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NCYM, a Homininae-specific oncoprotein, is the first de novo gene product

experimentally shown to have oncogenic functions. NCYM stabilizes MYCN and

b-catenin via direct binding and inhibition of GSK3b and promotes cancer

progression in various tumors. Thus, the identification of compounds that

binds to NCYM and structural characterization of the complex of such

compounds with NCYM are required to deepen our understanding of the

molecular mechanism of NCYM function and eventually to develop anticancer

drugs against NCYM. In this study, the DNA aptamer that specifically binds to

NCYM and enhances interaction between NCYM and GSK3b were identified for

the first time using systematic evolution of ligands by exponential enrichment

(SELEX). The structural properties of the complex of the aptamer and NCYMwere

investigated using atomic force microscopy (AFM) in combination with

truncation and mutation of DNA sequence, pointing to the regions on the

aptamer required for NCYM binding. Further analysis was carried out by small-

angle X-ray scattering (SAXS). Structural modeling based on SAXS data revealed

that when isolated, NCYM shows high flexibility, though not as a random coil,

while the DNA aptamer exists as a dimer in solution. In the complex state, models

in which NCYM was bound to a region close to an edge of the aptamer

reproduced the SAXS data. Therefore, using a combination of SELEX, AFM, and

SAXS, the present study revealed the structural properties of NCYM in its

functionally active form, thus providing useful information for the possible

future design of novel anti-cancer drugs targeting NCYM.
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1 Introduction

NCYM, a cis-antisense gene of MYCN, encodes a Homininae-

specific oncoprotein (1, 2). In human neuroblastomas, NCYM is

always co-amplified with MYCN, and its expression level is

associated with poor prognosis (1). NCYM stabilizes MYCN via

inhibition of GSK3b, whereas MYCN stimulates both MYCN and

NCYM transcription (1). This feedback loop contributes to the

maintenance of high levels of both MYCN and NCYM expressions

in MYCN-amplified neuroblastomas (1, 2). NCYM enhances the

metastasis of neuroblastomas (1) possibly via inhibition of

apoptotic cell death (1, 3, 4) and/or regulation of stemness (5, 6).

Furthermore, NCYM has been shown to be associated with

progression of adult cancers (2, 7). Therefore, NCYM is a

promising target protein for anti-cancer therapy. However, the

difficulty in determining its structure hinders drug design (8).

NCYM is a newly evolved coding gene that originated fromMYCN

promoter region during the evolution of the Homininae (1, 2). New

genes originating from non-genic regions are known as de novo gene

birth (9–11), and NCYM is the first de novo gene product

experimentally shown to have oncogenic functions. Owing to their de

novo emergence, de novo proteins show no homology to known genes

and do not have any domains or motifs. The amino acid sequence of de

novo proteins is similar to a random sequence (12), although a recent

report identified the difference between de novo proteins and unevolved

random-sequence counterparts in that de novo proteins exhibit

moderately higher solubility in cells (13). Four de novo proteins have

been structurally characterized to date: Bsc4 (14), NCYM (8), Goddard

(15), and AFGP8 (16); however, mainly because of their highly

disordered nature, none of the complete structures have been

determined. Upon binding to the ice surface, the local structure of

the antifreeze glycoprotein AFGP8 make a transition from a disordered

to an ordered state (16), indicating the possibility of significant ordering

of de novo proteins via complex formation with binding partners.

Consistent with an earlier prediction that NCYM binds to DNA (17),

we have previously found that benzonase treatment significantly

improves the solubility of NCYM (8). These observations led us to

identify DNA aptamers that bind specifically to NCYM and to consider

that analysis of the complex of NCYM and DNA aptamers may

contribute to the characterization of the structural dynamics of NCYM.

Here, three types of DNA aptamers were identified by

systematic evolution of ligands by exponential enrichment

(SELEX) and their interactions with NCYM were characterized by

atomic force microscopy (AFM). Moreover, the structure of the

NCYM-DNA complex of a representative DNA aptamer (named

“No. 1”), which enhances interaction between NCYM and GSK3b,
was analyzed using small-angle X-ray scattering (SAXS).
2 Materials and methods

2.1 Aptamer selection procedure

SELEX was performed as previously reported with some

modifications (18, 19). Dynabeads™ MyOne™ Carboxylic Acid

(CA) magnetic beads (Invitrogen, Waltham, MA) were used for
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NCYM solidification to segregate NCYM-binding DNA molecules

from the non-binding molecules. The target beads were prepared by

a n am i n e c o up l i n g r e a c t i o n u s i n g 1 - e t h y l - 3 - ( 3 -

dimethylaminopropyl) carbodiimide hydrochloride (EDC;

Thermo Fisher Scientific, Waltham, MA, USA) according to the

manufacturer’s instructions and washed with the selection buffer

[SB; 40 mM HEPES (pH 7.5), 125 mM NaCl, 5 mM KCl, 1 mM

MgCl2, and 0.01% Tween 20]. Briefly, the CA magnetic beads were

washed twice with 500 ml of 100 mM 2-Morpholinoethanesulfonic

acid mono hydrate (MES) buffer at pH 6.0. After added 50 ml of 100
mM MES buffer and 50 ml of EDC, and the mixture was incubated

for 30 minutes at room temperature. The mixture was then mixed

with 200 mg of NCYM in 100 mM MES buffer and incubated over

night at room temperature to react with the amino group of NCYM

and the carboxylic acid of the CA magnetic beads. Next, they were

washed twice with 500 ml of PBST (0.1% Tween20 in phosphate

buffered saline, PBS) and 500 ml of PBST-BSA (0.1% bovine serum

albumin in PBST) was added. Before using the target beads, they

were washed twice with 1 ml of SB.

An initial single-stranded DNA (ssDNA) pool, 5′-
G G A A T G T G G T C C C T C G C A A T A A A T C - ( N 3 0 ) -

GAAATGAGCCCTTTGACCCTGTAC-3′, containing 30 random

nucleotides between forward (Fw) and revers (Rv) primer region

was purchased from Integrated DNA Technologies (Tokyo, Japan).

