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Purpose: The accuracy of dose calculation is the prerequisite for CyberKnife (CK)

to implement precise stereotactic body radiotherapy (SBRT). In this study, CK-

MLC treatment planning for early-stage non-small cell lung cancer (NSCLC)

were compared using finite-size pencil beam (FSPB) algorithm, FSPB with lateral

scaling option (FSPB_LS) and Monte Carlo (MC) algorithms, respectively. We

concentrated on the enhancement of accuracy with the FSPB_LS algorithm over

the conventional FSPB algorithm and the dose consistency with the MC

algorithm.

Methods: In this study, 54 cases of NSCLC were subdivided into central lung

cancer (CLC, n=26) and ultra-central lung cancer (UCLC, n=28). For each

patient, we used the FSPB algorithm to generate a treatment plan. Then the

dose was recalculated using FSPB_LS and MC dose algorithms based on the

plans computed using the FSPB algorithm. The resultant plans were assessed by

calculating the mean value of pertinent comparative parameters, including PTV

prescription isodose, conformity index (CI), homogeneity index (HI), and dose-

volume statistics of organs at risk (OARs).

Results: In this study, most dose parameters of PTV and OARs demonstrated a

trend of MC > FSPB_LS > FSPB. The FSPB_LS algorithm aligns better with the

dose parameters of the target compared to the MC algorithm, which is

particularly evident in UCLC. However, the FSPB algorithm significantly

underestimated the does of the target. Regarding the OARs in CLC, differences

in dose parameters were observed between FSPB and FSPB_LS for V10 of the

contralateral lung, as well as between FSPB and MC for mean dose (Dmean) of the

contralateral lung and maximum dose (Dmax) of the aorta, exhibiting statistical

differences. There were no statistically significant differences observed between

FSPB_LS and MC for the OARs. However, the average dose deviation between

FSPB_LS and MC algorithms for OARs ranged from 2.79% to 11.93%. No

significant dose differences were observed among the three algorithms in UCLC.

Conclusion: For CLC, the FSPB_LS algorithm exhibited good consistency with

the MC algorithm in PTV and demonstrated a significant improvement in
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accuracy when compared to the traditional FSPB algorithm. However, the

FSPB_LS algorithm and the MC algorithm showed a significant dose deviation

in OARs of CLC. In the case of UCLC, FSPB_LS showed better consistency with

the MC algorithm than observed in CLC. Notwithstanding, UCLC’s OARs were

highly sensitive to radiation dose and could result in potentially serious adverse

reactions. Consequently, it is advisable to use the MC algorithm for dose

calculation in both CLC and UCLC, while the application of FSPB_LS algorithm

should be carefully considered.
KEYWORDS

CyberKnife, finite-size pencil beam, Monte Carlo, stereotactic body radiotherapy, non-
small cell lung cancer
Introduction

CyberKnife (CK) is a typical device used to implement

Stereotactic body radiotherapy (SBRT). It generates highly

conformal dose distributions around the Planning Target Volume

(PTV) by using an accelerator mounted on a 6-axis robotic arm,

achieving steep dose gradients at the PTV- organs at risk (OARs)

boundary (1). The advantages of CK have been substantiated (2–5).

Nevertheless, the complicated CK-based beams pose substantive

challenges for dose computation, primarily in lung tumors due to

the tissue’s heterogeneity between the high-density tumor and the

neighboring low-density lung tissue (6). According to AAPM

Report 85, even small dose differences can result in completely

different treatment outcomes (7). Therefore, the accuracy of the

dose algorithm in CK planning is vitally important for the

treatment effect.

CK M6 system is outfitted with an InCise™ 2 multi-leaf

collimator (MLC) while a finite size pencil beam (FSPB)

algorithm has been specifically developed for it. However, the

FSPB algorithm performs density correction only with regards to

fluence and, thus, the accuracy of the calculated non-uniform area

dose is subpar (8–10). The MLC-based Monte Carlo (MC)

algorithm calculates the absorbed dose in tissue by statistically

simulating physical processes based on the interaction of primary

photon and secondary electrons in non-uniform region (11, 12).

Typically, the MC algorithm is regarded as the gold standard for

dose algorithms. Nevertheless, the dose optimization of the MC

algorithm is computationally taxing, requiring more time to

execute, especially for low levels of uncertainty (13). To tackle the

drawbacks of FSPB and MC, Accuray incorporated lateral scaling

correction, denoted FSPB_LS in this work, into the FSPB algorithm.

Additionally, the FSPB_LS algorithm incorporates lateral scaling

correction, including kernel density correction factors that

contribute to the scattered radiation distribution along off-axis

regions (10). A prior analysis conducted on a lung phantom

revealed that almost all indicators showed no significant

differences between MC and FSPB_LS algorithms. Since MC

provides the tightest agreement with measurements, final dose
02
calculations are suggested for inhomogeneous regions like the

lung (14).

However, algorithmic dosimetric comparisons of radiotherapy

planning, utilizing actual CT images of patients, have not yet been

reported. Choosing an appropriate algorithm for dose calculation is

a crucial step in the safe implementation of SBRT treatment in CK.

