelling chemotherapeutics like

doxorubicin, and dyes like Hoesct33342, hence inducing

chemoresistance (55). Since taxanes share important drug efflux

pumps with doxorubicin and Hoesct33342 such as MDR1 (56),

there is a high probability that taxanes can be substrates for efflux by

PTCH1. Hence, PTCH1 may be a crucial marker of resistance to

taxanes and other chemotherapeutics like anthracyclines used in

taxane-based chemotherapy. Moreover, targeting PTCH1 may be a

key strategy to overcome taxane resistance in cancer. Accordingly,

paclitaxel was shown to increase PTCH1 expression, and inhibition

of proteasome suppressed PTCH1 levels and increased sensitivity of

ovarian cancer cells to the paclitaxel (57). Furthermore, mutated

PTCH1 was proposed as a strong predictor of recurrence in breast

cancer (58), and fusion of PTCH1 with glioma-associated proteins

was associated with oncogenic activation in different tumors (59).

All these findings indicate a significant potential for PTCH1 in

chemoresistance via its functions as a drug efflux pump and a

hedgehog receptor.

CTNNB1 encodes b-Catenin which is a crucial component of E-

cadherin-mediated cell-cell adhesion and a downstream mediator

of canonical WNT pathway. b-Catenin is significantly involved in

mammary tissue development, breast cancer formation, and

metastasis. Alterations in the gene expression and the localization

of b-Catenin are frequently reported in breast cancer. However, the

involvement of the WNT/b-Catenin pathway in breast cancer is

intricate, and the expression level of b-Catenin provides incomplete

information without investigation of its activity and subcellular

localization (41). Therefore, there is still a discrepancy in the exact

mechanisms by which WNT/b-Catenin signaling plays a role in

breast cancer (60).

Similar to the controversial effects of the WNT/b-Catenin
pathway reported in the literature, we observed that the signature

genes that are upregulated or downregulated in the presence of

constitutively active CTNNB1 were enriched in ER+/HER2- breast

cancer patients with incomplete pathological response to taxane-

based chemotherapy in GEO datasets (Figures 3A, B). However,

CTNNB1 was down-regulated in ER+/HER2- breast cancer patients

with incomplete pathological response to taxane-based

chemotherapy in the validation cohort (Figure 3C). This

discrepancy pointed out the necessity of investigating the activity

and subcellular localization of this molecule in patient samples,

besides gene expression levels, to achieve a complete understanding

of the involvement of b-Catenin in chemoresistance. Despite this

discrepancy in differential expression in test and validation cohorts,

the high expression of CTNNB1 was associated with decreased

survival in KM-survival analysis (Figure 3E) and CTNNB1

demonstrated the highest hazards ratio and significance in Cox

proportional hazards regression (Tables 4, 5). Therefore, our results

suggested the involvement of CTNNB1 in resistance to taxane-

based neoadjuvant chemotherapy in ER+/HER2- breast

cancer patients.

PTCH1 and CTNNB1 take role in distinct oncogenic signaling

pathways. However, our Cox Proportional Hazard models

suggested an interaction between these two genes. Therefore, we
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searched the relevant literature to find out biological interactions

between these two molecules. The non-canonical hedgehog

pathway was reported to increase the expression of WNT through

the involvement of PTCH1 in colon carcinoma (61). Moreover, the

WNT/B-catenin pathway was reported to regulate the SHH

pathway at multiple levels in different studies (62). These

observations suggest that the crosstalk between SHH/PTCH1 and

WNT/b-Catenin pathway may have a pivotal role in

chemoresistance in ER+/HER2- breast cancer. In our prospective

studies, we will dissect the mechanisms by which these pathways

play a role in chemoresistance, considering the mutation status,

activity, subcellular localization, and interactors of each molecule in

ER+/HER2- breast cancer.

In conclusion, PTCH1 and CTNBB1 emerge as key markers of

resistance to taxane-based neoadjuvant chemotherapy in ER

+/HER2- breast cancer patients. Future studies in larger cohorts

may present them as predictive markers cost-effectively

incorporated into clinics to guide decisions on taxane-based

chemotherapy. Detailed investigation of their molecular

mechanisms may also enable the development of new molecular-

targeted agents for overcoming chemoresistance in ER+/HER2-

breast cancer patients. This will be addressed in our future studies.
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