The selection of aptamers was performed starting from 4.5 nmol of

DNAs (~1015 molecules) in 100 ml of SB. The pool was mixed for 15

minutes with 250 mg of target beads at 25°C. The beads were then

washed with SB, and the bound ssDNA was eluted with 7 M urea.

After recovery of the eluted ssDNA using Rv primer beads,

polymerase chain reaction (PCR) was performed with KOD Dash

DNA polymerase (Toyobo, Osaka, Japan), a forward (Fw) primer

(5’-GGAATGTGGTCCCTCGCAATAAATC-3’) and a reverse (Rv)

primer (5’-GTACAGGGTCAAAGGGCTCATTTC-3’) with

modification by the 5’-biotin. Next, the amplified double stranded

DNA (dsDNA) was bound to MyOne SA C1 magnetic beads, and

the Fw chain (ssDNA) was eluted with 0.02M NaOH. The ssDNA

was used for the next round.

After eight rounds of selection, the frequency of ssDNA

sequences was determined by next-generation sequencing (NGS)

from rounds 3 to 8 of SELEX using a MiniSeq System (Illumina, San

Diego, CA, USA). Sequencing data were preprocessed by using the

program of PRINSEQ++ (20) and adopted above 99.9% of the base

calling accuracy (Q score of 30 and above).
2.2 Bio-layer interferometry

All the Bio-Layer Interferometry (BLI) measurements were

performed at 25°C using an Octet® RED96e system (Sartorius

AG, Goettingen, Germany). All the samples were placed in a 96 well

microplate and the sample volume was 200 ml/well. The microplate

was shaked at 1,000 rpm during the measurement. As a ligand, each

aptamer with 5’-biotin modification was immobilized on an Octet®
SA biosensor chip (Sartorius). For kinetics analysis, different

concentrations of NCYM (25-400nM) were used. The dissociation

constants between the aptamer and NCYM were calculated using a
frontiersin.org

https://doi.org/10.3389/fonc.2023.1213678
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yamamoto et al. 10.3389/fonc.2023.1213678
simple 1:1 biomolecular interaction model according to the

manufacturer’s instructions.
2.3 Construction of DNA frame
structures and introduction of
aptamers for AFM imaging

To gain insights into the mechanism of interactions between

NCYM and the aptamers obtained by SELEX, NCYM-aptamer

binding was studied at the single molecule level using AFM.

Scaffolds prepared using the DNA origami method were used for

this purpose. The DNA origami method allows the creation of

structures of any shape and the introduction of functional molecules

anywhere in the structure. Therefore, single-molecule observation

using DNA origami structures is suitable for evaluating

biomolecules and has been used to observe various molecules

(21–29). In this study, we used a DNA frame structure (21). The

DNA frame contains a space inside, and dsDNA can be introduced

into any sequence.

DNA frames were prepared as previously described (21). A

solution containing 10 nM M13mp18 ssDNA (tilibit nanosystems

GmbH, Germany), 25 nM staples (2.5 eq), 20 mM Tris-HCl (pH

7.4), 10 mM MgCl2, 1mM EDTA was prepared and annealed at a

rate of -1°C per minute from 85°C to 15°C.

Aptamers and DNA oligos for the DNA frame were purchased

from Eurofins Genomics K.K. (Tokyo, Japan) and used without

further purification. In this study, three types of aptamers, which

showed high affinity among the aptamers obtained by SELEX, were

employed, and the sequences of which for AFM observation are

as follows:
Fron
No. 1: 5’-GGAATGTGGTCCCTCGCAATAAATCTATGTA

CGTTATTCCCCTTTGACC

AATGCTGAAATGAGCCCTTTGACCCTGTAC

TTTTTTTCCAGCGGGACTAGCGCGTTGCTC

CTCACT-3’

No. 2 : 5 ’ -GGAATGTGGTCCCTCGCAATAAATC

GGGGAGGGAGGGTGGGGGCGGT

GGGAGGTGGAAATGAGCCCTTTGACCCTGTAC

TTTTTTTCCAGCGGGACTAGCGCGTTGCTCCT

CACT-3’

No. 3: 5’-GGAATGTGGTCCCTCGCAATAAATCGGGCG

TTGTGGAGGGGGCGGTG

G G T G G G G G G A A A T G A G C C C T T T G A

C C C T G T A C T T T T T T T C C A G C G G G

ACTAGCGCGTTGCTCCTCACT-3’
All aptamers had a dsDNA complement sequence (underlined)

added via a TTTT sequence (bold) at the 3’ end for introduction

into the DNA frame.

The secondary structures of the aptamers were predicted using

RNAfold [http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/

RNAfold.cgi]. We used the default settings: minimum free energy

(MFE) and partition function, yes; avoid isolated base pairs, yes;
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incorporate G-Quadruplex formation into the structure prediction

algorithm, yes; dangling end options, dangling energies on both

sides of a helix in any case; energy parameters, DNA parameters

(Mathews model, 2004) at 25 or 38°C with a salt concentration

of 1.021M.

The resultant dsDNAs were incorporated into the frame

structures described above and observed in the presence of

NCYM (Figure S1), which was purified according to a previous

method (1).
2.4 Truncation and mutation of the DNA
aptamer No. 1

To identify where the aptamers interact with NCYM, we

prepared three analogs (short 1, short 2, and short 3) of the No. 1

aptamer based on the secondary structure prediction by RNAfold.