Especially for central lung cancer (CLC) and ultra-central lung

cancer (UCLC) in non-small cell lung cancer (NSCLC), the

relationship between outcomes and safety has not yet been

determined (15–18). Research indicates that patients with CLC

who undergo SBRT treatment have documented cases of treatment-

related deaths and a higher incidence of adverse events (17). For

UCLC, researchers generally agree that UCLC is expected to carry a

higher risk than other centrally located tumors. For example, even

with a moderate dose, fatalities attributed to bronchial fistula have

been documented in UCLC patients (19). Moreover, the

implementation of SBRT for UCLC has been associated with the

occurrence of various side effects such as trachea esophageal fistula,

radiation pneumonitis, and pleural effusion (20, 21). The accuracy

of dose calculation requirements for CLC and UCLC are markedly

high, and due to their proximity to multiple OARs such as proximal

bronchial tree (PBT), esophagus, aorta, and spinal cord, the

complex structures present significant challenges to accuracy of

dose calculation.

In this study, we employed three algorithms: FSPB, FSPB_LS,

and MC, to calculate the doses in CK-MLC treatment plans for

patients with CLC and UCLC. A comparison was made between the

dose parameters in order to evaluate the potential of the FSPB and

FSPB_LS algorithms as potential replacements for the MC

algorithm, particularly the FSPB_LS algorithm.
Materials and methods

Patient characteristics

Upon obtaining approval from the Institutional Review

Committee of Shandong Cancer Hospital and Institute, 54
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patients with early-stage NSCLC who received SBRT treatment on

TrueBeam (Varian Medical Systems, Palo Alto, CA) from 2017 to

2022 were enrolled in this study. This study selected NSCLC

patients at stage IA-IB (tumor size ≤ 4 cm, N0M0), stage IIA

(tumor size ≤ 5 cm, N0M0), or stage IB (tumor size > 5 cm and ≤

7 cm, N0M0) as confirmed by histology. Staging criteria were in

accordance with the 8th edition of the American Joint Committee

on Cancer (AJCC). These patients were then classified into two

categories, namely CLC and UCLC. CLC, in line with the

recommendation of the International Association for the Study of

Lung Cancer (IASLC), refers to a lesion located within 2 cm of

isotropic expansion of all essential mediastinal structures like PBT,

esophagus, heart, brachial plexus, aorta, spinal cord, phrenic and

recurrent laryngeal nerve (22). For UCLC, the definition varies

among authors (15, 16, 19, 20). Here, we defined UCLC as lesions

with PTV adjacent/overlapping with PBT, aorta, or esophagus. The

patient characteristics are shown in Table 1.
CT acquisition and target delineation

Each patient was scanned using a large aperture simulated CT

scanner (Siemens Somatom Sensation, Munich, Germany). Ten

phase-phase 4-dimensional CT (4DCT) images were acquired for

each patient using a Real-time Position Management™ (RPM,

Siemens Healthineers, Erlangen, Germany) system. The slice

thickness of CT images was 3 mm. The 4D-CT images were

transmitted to the Eclipse treatment planning system (TPS)

(Varian Medical Systems, Palo Alto, CA) to reconstruct

maximum intensity projection (MIP) and average intensity

projection (AIP) images. Previous research indicates that fusing

images from 10 phases into a MIP is a reliable clinical tool for

generating the IGTV (internal gross tumor volume) from the 4DCT

dataset. This significantly improves the efficiency of target

delineation (23). However, compared to registration with AIP,

registration with MIP significantly shifts the position of the

patient bed downward. AIP is the preferred reference image for

CBCT registration (24).

According to the RTOG 0236 protocol (25), the radiologist uses

the lung window setting to contour the gross tumor volume (IGTV)

on the MIP and expands the margin of the IGTV by 5 mm to

generate the PTV, and radiation physicist use the image registration

tool embedded in Eclipse to register the IGTV fromMIP to AIP. All

SBRT plans are designed based on the AIP image. Although KV
Frontiers in Oncology 03
planar images are used for registration in CyberKnife, considering

that this study is simulation-based research and not for actual

treatment, we still adopted the setting of using AIP images in this

study. Ultimately, each patient’s AIP images were imported into

Precision TPS for replanning.
Treatment planning and dose prescription

We use gold fiducials tracking method to design the treatment

plan for lung tumors, and virtually “place” 3 to 5 fiducial markers

near the tumor. All plans were designed using multi-leaf

collimators, no avoidance zones were set, and nodes for planning

ranged from 26 to 54. All plans were initially calculated using the

high-resolution model for the FSPB plan with a dose volume

spacing of 0.98 mm×3mm×0.98 mm. For FSPB_LS, only the

lateral scaling correction is added. Field direction, number of

fields, number of nodes, and dose calculation resolution remain

unchanged from the initial FSPB plan. The MC plans were

calculated using the same high-resolution model with a clinically

meaningful uncertainty level of 1%, this approach is based on the

reference experience of previous similar studies (3, 26, 27), and

other parameters remained unchanged from the initial FSPB plan.