The sequences used are as follows:
short 1 : 5 ’-TGGTCCCTCGCAATAAATCTATGTA

CGTTATTCCCCTTTGACCAATGC

TGAAATGAGCTTTTTTTCCAGCGGGACTAGCG

CGTTGCTCCTCACT-3’

s ho r t 2 : 5 ’ -GGAATGTGGTCCCTCGCAATAAA

TCTATGTACGTTATTCCCCTTTGAC

C A A T G C C C T T T G A C C C T G T A C T T T T

TTTCCAGCGGGACTAGCGCGTTGCTCCTCACT-3’

s ho r t 3 : 5 ’ -GGAATGTGGTCCCTCGCATCCCC

TTTGACCAATGCTGAAATGAGCCCT

T T G A C C C T G T A C T T T T T T T C C A G CGGG A C

TAGCGCGTTGCTCCTCACT-3’
short 1, short 2, and short 3 lack the 5’ end and 3’ end side

(named “5’-3’-end” herein), the 3’ end stem loop, and the central

stem loop of the No. 1 aptamer, respectively.

In addition, mutations were introduced into aptamer No.1

without changing its secondary structure. The following

sequences are mutants of aptamer No.1, and italic font indicates

the introduced mutations.
N o . 1 m u t 1 5 ’ - G G A A T G T G G T C C C T C G C

CGCGCATCTATGTACGGCGCGCCCCTTTGACCAAT

G C T G A A A T G A G C C C T T T G A C C C T G T
ACTTTTTTTCCAGCGGGACTAGCGCGTTGCTCCTCACT-

3’

No.1 mut 2 5’-GGAATGTGGTCCCTCGCAATAAATCTATG

T A C G T T A T T C C C C C C G G A C C A A T G C T G A A

ATGAGCCCTTTGACCCTGTACTTTTTTTCCAGCGGGA

CTAGCGCGTTGCTCCTCACT-3’

No.1 mut 3 5’-GGAATGTGGTCCCTCGCAATAAATCTATGT

ACG T T A T T C C C C T T TGACCAA TGC TGAAA T

GAGCCCGCGGACCCTGTACTTTTTTTCCAGCGGGAC

TAGCGCGTTGCTCCTCACT-3’
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No.1 mut 123 5 ’ -GGAATGTGGTCCCTCGCCGCGC

ATCTATGTACGGCGCGCCCCCCGGACCAATGCTGAAA

TGAGCCCGCGGACCCTGTACTTTTTTTCCAGCGGGAC

TAGCGCGTTGCTCCTCACT-3’
2.5 AFM imaging

The AFM images were acquired using an AFM system

(NanoWizard UltraSpeed, JPK) equipped with a silicon nitride

cantilever (Olympus, BL-AC40TS). In all the measurements,

NCYM (100 nM) 10eq was added to the adjusted frame

structures having aptamer (10 nM) and incubated at 25°C for 2h.

Samples were then double-diluted in annealing buffer (20 mM Tris-

HCl (pH 7.4), 10 mM MgCl2, 1mM EDTA), adsorbed onto fresh

mica plates for 10 minutes at room temperature, and washed three

times with the annealing buffer. The observations were performed

using the same buffer.
2.6 Immunoprecipitation

20 ml of Dynabeads™ protein G (Thermo Fisher Scientific)

slurry was transfered to a clean tube. The tube was placed in a

magnetic separation rack for 10-15 seconds, then, the buffer was

carefully removed. 2 µg of anti-GSK3b (BD Transduction

Laboratories) or mouse IgG (Cell Signaling Technology, Danvers,

MA) was dissolved in 200 ml of PBS (0.02% Tween 20) and the

solution was added to the beads. The slurry was incubated with

rotation at room temperature for 10 minutes. The beads were

pelleted using a magnetic separation rack and washed three times

with 200 ml of PBS, then resuspended in 100 ml of PBS. 0.17µg (3.7
pmol) of purified GSK3b (Signal Chem, Richmond, Canada),

0.044g (3.7 pmol) of NCYM (1) and DNA aptamers (1eq (3.7

pmol) or 5 eq (18.5 pmol)) were dissolved in 500ml of ice-cold PBS

and incubated with rotation at 4°C for 2h. A 100 ml suspension of

antibody-conjugated beads was added and incubated for 2h. The

beads were pelleted using a magnetic separation rack and washed

five times with 1 ml of PBS. The pellet was resuspended in 20 ml of
1X sample buffer and heated at 95°C for 5min.The beads were

pelleted using a magnetic separation rack and the supernatant was

subjected to the Abby analysis.
2.7 Abby analysis

The NCYM and GSK3b protein levels were measured using a

capillary electrophoretic-based immunoassay (the Abby

instrument; ProteinSimple, San Jose, CA, USA), according to the

manufacturer’s protocol. Briefly, the samples were combined with

0.1× sample diluent buffer and 5× fluorescent master mix

denaturing buffer to acquire 0.8 µg/ml loading concentration.

Subsequently, the samples were denatured for 5 min at 95 °C. The

primary antibodies used in this study were anti-NCYM (1) and

anti-GSK3b (#9315, Cell Signaling Technology, Danvers, MA,
Frontiers in Oncology 04
USA). The Abby measurements were performed using a 12–

230 kDa separation module with 25-min separation at 375 V, 10-

min blocking, 30-min primary antibody incubation, and 30-min

secondary antibody incubation (DM-001, ProteinSimple, San Jose,

CA, USA). At the end of the run, the chemiluminescent signal was

displayed as a virtual blot-like image and an electropherogram

based on the molecular weight using Compass (ProteinSimple, San

Jose, CA, USA).
2.8 Sample preparation for
SAXS measurements

The expression and purification procedures for NCYM were

modified from those described previously (8). Recombinant NCYM

with glutathione S-transferase (GST) at the N-terminus was

expressed in Escherichia coli BL21 (DE3) cells using the pGEX-

6p-1 vector. The cells were cultured in Luria broth medium

containing 0.1 mg/ml ampicillin at 30°C. When OD600 reached

0.6, protein expression was induced by 0.1 mM of isopropyl-b-D-
thiogalactopyranoside, and culture was continued for 6 h at 30°C.

The cells were harvested by centrifugation (3,890×g, 15 min, 4°C),

and then stored at −30°C until purification.

The frozen cell pellets were thawed and resuspended in

phosphate-buffered saline (PBS) supplemented with cOmplete

EDTA-free Protease Inhibitor Cocktail (11873580001, Roche,

Basel, Switzerland) and lysed by repeated sonication in ice water.

The cell lysate was centrifuged at 20,000×g, 4°C for 20 min, then the

supernatant was loaded onto GSTrap FF column (17513102, Cytiva,

Marlborough, MA, USA) equilibrated with PBS, using a peristaltic

pump. After washing out the unbound materials with PBS, GST-

tagged NCYM (GST-NCYM) was eluted with an elution buffer (50

mM Tris-HCl and 10 mM reduced glutathione, pH 8.0). The flow-

through was reloaded onto the re-equilibrated column, and the

eluate was collected once more to increase the final protein yield.

The eluted GST-NCYM solution was dialyzed against a buffer

containing 50 mM Tris-HCl, 100 mM NaCl, and 1 mM EDTA at

pH 8.0. After adding dithiothreitol to the protein solution at a final

concentration of 1 mM, the GST-tag was cleaved with 50 U/L-

culture of PreScission Protease (27084301, Cytiva) for over 18 h at

4°C with gentle stirring. To exhaustively degrade the remaining

nucleic acids, 6,000 U/L-culture of benzonase (71205-3CN/70746-

3CN, Merck, Darmstadt, Germany) was added to the cleaved

sample along with MgCl2 at a final concentration of 2 mM (Mg2+

is required for the activation of benzonase), after which the sample

was dialyzed against IEX buffer (20 mMMOPS (pH 7.0) and 1 mM

DTT) with 2 mM MgCl2.

The dialyzed sample was loaded onto a HiTrap SP HP column

(17115201, Cytiva) equilibrated with IEX buffer, and eluted using a

linear gradient of NaCl (0–650 mM). The fractions containing high-

purity NCYM, as confirmed by SDS-PAGE, were collected and used

for SAXS measurements. The GST-tag did not bind to the column

and was detected in the flow-through. The final NCYM yield was

1.25 mg/L-culture, which was estimated with the molecular

absorption coefficient of 280 nm ϵ2800.1% = 0.558.
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The purified NCYM was dialyzed against a buffer containing 10

mM Tris-HCl (pH8.0), 50 mM NaCl, and 5 mM DTT. Powdered

DNA aptamers (No. 1) were dissolved directly in the same buffer.

Samples of the NCYM-DNA complex were prepared by mixing these

two kinds of solutions at the appropriate molar ratios (see below).

These solutions were used for the following SAXS measurements.
2.9 SAXS experiment

SAXS measurements were carried out at BL40B2 in SPring-8

(Hyogo, Japan) on solution samples of NCYM (1.4 and 2.8 mg/ml),

the DNA aptamer (1.6 and 5.0 mg/ml), and the NCYM-DNA

complex. For the measurements of the complex, two kinds of

samples, where the molar ratio of NCYM and DNA was 1:1.2 or

1:1.5 (Table 1), were used to extract the scattering curve of the

complex by changing the relative contribution of the unbound

DNA aptamers. The wavelength (l) of the incident X-ray was 1.0 Å
and the temperature was 293 K with the sample-to-detector

distance of 2.2 m. A pixel detector (PILATUS3S 2 M, Dectris)

was used to record the scattering patterns.

Data reduction was conducted using the software SAngler (30):

The recorded two-dimensional SAXS patterns were circularly averaged

to obtain one-dimensional scattering curves, corrected by the incident

flux measured with an ion chamber placed upstream of the samples.

The net scattering curves of the scattering particles were obtained by

subtracting the scattering curves of the buffer from those of the samples

with an appropriate scaling factor based on the scattering particle

concentration and the partial specific volumes of proteins (0.73 cm3/g)

or of DNA (0.53 cm3/g) (31). Finally, the scattering curves were

normalized to the absolute scale using H2O as the standard (32) to

estimate the molecular weight of the scattering particles.

Guinier analysis was employed to evaluate the radius of

gyration (Rg) of the scattering particle from its scattering curve. A

scattering curve I(Q), where Q (=4psinq/l, where 2q is the

scattering angle) denotes the momentum transfer, is represented

as follows in a good approximation in the so-called Guinier region

(Q･Rg < 1.3) (33):

I(Q) = I(0)exp −
1
3
R2
gQ

2
� �

(1);

where I(0) [cm-1] denotes the forward scattering intensity, from

which the molecular weight (MW) of the scattering particle is
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estimated from the following equation in kDa (32):

MW = 1500� I(0)
1
c

(2);

where c is the weight concentration [g/l].

For rod-like particles such as the DNA aptamer and the NCYM-

DNA complex, cross-sectional Guinier analysis was applied to

evaluate their cross-sectional radii of gyration (Rc). In this case, I

(Q) is approximated as:

Q ･ I(Q) = Ic(0)exp −
1
2
R2
cQ

2
� �

(3);

where Ic(0) denotes the forward scattering intensity of the cross-

section of the scattering particle. Application of Eq. 2 with Ic(0)

instead of I(0) yields the scattering mass per unit length.

The scattering curves taken at the lower particle concentrations

were merged with those at the higher concentrations at Q = 0.1 Å−1

and the resultant curves were used for structural modeling. IGOR

Pro software (WaveMetrics, Lake Oswego, OR, USA) was used for

(cross-sectional) Guinier analyses and for processing the

scattering curves.
2.10 Structural modeling using
the ab initio method

Human NCYM comprises109 residues. Because NCYM was

expressed with a GST-tag at its N-terminus in this study, eight

residues were added to the 109 residues even after cutting the tag.

For structural modeling, the program GASBOR (34) was employed,

where each residue is represented by a sphere with a constant

electron density. The obtained model thus consists of 117 spheres.