The CPUs used for dose calculations in this study are 2 processors

of Intel Xeon E5-2620 v3 with 2.40GHz CPU Clock Speed

In the previous SBRT treatment, each patient was treated in 3-5

fractions, 7 to 11 Gy per fraction (Fx). In this study, we reset the

prescription dose to 50Gy/5Fx. Additionally, maximum point

normalization was employed during planning, requiring 100% of

the prescribed dose to include at least 95% of the PTV and 100% of

the prescribed dose to include 100% of the GTV. In planning for

each algorithm utilized in the study, we have renormalized them in

accordance with the aforementioned criteria.
Evaluation of dosimetry

The dose statistics for FSPB, PSPB_LS and MC algorithm plans

are based on dose volume histogram (DVH) analysis. We evaluated

the following parameters of PTV: prescription isodose, target

coverage, D2, D5, D95, D98 (the dose of 2%, 5% 95% and 98%

volume of PTV), maximum dose (Dmax), mean dose (Dmean),

minimum dose (Dmin), conformity index (CI) and homogeneity

index (HI). In this study, we used the CI recommended by

Precision, whose expression is as follows:

CI =
PIV
TIV

(1)

where PIV = 3D volume of the prescribed isodose line, TIV =

tumor volume covered by the prescribed dose. The closer the CI is

to 1, it indicates that PIV and TIV completely overlap, and the

conformity between the dose line and the target area is excellent.

The HI was defined as follows:

HI =
Dmaxð100%Þ

Rxdose
(2)
TABLE 1 Patient characteristics.

CLC UCLC

Number 26 28

Age 62 [34-77] 58 [39-72]

Male/Female 17/9 16/12

BMI 20.1 [17.6-24.3] 21.4 [17.2-23.5]

Volume of target (cm3) 21.06 [4.4 - 78.7] 22.45 [6.0- 44.2]

Clinic Stage I/II 15/11 19/9
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where Dmax represents the maximum dose of PTV, and Rxdose

is the prescribed dose of PTV. Ideally, 100% of the structures get

100% of the dose, i.e., (HI=1).

The following dosimetric parameters were selected for OARs

evaluation: V5, V10, V20 and Dmean of the ipsilateral lung and

contralateral lungs; V30, V40 and Dmean of the heart; Dmax of the

spinal cord, Dmax and D1cc of the ribs, Dmax of the aorta, Dmax and

Dmean of the esophagus, and Dmax of the PBT.
Statistical analysis

The dosimetric parameters were compared with Wilcoxon

rank-sum test or paired sample t-test, where it approtiate. P

values were used to evaluate the difference and two-sided P<0.05

was considered statistically significant. All statistical calculations

were implemented in Matlab software (version R2022a, The

MathWorks Inc., Natick, MA 01760, USA) with statistics and

machine learning toolbox.
Result

Dosimetric comparison of PTV and OARs in
central lung cancer (CLC)

The dosimetric parameters of PTV were evaluated using the

FSPB, FSPB_LS andMC algorithms, and the results are presented in

Table 2. Figure 1 shows the violin plots of the PTV and OAR dose

parameters in CLC. The dose distribution and DVH for

representative patient for all three algorithms were displayed in

Figures 2, 3, respectively.

The current study established that the prescription dose should

cover 100% of the GTV and more than 95% of the PTV. Under this

criterion, as depicted in Figure 1 and Supplementary Figure 1, the

D95 and target coverage derived from the three algorithms were
Frontiers in Oncology 04
densely clustered around 50 Gy and 95%, respectively, revealing no

statistical discrepancy. Concurrently, to satisfy the aforementioned

criteria, the MC algorithm required the lowest prescription isodose

among the three algorithms, with average and median values of

73.45% ± 3.91% and 73.00%, respectively. For FSPB and FSPB_LS,

their mean and median values were 80.33% ± 2.81%, 81.00% and

76.15 ± 3.09, 76.00%, respectively, exhibiting a significant statistical

difference among the three algorithms. The lower prescription

isodose led to a higher Dmax, D2, and D5 in the MC plan. The

FSPB_LS algorithm showed a statistical difference with the MC only

in the Dmax, whereas the FSPB algorithm demonstrated statistical

discrepancies with the MC in all three parameters. As shown in

Figure 1, the third quartiles of the Dmax for FSPB, FPSB_LS, andMC

are 62.50 Gy, 67.35 Gy, and 70.92 Gy, respectively. Figure 2

compares the dose distribution for representative patients for all

three algorithms, with both the MC and FSPB_LS algorithms

showing higher dose inside the PTV than FSPB algorithm. The

dose parameters, D98 and Dmin, were very similar for both the MC

and FSPB_LS algorithms, while the FSPB algorithm significantly

overestimated these parameters (P<0.05). Additionally, the MC

plan demonstrated the highest CI value, with an average of 1.25 ±

0.10, whereas FSPB_LS and FSPB had averages of 1.18 ± 0.06 and

1.12 ± 0.07, respectively, exhibiting significant statistical

discrepancies among them. The HI displayed a similar trend with

CI among the three algorithms.