In this study, the GASBOR runs were repeated 10 times (i.e., 10

best-fit models were obtained). For the modeling of the DNA

aptamer, DAMMIF (35) was used, where a molecule is

represented by an ensemble of spheres called dummy atoms. The

input files required for DAMMIF were generated using AUTORG

and DATGNOM (36). The maximum Q value (Qmax) used for

structural modeling was automatically determined using

DATGNOM (QmaxRg < 7–8). The DAMMIF runs were repeated

10 times and the resultant 10 models were averaged, followed by

filtration using DAMAVER (37). Structural modeling of the

NCYM-DNA complex was carried out using the program

MONSA (38), where each of the two phases is represented by a

dummy atom model while each phase is assigned a designated

electron density value. As an input file of MONSA, the following

information is required: The values of the electron density of

NCYM and the DNA aptamer were set to be 0.09 e/Å3 and 0.21

e/Å3, respectively, which are typical of these types of molecules (39).

The volume fractions of NCYM and the DNA aptamer were

obtained from the volumes obtained using GASBOR and

DAMMIF, respectively. Using these parameters, the MONSA

runs were repeated 10 times. In all of the programs above, the

best-fit model, the scattering curve of which reproduces the

experimental curve well, is determined by simulated annealing.
TABLE 1 Information on the measured samples of the NCYM-DNA
complex.

Molar ratio
(NCYM : DNA) in
the sample

NCYM
concentration
in the sample
[mg/ml]

DNA
concentration
in the sample
[mg/ml]

1:1.2 1.3 3.2

0.6 1.5

1:1.5 0.6 1.8
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2.11 Scattering curve of the
NCYM-DNA complex

The scattering curves of the NCYM-DNA complex recorded at

1:1.2 and 1:1.5 molar ratios were found to be superimposable

despite the existence of different amounts of unbound DNA

aptamers (Figure S2). However, as described in the Results

section, NCYM molecules and the DNA aptamers exist as

monomers and dimers, respectively, in solution so that the molar

ratios of NCYM and the dimeric DNA aptamer in the above

samples are 1:0.6 and 1:0.75, respectively, which result in the

molar ratios of the complex and the excess amount of NCYM of

0.6:0.4 and 0.75:0.25 assuming that one NCYMmonomer binds to a

DNA dimer. Because the scattering intensity is proportional to the

square of the product of the scattering contrast of a particle and its

volume, the scattering contributions of excess NCYM molecules

were calculated to be 0.8% and 0.4% for the 0.6:0.4 and 0.75:0.25

samples, respectively. In this estimation, the scattering contrasts of

NCYM and DNA were set to be 0.09 e/Å3 and 0.21 e/Å3 as

described above, and the volumes of a NCYM monomer and a

DNA dimer were assumed to be 17000 Å3 and 68000 Å3 as obtained

by GASBOR and DAMMIF. Thus, it appears that the scattering

contribution of free NCYM monomers is negligible, which explains

why the scattering curves obtained at NCYM : DNA = 1:1.2 and

1:1.5 are similar to each other within errors. This observation also

excluded the possibility that the complex consists of one NCYM

monomer and one monomeric DNA aptamer. Based on the above

inspection, the curves obtained from the above samples reflect those

of the NCYM-DNA complex. The scattering curves taken at NCYM

: DNA = 1:1.2 and 1:1.5 were, therefore, averaged to improve the

signal-to-noise ratio and the resultant curve was employed as the

scattering curve of the NCYM-DNA complex.
3 Results

3.1 Aptamer selection by SELEX

To identify DNA aptamers that specifically bind to NCYM, we

performed SELEX and employed NGS technology to monitor the

progress of the enrichment sequences that bind to the target in the

selection pool. We performed the NGS analysis using an Illumina

MiniSeq for the NCYM aptamer selection pools from rounds 3 to 8

to identify the aptamer candidates. The ratio of unique DNA

sequences in the selection pool per round showed that DNA

sequences were enriched in round 6 (Figure 1A). No. 1 aptamer

candidate, which was the most abundant population in round 8, was

quickly enriched from round 6 compared to the other DNA

sequences. Guanine contents in the selection pools were increased

slightly in round 8 (Table S1). BLI measurements and kinetic

analyses showed that top three aptamers strongly bind to NCYM

protein at KD value in the range of 53.9 to 299 nM (Table S2);

however, the aptamer No. 2 and 3 were predicted to form different

secondary structure at 38°C, showing low structural stability at

relatively high temperature compared to aptamer No.1 (Figure 1B

and Figure S3).
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3.2 AFM observation on the NCYM-DNA
aptamer complexes

3.2.1 DNA aptamers obtained by SELEX
(No. 1, 2, and 3)

To visualize the interaction between NCYM and DNA at the

molecular level, we used AFM observation of the aptamer-

conjugated DNA frames with or without NCYM (Figure 2).

Because the aptamer has a large single-stranded region and is not

completely fixed, only dsDNA can be seen. After adding NCYM,

white dots were observed on the dsDNA (Figure 2B). The numbers

of DNA frames with and without these white dots were counted to

assess the affinity of the aptamer for NCYM (Figure 2B). Binding of

NCYM to the No. 1 aptamer was observed in 14.5% of the DNA

frames (84/580 frames). Binding was also observed for the No. 2 and

No. 3 aptamers at 12.0% (80/664 frames) and 14.6% (41/280

frames), respectively. The slightly lower affinity of No. 2

compared to No.1 and No.3 is consistent with the KD value

evaluated by BLI measurements.

3.2.2 Truncated and mutated DNA aptamers
Because of the relatively higher stability of the secondary

structures of the No.1 aptamer (Figure S2), we focused on

aptamer No.1 and further analyzed the regions required for

NCYM binding. As shown in Figure 3A, the AFM results

revealed a decrease in the number of bonds in short 1 (9.4%, 70/

742 frames) and short 2 (5.3%, 75/1425 frames), whereas there was

no change in the number of bonds in short 3 (14.2%, 173/1222

frames). Because aptamers No. 2 and No. 3 exhibited GC-rich

sequences (Figure 1B), we introduced mutations in the No. 1

aptamer with increasing GC content without affecting the

secondary structure, and we found that the mutations at TTT in

the central loop showed a significant decrease in the affinity of

aptamer No.1 to NCYM (Figure 3B). These results suggest that the

5’-3’-end, the 3’ end stem loop, and TTT in the central loop of the

No.1 aptamer are required for binding to NCYM.
3.3 The effect of DNA aptamer No. 1 on
the interaction between NCYM and GSK3b

To clarify the effect of DNA aptamer No.1 on NCYM function,

we examined NCYM binding to GSK3b with or without the aptamer.

As reported (1), purified NCYM was co-immunoprecipitated with

GSK3b (Figure 4A). Addition of aptamer No.1 enhanced the

interaction between NCYM and GSK3b in dose-dependent manner

(Figure 4B). This result led us to analyze the NCYM-aptamer No.1

complex because the aptamer may help NCYM to adopt a

conformation that facilitates binding to GSK3b.
3.4 SAXS results

3.4.1 Guinier analysis and Kratky plot
To elucidate their structural properties, we employed SAXS

analysis to reveal the approximate structures of the complexes in
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solution. Figure 5A shows the results of the Guinier analysis. The

radii of gyration (Rg) were estimated to be 25.2 ± 0.7 Å, 46.0 ± 0.3 Å,

and 44.8 ± 0.2 Å, for NCYM, the DNA aptamer No. 1, and the

NCYM-DNA complex, respectively. The molecular weights of

NCYM and the DNA aptamer were estimated to be 7.2, and 54.5

kDa, respectively, indicating that NCYM molecules exist as a

monomer in solution whereas DNA aptamers are dimers because

the molecular weights of NCYM and the DNA aptamer were 12
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kDa, 24.2 kDa, respectively. Although the molecular weight of the

complex was estimated to be 46.8 kDa, because the true

concentration of the complexes in the sample is not known due

to the existence of a small amount of excess NCYM molecules, this

value should be interpreted with caution. Scattering curves other

than NCYM were found to follow the cross-sectional Guinier

approximation, suggesting that the DNA aptamer and the

complex adopt a rod-like shape. Figure 5B shows the results of
B

A

FIGURE 1

Identification of NCYM-bound aptamers. (A) Ratio of the enriched ssDNA sequence in the selection pool per round. Each dot represents the ratio of
the enriched ssDNA sequences more than 0.001. The lines indicate the same ssDNA sequence between rounds. Top 3 enrichment sequences at
round 8 were evaluated for the further structural analysis and named No. 1, No. 2, and No. 3. (B) Secondary structure prediction of NCYM-bound
aptamer by RNAfold at 25°C. Primer sequences are colored in gray.
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the cross-sectional Guinier analysis, from which the cross-sectional

radii of gyration (Rc) were estimated to be 12.2 ± 0.4 Å and 12.5 ±

0.2 Å for the DNA aptamer and the complex, respectively. This

suggests that the overall size of the cross-section is similar between

the DNA aptamer and the complex. Both the Guinier analysis and

the cross-sectional Guinier analysis can be applied to the current

samples because of their relatively short entire length, whereas in

many cases, fibrillar proteins are quite long (even on the order of

mm) and only the cross-sectional Guinier analysis can be applied

(40, 41).

Several plots were used to investigate the structural properties of

NCYM, as shown in Figure 5C. The Kratky plot (Q2･I(Q) vs Q) (42)

shows that the Q2･I(Q) value reaches a peak at around Q = 0.1 [Å-1]

and decreases slightly, followed by the increase, suggesting that

NCYM is not a completely unfolded protein, but a partially folded

protein. This interpretation is further supported by the Q3 plot

(Q3･I(Q) vs Q3), where the Q3･I(Q) value reaches a plateau, which

is a hallmark of partially folded proteins (43). In contrast, no

plateau was observed in the Porod-Debye plot (43), suggesting

that NCYM is not a well-folded protein. These results show that

NCYM adopts a highly flexible conformation, though it is not a

completely unfolded protein, but a partially folded protein. This is

in agreement with a previous study showing that NCYM molecules

contain defined secondary structures in solution (8).

3.4.2 Solution structure of NCYM, the DNA
aptamer, and the NCYM-DNA complex

The results of the structural modeling of NCYM, the DNA

aptamer No. 1, and the NCYM-DNA complex are summarized in

Figure 6. Figure 6A compares the experimental SAXS curves with

those calculated using the best-fit model obtained for each of the

three samples. The c2 values, which are averaged over 10 models
Frontiers in Oncology 08
obtained, were 1.17, 1.37, and 1.85, for NCYM, the DNA aptamer,

and the complex, respectively. As shown in Figure 6A, the obtained

models provide excellent fits to the measured SAXS curves.

As shown in Figure 6B, NCYM was found to have a slightly

extended structure in which the bulky and flexible parts are mixed.