Moreover, as shown in Figure 4, in CLC, the average

computation duration of the FSPB algorithm is 15.00 s, with a

median duration of 14.96 s. The computation duration ranges from

10.30 s to 24.00 s. In the FSPB_LS algorithm, although lateral

scattering is considered, the computation time does not increase

significantly. The FSPB_LS algorithm has an average computation

duration of 15.93 s, with a median of 14.82 s. Except for one case

where the calculation time reached 29 s, the calculation time of

other cases ranged between 10.50 s and 21.95 s. Compared to the

first two algorithms, the computation duration of the MC algorithm

significantly increases. The average computation duration is 246.00
TABLE 2 Dose-volumetric parameters of the PTV for CLC.

FSPB FSPB_LS MC P < 0.05

D2 (Gy) 61.29 ± 1.95 64.67 ± 2.40 65.99 ±3.39 a, b

D5 (Gy) 60.67 ± 1.81 63.84 ± 2.24 65.19 ±3.84 a, b

D95 (Gy) 50.34 ± 0.67 50.18 ± 0.11 50.26 ±0.34

D98 (Gy) 49.21 ± 0.66 48.63 ± 0.36 48.82 ±0.48 a, b

Dmax (Gy) 62.32 ± 2.31 65.77 ± 2.71 68.26 ±3.62 a, b, c

Dmin (Gy) 46.48 ± 1.19 45.01 ± 1.44 45.50 ±1.18 a, b

Dmean (Gy) 55.96 ± 1.10 57.56 ± 1.15 57.62 ±1.45 a, b

PrescriptionIsodose (%) 80.33 ± 2.81 76.15 ± 3.09 73.45 ±3.91 a, b, c

Target coverage (%) 95.83 ±1.10 95.45 ± 0.30 95.66 ±0.69

CI 1.12 ± 0.07 1.18 ± 0.06 1.25 ± 0.10 a, b, c

HI 1.25 ± 0.05 1.31 ± 0.05 1.36 ± 0.08 a, b, c
fr
a, FSPB vs. FSPB_LS; b, FSPB vs. MC; c, FSPB_LS vs. MC.
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s, with a median of 172.00 s, and the time range is from 77.00 s

to 705.00s.

Regarding the OARs of CLC, most of the dosimetric parameters

derived from the three algorithms exhibit no statistically significant

differences. Simultaneously, the associated violin plots (Figure 1 and

Supplementary Figure 1) indicate a similar overall data distribution

shape among the three algorithms. The dosimetric data roughly

follow the order of MC algorithm being the highest, followed by

FSPB_LS, and FSPB being the lowest (Table 3). For instance, in the

ipsilateral lung, the MC algorithm yields an average Dmean of 5.30 Gy

± 2.17 Gy, with a median of 4.72 Gy, a first quartile of 3.62 Gy, and a

third quartile of 6.29 Gy. Similarly, the FSPB_LS algorithm yields the

following dosimetric parameters: 4.78 Gy ± 2.05 Gy, 4.31 Gy, 3.21 Gy,
Frontiers in Oncology 05
and 5.81 Gy. The FSPB algorithm further reduces these four

dosimetric parameters to 4.53 Gy ± 2.12 Gy, 3.87 Gy, 3.11 Gy, and

5.43 Gy. Similarly, the contralateral lung exhibits the same trend. The

DVH of the lungs demonstrated dose differences mainly in the low

dose region, while the overlap of the DVH in the high-dose region

was seen for three algorithms. For the heart, the dose produced by

three algorithms was very low, specifically for V40, with almost

negligible differences observed among the three algorithms. The

Dmax of the aorta showed significant differences between FSPB and

MC algorithms (P<0.05). The dosimetric parameters of the spinal

cord, PBT, ribs, and esophagus generated by the MC and PSPB_LS

algorithms were slightly greater than those produced by the FSPB

algorithm, but this difference was not statistically significant (P>0.05).
FIGURE 1

Violin plots of dose parameters for PTV and OARs in CLC, derived from FSPB, FSPB_LS, and MC algorithms. The horizontal lines within the violin
plots represent the mean values, while the hollow circles depict the medians. The P-values are displayed above in the inset.
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FIGURE 2

PTV dose distribution of representative patient with CLC based on FSPB, FSPB_LS and MC algorithms. The images from top to bottom illustrate
(A) FSPB, (B) FSPB_LS, and (C) MC algorithms respectively. The images from left to right demonstrate the dose distribution of top, middle, and
bottom layers of PTV along superior-inferior (S-I) direction. P represents the Prescription Dose.
FIGURE 3

The dose-volume histograms (DVH) of PTV, GTV, and OARs planned through FSPB, FSPB_LS, and MC algorithms for the representative patient with CLC.
Frontiers in Oncology frontiersin.org06
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Dosimetric comparison of PTV and OARs in
ultra-central lung cancer (UCLC)

Among 28 patients suffering from UCLC, the average size of the

PTV was 22.45 ± 11.00 cm3, varying between 6.0 and 44.2 cm3. PTV

dose parameters are shown in Table 4.

As the three algorithms follow the mentioned dose

normalization, the D95 and target coverage of UCLC’s PTV

predominantly circulate around 50 Gy and 95% (Figure 5 and

Supplementary Figure 2), demonstrating a resemblance with CLC.
Frontiers in Oncology 07
Nevertheless, in contrast with CLC, no substantial statistical

variance was evident between the FSPB_LS and MC algorithms

concerning prescription isodose and Dmax. Relative to the MC

algorithm, the FSPB_LS algorithm demonstrated a surge of 2.45%

in prescription isodose and a decrement of 2.53% in Dmax. Within

CLC, these figures amplify to 2.70% and 3.78% correspondingly.

These discrepancies are vividly portrayed within the violin plots of

CLC and UCLC (refer to Figures 1, 5). Notably, for D2, D5, D98,

Dmin and Dmean of PTV, significant discrepancies exist between MC

and FSPB algorithms, and between FSPB_LS and FSPB algorithms.
FIGURE 4

Box plots for computation time of FSPB, PSPB_LS, and MC algorithms for central lung cancer (left panel) and ultra-central lung cancer (right panel).
The hollow squares in the plot represent the mean values, while the lines inside the box plots represent the medians. Zoomed FSPB and FSPB_LS
were inserted as a subplot.
TABLE 3 Dose-volumetric parameters of the OARs for CLC.

OARs DV FSPB FSPB_LS MC

Ipsilateral lung

V5 (%) 25.87 ± 12.73 27.48 ± 12.25 30.79 ± 13.43

V10 (%) 11.69 ± 7.55 12.78 ± 7.49 14.15 ± 8.18

V20 (%) 4.59 ± 3.15 5.07 ± 3.13 5.46 ± 3.45

Dmean (Gy) 4.53 ± 2.12 4.78 ± 2.05 5.30 ± 2.17

Contralateral lung

V5 (%) 3.57 ± 3.60 4.18 ± 3.55 4.30 ± 4.10

V10 (%) 0.09 ± 0.30 0.17 ± 0.32 0.17 ± 0.40

V20 (%) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Dmean (Gy) 1.08 ± 0.50 1.25 ± 0.68 1.36 ± 0.52

Heart

V30 (%) 0.01 ± 0.06 0.06 ± 0.16 0.09 ± 0.22

V40 (%) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Dmean (Gy) 2.04 ± 1.68 2.32 ± 1.82 2.54 ± 1.93

Aorta Dmax (Gy) 12.25 ± 7.12 14.02 ± 7.86 15.24 ± 8.19

Spinal cord Dmax (Gy) 8.70 ± 8.37 9.82 ± 9.03 10.39 ± 9.46

PBT Dmax (Gy) 16.86 ± 9.71 18.77 ± 10.58 19.56 ± 10.70

Esophagus
Dmean (Gy) 1.95 ± 1.17 2.14 ± 1.27 2.43 ± 1.34

Dmax (Gy) 8.41 ± 4.67 9.55 ± 5.19 10.40 ± 5.70

Ribs
Dmax (Gy) 25.31 ± 14.52 28.44 ± 15.00 29.68 ± 14.99

D1cc (Gy) 19.07 ± 12.49 21.65 ± 13.07 22.30 ± 13.42
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Despite this, a considerable difference does not exist between the

MC and FSPB_LS algorithms (p< 0.05). Moreover, statistical

variances surfaced solely between the FSPB_LS algorithm and the

MC algorithm in terms of the CI. The CI yielded by the MC

algorithm is 1.27 ± 0.10, whereas the FSPB_LS algorithm generates

1.21 ± 0.07. The HI of the MC, FSPB_LS and FSPB algorithms were

found to be 1.35 ± 0.07, 1.32 ± 0.06 and 1.25 ± 0.05, respectively.

Among the observed algorithms, the FSPB algorithm produced the

lowest HI, with noticeable differences detected between the

FSPB_LS and MC algorithms.

As depicted in Figure 4, the computation time of FSPB and

FSPB_LS is very close, while the computation duration of the MC

algorithm is approximately twelve times that of the first two

algorithms. Among them, the mean, median, and range of

computation time for the FSPB algorithm are 18.81 s, 18.67 s,

and 12.20 s to 27.46 s, respectively. For the FSPB_LS algorithm, the

mean, median, and range are 19.41 s, 18.96 s, and 11.65 s to 27.35 s,

respectively. However, the computation duration of the MC

algorithm is significantly different from the first two algorithms in

terms of statistical analysis. The mean, median, and range of

computation time for the MC algorithm are 247.32 s, 240.00 s,

and 91.00 s to 418.00 s, respectively.