It is not a completely unfolded protein such as a random coil, as

expected from the panels in Figure 5C and our previous study on

the secondary structure of NCYM (8). Although the assignment of

the secondary structure to the three-dimensional structures of the

current NCYMmodels is not possible at this stage, future structural

modeling using SAXS curves with higher Q values would be useful

for this purpose (44). The volume of the NCYMmodels was ~17000

Å3. Regarding the DNA aptamer, a structure with a volume of

~68000 Å3, in which four to five bulky nodes were connected, was

found to reproduce the measured SAXS curve, as shown in

Figure 6C. Because the aptamers exist as dimers, as evidenced by

the molecular weight estimation as described above, a monomeric

DNA aptamer corresponds to two or three nodes in this model. The

structural features of the DNA model with some nodes here are

consistent with those predicted using RNAfold (Figure 1B). Two

representative models of the NCYM-DNA complex are shown in

Figure 6D. In both cases, the volumes of the NCYMmolecule and of

the DNA aptamer in the complex were ~19000 Å3 and ~63000 Å3,

which are roughly the same as those obtained when these molecules

are in isolation. The volume of the complex (~82000 Å3) was

essentially the same as the sum of the volumes of NCYM and

DNA in isolation (~85000 Å3) within 4% accuracy. It thus follows

that the NCYM-DNA complex consists of one NCYMmolecule and

two DNA aptamers (a dimer). NCYM tends to bind either to or

close to a tip of a dimeric DNA aptamer. The slight differences

(~10%) in the volumes of each component between in isolation and

in the complex may imply that some intramolecular structural
B

A

FIGURE 2

Secondary structure prediction model for aptamers and evaluation using DNA origami. (A) Design of DNA frame with NCYM aptamer and its AFM
image. The open cyan triangles show the orientation marker. (B) Examples of AFM images of NCYM-aptamer No.1 complexes on DNA frames (left)
and evaluation of the affinity between aptamers obtained by SELEX and NCYM (right). In the “Occupied” row, the numerator and the denominator
represent the number of NCYM bound to the aptamers and the total number of aptamers, respectively. The “rate” row denotes the number fraction
of NCYM bound to the aptamers calculated from the corresponding value in the “occupied” row.
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changes occur upon binding. A more detailed structure of the

complex can be obtained by small-angle neutron scattering (SANS)

combined with contrast matching or variation (45), which will be

performed in the future. All the 10 models obtained for NCYM, the

DNA aptamer, and the NCYM-DNA complex are shown in Figures

S4–S6, respectively.

Attempts were made to identify other possible conformations of

the complex by changing the volume ratio of each phase in the
Frontiers in Oncology 09
complex and/or assuming a symmetry in the structure, which are

provided as an input file to MONSA. Whereas several models which

fit the SAXS curve of the complex quite well in terms of the c2

values were obtained, in all cases, deviation of the volumes of

NCYM and the DNA aptamer in the complex with regards to those

in the unbound state was much larger (15–20%) than the models

presented in Figure 6. Considering an independent line of evidence

that the volume change of proteins between the folded and the
B

A

FIGURE 3

Evaluation of the affinity between truncated or mutated aptamers and NCYM. (A) Truncated No.1 aptamers for identification of NCYM binding site. The
5’-3’-end, the central stem loop, the 3’ end stem loop, and the primer region are colored in blue, orange, green, and gray, respectively (upper and
middle). Evaluation of the affinity between the truncated aptamers and NCYM (bottom) (B) Mutated No.1 aptamers for identification of the NCYM binding
site. Mutated sequences are colored in red (upper and middle). Evaluation of the affinity between the mutated aptamers and NCYM (bottom).
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unfolded states is less than 0.5% (46), the volume change of each

component in the complex should be the smallest. Since in the

models in Figure 6, the volume of each component in the complex is

close to that in the unbound state, and truncation of one edge of a

DNA aptamer breaks down the interaction with NCYM as observed

by AFM, the models presented here appear to be reasonable.
Frontiers in Oncology 10
4 Discussion

In this study, we established a new observation system using

aptamers for the single-molecule observation of proteins using

DNA origami. To date, protein studies using DNA origami have

mainly involved single-molecule observations of proteins that bind
BA

FIGURE 4

Aptamer No.1 increased interaction between NCYM and GSK3b. (A) Co-immunoprecipitation of NCYM with GSK3b detected by Abby analysis.
(B) Aptamer No.1 increased the amount of NCYM co-immunoprecipitated with GSK3b in a dose-dependent manner (0, 1, and 5 eq.).
B

C

A

FIGURE 5

Summary of the analysis of the SAXS scattering curves of the NCYM-DNA system. (A) Guinier analysis. The logarithm of the scattering intensity is
shown as a function of Q2 for NCYM (cyan), the DNA aptamer No. 1 (magenta), and the NCYM-DNA complex (orange). Upper panels denote the
corresponding residuals between the measured and the fitted values. (B) Cross-sectional Guinier analysis. Instead of ln[I(Q)] of the Guinier analysis, ln
[Q･I(Q)] is plotted as a function of Q2, from which the cross-sectional radius of gyration is evaluated. (C) The left, middle, and right panels show the
Kratky plot, Q3･I(Q) vs Q3 plot, and the Porod-Debye plot, respectively, of NCYM.
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directly to DNA or using systems based on ligand or avidin-biotin

binding (21–29, 47–52). However, DNA origami research using

aptamers has mainly focused on functionalizing the DNA origami

using already established aptamers (53–56). Therefore, a system

that uses DNA origami and aptamers to elucidate the structure of

proteins, as in this study, is a new approach that has never been

used. In this study, we have also succeeded in roughly identifying

the binding site of NCYM to the aptamer obtained using the SELEX

method. The method using aptamers can easily fix proteins onto the

DNA origami. Therefore, it is expected to be applied to the

observation of the interaction between a fixed protein and its

target, and to the functional evaluation of proteins for which

single molecule observation has not been performed.

In addition to the AFM observation, further structural

characterization of NCYM and the DNA aptamer No. 1 that

facilitates NCYM binding to GSK3b was conducted using SAXS.

Regarding the structure of the DNA aptamer, it was found that it

exists as a dimer. This finding is supported by both the molecular

weight estimation from the forward scattering intensity and the

fitting of the corresponding SAXS curve. Although it is not possible

to unambiguously determine the manner in which the two DNA

aptamers form dimers, this can be inferred from the current

findings. There are three types of arrangements for the two DNA

aptamers to form a structure similar to that shown in Figure 6C

(Figures 7A–C).