For OARs of UCLC such as the lungs, heart, and aorta, the values

obtained from the FSPB_LS algorithm are slightly lower than those

from the MC algorithm, but slightly higher than those from the FSPB

algorithm (Table 5). This trend is clearly demonstrated in Figure 5 and

Supplementary Figure 2. Additionally, there are no significant statistical

differences observed among the three algorithms.

Figure 6 displays representative patient dose distributions while

Figure 7 showcases the DVHs. In PTV, the FSPB_LS algorithm

exhibited strong consistency with the MC algorithm, whereas in the

FSPB algorithm, the high-dose region within the PTV was

significantly underestimated. Figure 6 records that the volume of

the high-dose region produced by the FSPB algorithm is notably

lower than those generated by the other two algorithms, in

agreement with DVH. In connection with GTV, these dose
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parameters indicated the same trend as that observed in PTV.

The lungs DVH shapes of the three algorithms were almost

identical, with only slight variations observed in the low-dose

region of the ipsilateral lung. Within representative patients, PTV

overlapped with the aorta, and the maximum dose that the FSPB,

FSPB_LS, and MC algorithms generated for the aorta were 58.40Gy,

69.25Gy, and 70.68Gy, correspondingly. For the heart, the three

algorithms indicate lower Dmean. The DVH of the heart indicated

that the FSPB_LS algorithm demonstrated a high degree of

accuracy, on par with the MC algorithm, while the FSPB

algorithm greatly underestimated the dose to the heart. The same

tendency was also observed for the esophagus and PBT. In relation

to the spinal cord and ribs, the difference between these algorithms

was not notable in DVH.
Discussions

With respect to CLC, the FSPB_LS algorithm is able to improve the

ability of the FSPB algorithm to handle non-uniform regions to a

certain extent. Only in a few dosimetric parameters of the PTV does the

FSPB_LS algorithm exhibit differences withMC. This is mainly because

the beam passes through lengthy pathways of low-density lung tissue

before it arrives at the CLC. The MC algorithm sufficiently considers

the dose deposited in low-density media by correcting for low-density

photon scattering and electron equilibrium in heterogeneous geometric

structures. Precise modeling of the secondary electron disequilibrium at

the tumor-lung tissue interface leads to increased penumbra of the

beam which results in poorer consistency and uniformity of the PTV,

compared to the FSPB_LS plan (28). To comply with the RTOG 0813

protocol (29), a lower prescription isodose for PTV was determined.

The prescription isodose in theMC algorithm is reduced by 6.9% when

compared to FSPB, and only by 2.7%when compared to FSPB_LS. The

significant reduction in prescription isodose for the FSPB algorithm

indicates the lack of accuracy of this non-uniform region dose,

fundamentally because the FSPB algorithm carries out density
TABLE 4 Dose-volumetric parameters of the PTV for UCLC.

FSPB FSPB _LS MC P < 0.05

D2 (Gy) 61.46 ± 2.52 64.72 ± 2.80 65.42 ± 3.33 a, b

D5 (Gy) 60.83 ± 2.45 63.94 ± 2.72 64.40 ± 3.14 a, b

D95 (Gy) 50.20 ± 0.11 50.23 ± 0.13 50.27 ± 0.15

D98 (Gy) 48.83 ± 0.27 48.44 ± 0.30 48.46 ± 0.33 a, b

Dmax (Gy) 62.62 ± 2.54 65.84 ± 2.82 67.51 ± 3.46 a, b

Dmin (Gy) 45.36 ± 0.97 43.77 ± 1.46 44.14 ± 1.36 a, b

Dmean (Gy) 56.33 ± 1.54 58.05 ± 1.42 58.06 ± 1.67

PrescriptionIsodose (%) 79.97 ± 3.10 76.08 ± 3.24 74.26 ± 3.86 a, b

Target coverage (%) 95.57 ± 0.31 95.47 ± 0.28 95.54 ± 0.31 a, b

CI 1.14 ± 0.07 1.21 ± 0.07 1.27 ± 0.10 a, b, c

HI 1.25 ± 0.05 1.32 ± 0.06 1.35 ± 0.07 a, b
fr
a, FSPB vs. FSPB_LS; b, FSPB vs. MC; c, FSPB_LS vs. MC.
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correction only for the contribution of primary photon and does not

reproduce the physics effects that cause it. Conversely, the FSPB_LS

algorithm executes lateral scattering correction, which is believed to

have significantly contributed to the dose consistency with MC.

Insubstantial differences in dose were shown among the three

algorithms for OARs of the CLC. This study’s results align with

previous studies that compared dosimetric parameters among CK

algorithms (30). Only differences in dosimetric parameters for V10 in

the contralateral lung were observed between FSPB and FSPB_LS,

whereas statistically significant differences were observed between

FSPB and MC in Dmean of the contralateral lung and Dmax of the

aorta. The FSPB algorithm underestimates lung dose, which could lead

to incorrect judgement by radiation oncologists, thus increasing the

PTV prescription dose and causing normal tissue intolerance (31).

Additionally, underestimation of aorta’s Dmax by the FSPB algorithm

could result in excessive radiation exposure, causing severe side effects
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of radiation (32). However, there were no statistically significant

dosimetric differences observed for all other OARs between FSPB_LS

and MC. When comparing the two algorithms, the dose deviation for

PTV is between 0.10% and 3.65%, whereas the range of dose deviation

for OARs is from 2.79% to 11.93%. Currently, the American

Association of Physicists in Medicine (AAPM) recommends that the

overall dose accuracy of radiation therapy is at 5%. The dose calculation

should be maintained within 3% (7). Although the FSPB_LS algorithm

can significantly improve the accuracy of the FSPB algorithm, there still

exists a gap compared to the MC algorithm. Therefore, caution should

be exercised while using the FSPB_LS algorithm for the final dose

calculation in the CLC to ensure the safe implementation of SBRT.

In general, the majority of dosimetric parameters in the violin

plot depicting PTV and OARs exhibit a consistent trend: MC >

FSPB_LS > FSPB. The FSPB algorithm demonstrates substantial

differences in PTV dose parameters from the MC algorithm for
FIGURE 5

Violin plots of dose parameters for PTV and OARs in UCLC, derived from FSPB, FSPB_LS, and MC algorithms. The horizontal lines within the violin
plots represent the mean values, while the hollow circles depict the medians. The P-values are displayed above in the inset.
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UCLC. In comparison to CLC, the PSPB_LS algorithm exhibits

greater consistency with the MC algorithm for UCLC, with only

statistical differences noted for CI. The improved consistency may

be attributed to UCLC overlapping with soft tissues and showing
Frontiers in Oncology 10
smaller density changes, leading to a reduced electron secondary

imbalance. In this scenario, the FSPB_LS algorithm can perform

lateral scaling correction to enhance dose calculation accuracy.

However, upon implementing a unified normalization standard,
FIGURE 6

PTV dose distribution of representative patient with UCLC based on FSPB, FSPB_LS and MC algorithms. The images from top to bottom illustrate
(A) FSPB, (B) FSPB_LS, and (C) MC algorithms respectively. The images from left to right demonstrate the dose distribution of top, middle, and
bottom layers of PTV along superior-inferior (S-I) direction. P represents the Prescription Dose.
TABLE 5 Dose-volumetric parameters of the OARs for UCLC.

OAR DV FSPB FSPB_LS MC

Ipsilateral lung

V5 (%) 26.65 ±9.43 27.14 ±9.32 30.05 ±9.77

V10 (%) 11.56 ±5.71 11.88 ±5.80 13.34 ±6.15

V20 (%) 4.33 ±2.39 4.53 ±2.53 4.86 ±2.74

Dmean (Gy) 4.49 ±1.58 4.57 ±1.58 5.06 ±1.65

Contralateral lung

V5 (%) 6.55 ±5.92 6.48 ±5.61 7.23 ±6.18

V10 (%) 0.23 ±0.45 0.23 ±0.39 0.25 ±0.44

V20 (%) 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Dmean (Gy) 1.46 ±0.60 1.49 ±0.57 1.73 ±0.62

Heart

V30 (%) 0.05 ±0.16 0.03 ±0.15 0.08 ±0.24

V40 (%) 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Dmean (Gy) 1.96 ±1.94 2.09 ±2.06 2.34 ±2.14

Aorta Dmax (Gy) 33.31 ±18.01 38.38 ±19.23 38.55 ±20.57

Spinal cord Dmax (Gy) 11.61 ±8.40 11.70 ±6.03 12.36 ±6.35

PBT Dmax (Gy) 32.19 ±20.43 34.19 ±21.62 34.95 ±21.53

Esophagus
Dmean (Gy) 3.43 ±1.88 3.61 ±1.93 3.93 ±1.94

Dmax (Gy) 17.92 ±12.69 19.32 ±13.28 20.02 ±13.16

Ribs
Dmax (Gy) 27.00 ±16.81 28.91 ±17.70 30.04 ±17.70

D1cc (Gy) 20.97 ±15.20 22.19 ±14.88 22.79 ±15.21
f
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the CI associated with the MC algorithm significantly surpasses that

of the other two algorithms. According to the formula (1) in

METHODS AND MATERIALS, this discrepancy indicates an

underestimation of the prescribed dose’s coverage range by the

other two algorithms, potentially leading to heightened delivered

doses and radiation-induced side effects (33).

Diametric parameters of OARs showed no statistically significant

differences in patients with UCLC. However, algorithm and

prescription settings for UCLC must be approached with caution

given its overlap with critical structures such as PBT, aortas, and

esophagus. After SBRT treatment in UCLC patients, a portion of

patients were found to develop acute esophagitis while a few

experienced tracheoesophageal fistula (20, 34). Additionally, another

study found that 14% of patients died from bronchopulmonary

hemorrhages after receiving 60 Gy/12f for UCLC and patients with

main bronchial Dmean BED3 of 91 Gy significantly increased the

likelihood of ≥ grade 3 toxicity (35). Van der Voort van Zyp et al.

(36) on CK treatment of NSCLC, it was suggested that the prescription

dose should be set separately according to tumor size for the conversion

from equivalent path length (EPL) algorithm to MC.