As shown in Figure 7, there are three types of arrangements for

two DNA aptamers to form a similar form to that shown in

Figure 6C. In the case where the interface between the two

aptamers is formed by the central stem loop of one aptamer and

the 5’-3’-end of the other aptamer (Figure 7A), NCYM is able to
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bind to the 5’-3’-end of the upper aptamer. Whereas there is a

possibility that other aptamers bind to either edge of the dimer in

the same manner, dimers might be more stable than higher-order

aggregates as observed for a protein (57) probably due to entropy-

enthalpy compensation. In case where two 5’-3’-ends form the

interface of the dimer (Figure 7B), NCYMwould not be able to bind

to the aptamer since these regions are required for NCYM binding

as suggested by AFM. If the interface of the dimer is formed by two

central stem loops (Figure 7C), at least two NCYMmolecules would

be able to bind to both edges of the dimer, which is inconsistent

with the discussion on the SAXS curve of the complex and our

modeling results. The second NCYM binding may be unfavorable

in terms of entropy. There are thus two possible models on the

mode of dimeric formation of the DNA aptamer (Figures 7A, C). In

addition, the observation that NCYM binds to the dimeric DNA

aptamer (Figure 6) implies that the affinity between NCYM and an

aptamer is lower than that between monomeric aptamers and thus

DNA dimers do not dissociate into two monomeric aptamers in the

current solution condition.

A concern in the current SAXS analysis is that the deviation of

the estimated molecular weight (7.2 kDa) of NCYM from its

theoretical value (11.7 kDa) is relatively large. This raises the

possibility that the DNA aptamers might exist as trimers or

tetramers. The large deviation observed for NCYM is likely to be

caused by the small size of NCYM, thus resulting in relatively large

experimental errors. However, because the scattering intensity is

proportional to the square of the molecular volume, the SAXS curve

of the DNA aptamer, which has a larger molecular weight than

NCYM, has much lower experimental errors than NCYM

(Figure 6A). This results in a more reliable molecular weight
B C DA

FIGURE 6

Ab initio structural models of NCYM, the DNA aptamer No. 1, and the NCYM-DNA complex. Comparison of the scattering curves between the
experiments and the models of NCYM is shown in the upper panel of (A) The lower panel of (A) shows the comparisons for the DNA aptamer and
the NCYM-DNA complex. Experimental values are shown in grey filled circles and the simulated values from the models are shown in cyan solid
lines. Error bars are within symbols if not shown. Scattering curves are vertically shifted for clarity. (B) Gallery of the NCYM models (arbitrarily chosen
4 models) obtained from GASBOR. Each sphere represents one amino acid residue. (C) A representative dummy atom model of the DNA aptamer
obtained from DAMMIF and DAMAVER (“damfilt.pdb” is shown). (D) Dummy atom models of the NCYM-DNA complex obtained from MONSA. The
moieties corresponding to NCYM and the DNA aptamer are shown in marine blue and in orange, respectively.
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estimation for the DNA aptamer than for NCYM. Furthermore, the

structural modeling of an isolated DNA aptamer presented in this

work does not require any information on the molecular property

including its molecular weight because it is an “ab initio” approach.

From the SAXS-derived models with five bumps (Figure 6) and the

secondary-structure predicted by RNAfold, which has 2–3 bumps

in one aptamer (No. 1 in Figure 1B), it is reasonable to conclude that

the DNA aptamer forms a dimer in solution.

In the dummy atom models of the complex, the moiety

corresponding to NCYM adopted a compact and well-defined

shape whereas NCYM showed flexibility and adoped a slightly

extended conformation in the unbound state. This implies that

highly flexible NCYM molecules fold upon binding to DNA

through the well-known “fly-casting mechanism” (58), in which

an unfolded region(s) of a protein binds weakly to the binding site

at a relatively large distance, followed by folding as the protein

approaches the binding site. As aptamer No.1 facilitated the

interaction between NCYM and GSK3b, the compact and well-

defined shape of NCYM found in the complex with aptamer No. 1

appears to be the functional structure of NCYM. Folding upon

binding has been demonstrated for another de novo protein AFGP8

(16). A similar mechanism may also apply to interactions between

NCYM and GSK-3b, underlying the mechanism of stabilization of

these molecules.

One of the most important advantages of AFM observations

with a DNA frame is that the DNA frame is guaranteed to be a

monomeric aptamer, which is a feature not observed in other
Frontiers in Oncology 12
binding assays. This is because dsDNA is bound to an DNA

aptamer (Figure 2A) and thus two dsDNAs should be observed

by AFM if the DNA aptamers form dimers, which is not the case.

Therefore, it is most likely that monomeric aptamers are capable of

binding NCYM and dimer formation of DNA aptamers is not a

prerequisite for binding of NCYM. Since the SAXS data alone did

not show that NCYM could bind to the monomeric form of the

aptamer, AFM, in combination with SAXS, provides important

insights into the structure of the aptamer-NCYM complex.

Identification of DNA aptamers that can specifically bind to

NCYM and facilitate its binding to GSK3b is useful for elucidation of

the structure of NCYM in its active form. Although the aptamer-

NCYM complex described in this study has not yet been tested by X-

ray crystallography, investigation of the structural properties of the

complexes may pave the way for the structural characterization of

NCYM molecules at the atomic level. Therefore, the present study

suggests that the combination of SELEX, AFM, and SAXS is useful for

understanding the structural properties of NCYM and the current

findings will serve as a foundation for the future design of novel anti-

cancer drugs targeting NCYM as well as for elucidating the

stabilization mechanism of other cancer-related proteins by NCYM.
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FIGURE 7

Schematic illustration of possible ways by which the DNA aptamer No. 1 forms a dimer. An aptamer is shown in either orange or magenta. The
corresponding predicted structure of the aptamer is shown in Figure 1B (left). There are three types of arrangements for two DNA aptamers to take a
form similar to that shown in Figure 6C: (A) The interface between the two aptamers is formed by the central stem loop of one aptamer and the 5’-
3’-end of the other aptamer. (B) Two 5’-3’-ends form the interface of the dimer. (C) The interface of the dimer is formed by two central stem loops.
For a more detailed discussion, please see the main text.
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