The timing of dose calculations is a consideration for radiation

physicists. The FSPB_LS algorithm greatly reduces the computation

duration of the MC algorithm. In this study, the scanning layer

thickness of the cases we used was 5mm. However, in actuality, cases

treated with CK generally employ thin-layer scanning, which further

exacerbates the time difference between the MC algorithm and other

algorithms. Although the MC algorithm requires significant

computation time, through a series of data comparisons and analysis
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in this paper, it is found that the FSPB_LS algorithm still cannot

perfectly replicate the precise dose delivery in the lungs achieved by the

MC algorithm. Considering the numerous OARs surrounding CLC

and UCLC, we believe that the use of the FSPB_LS algorithm should be

cautious. And the use of inappropriate algorithms may lead to

misjudgments by radiation oncologists. In clinical treatment,

estimating tumor control and radiation-induced side effects through

dose distribution is highly important. Although the FSPB_LS and FSPB

algorithms can generate dose distributions in a short amount of time,

they suffer from dose calculation discrepancies compared to MC,

greatly outweighing their advantages in terms of time cost. If only

the FSPB_LS algorithm can be used for dose calculation, we

recommend setting the dose calculation resolution to “High”.

Additionally, before plan execution, institutions should establish

more rigorous dose verification standards.

It should be noted that this study employed the M6 with TPS

version Precision 1.1.1.1. Considering the maturity of the market

for CK, differences among accelerators can be negligible. Hence,

institutions using the same model of CK can refer to the results of

this study. Furthermore, based on the location of lesions, lung

cancer can be categorized into peripheral, central, and super-

central. This study only focuses on CLC and UCLC and does not

explore peripheral lung cancer. Given that peripheral lung cancer is

surrounded by low-density lung tissue, which is significantly

different from CLC and UCLC, the conclusions of this study may

not be applicable to peripheral cases.

The length of the low-density lung tissue pathway traversed by the

beam is an essential factor that influences dose calculation accuracy.
frontiersin.or
FIGURE 7

The dose-volume histograms (DVH) of PTV, GTV, and OARs planned through FSPB, FSPB_LS, and MC algorithms for the representative patient with UCLC.
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We recommend utilizing the prone position for patients with tumors

located proximately to the spinal region during positioning. During

planning optimization, optimizing dose distribution accuracy can be

achieved by setting avoidance regions with reduced lung penetration.

While not yet published, we believe that this approach can enhance

dose calculation accuracy.

Here are some limitations and prospects of this research. As a

retrospective study, patients were not randomized, resulting in

potential selection bias. In addition, the lack of attention to the

influence of CT scan layer thickness on dose calculation accuracy.

All patients in this study had been historically treated with SBRT on a

True Beam accelerator, utilizing a 3 mm scan layer thickness. However,

CK planning in Precision TPS typically utilizes thin-layer scanning (1-

1.5 mm). The effect of varying scan layer thicknesses on the accuracy of

the three dose algorithms remains indeterminate. Moreover, in

previous treatments, patients had their arms raised. However, during

CyberKnife treatment, to avoid collisions during robotic arm

movement, patients typically place their arms on both sides of the

body. These limiting factors could potentially impact dose calculations.

In the future, we can evaluate the impact of different algorithms on

patient clinical outcomes through long-termmulti-institutional follow-

up observations. Furthermore, utilizing the built-in biological

assessment module in TPS, evaluating the impact of different

algorithms on tumor control probability (TCP) and normal tissue

complications probability (NTCP) in terms of dose differences is

considered a future research direction (33, 37, 38). This study can

assist radiation oncologists in prospectively understanding the impact

of these three algorithms on patient prognosis. Unfortunately,

Precision 1.1.1.1 used in this study does not have a similar module.

We hope that with future updates and iterations of algorithms, we can

conduct research addressing this issue. Currently, we have only

compared the differences among these three algorithms in CLC and

UCLC. We plan to conduct similar studies concerning peripheral lung

cancer. Considering the proximity of peripheral lung cancer to

surrounding OARs, this may lead to differences that are completely

distinct from the results of this study.
Conclusion

This study compared three different CK dose algorithms based on

CLC and UCLC cases. The results showed that most dose parameters

of PTV and OARs demonstrated the trend of MC > FSPB_LS > FSPB.

The FSPB_LS algorithm significantly improved the calculation

accuracy of the traditional FSPB algorithm and exhibited dose

distributions similar to MC within the PTV. However, for CLC,

there were significant differences between the FSPB_LS algorithm

and the MC algorithm in terms of OARs. Although these differences

reduced in UCLC, the OARs in UCLC were highly sensitive to dose

variations. In conclusion, we recommend using the MC algorithm for

dose calculation in CLC and UCLC. The findings of this study provide

important guidance for algorithm selection in MLC-based CK

planning, helping radiation oncologists gain intuitive insights into

the differences among various dose algorithms in CLC and UCLC,

and offering beneficial references for clinical algorithm choices.
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