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Breast cancer, the most prevalent malignant tumor among women, poses a

significant threat to patients’ physical and mental well-being. Recent advances in

early screening technology have facilitated the early detection of an increasing

number of breast cancers, resulting in a substantial improvement in patients’

overall survival rates. The primary techniques used for early breast cancer

diagnosis include mammography, breast ultrasound, breast MRI, and

pathological examination. However, the clinical interpretation and analysis of

the images produced by these technologies often involve significant labor costs

and rely heavily on the expertise of clinicians, leading to inherent deviations.

Consequently, artificial intelligence(AI) has emerged as a valuable technology in

breast cancer diagnosis. Artificial intelligence includes Machine Learning(ML) and

Deep Learning(DL). By simulating human behavior to learn from and process

data, ML and DL aid in lesion localization reduce misdiagnosis rates, and improve

accuracy. This narrative review provides a comprehensive review of the current

research status of mammography using traditional ML and DL algorithms. It

particularly highlights the latest advancements in DL methods for mammogram

image analysis and offers insights into future development directions.
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1 Introduction

Golobocan’s latest cancer report (1) states that in 2020, approximately 19.3 million

newly diagnosed cancer cases were reported worldwide, resulting in 10 million cancer-

related deaths. Among these cases, female breast cancer accounted for about 2.3 million

new cases, representing 11.7% of all cancer cases and surpassing lung cancer as the most

prevalent malignant tumor. Breast cancer has emerged as a leading malignancy among

women, significantly endangering their physical and mental well-being. The mortality rate

of breast cancer patients has been decreasing due to advancements in medical technology
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and early detection. From 1975 to 1989, breast cancer mortality

experienced a yearly increase of 0.4 percent but has steadily declined

since reaching its peak in 1989. Between 1989 and 2020, there was a

remarkable 43 percent decrease in mortality, resulting in a

reduction of 460,000 breast cancer-related deaths (2). The

decrease in breast cancer mortality can be attributed to improved

and more targeted treatment methods, as well as early screening

practices. Consequently, early diagnosis and treatment play pivotal

roles in enhancing the prognosis of these patients.

Currently, the primary techniques used for the early diagnosis

of breast cancer include mammography, magnetic resonance

imaging (MRI), ultrasonography (US), computed tomography

(CT), and pathological examination (3). Mammograms, among

these methods, are relatively inexpensive, straightforward, and

rapid. They enable the detection of even minor breast changes

that may go unnoticed during manual examination, thereby

enhancing diagnostic accuracy (4). Hence, despite the emergence

of new technologies for breast cancer diagnosis, mammography

remains the simplest and most frequently employed tool for early

breast cancer screening (5). However, following mammography

imaging, the clinical interpretation and analysis of images

necessitate significant time and labor costs, relying heavily on the

expertise of clinicians for film interpretation. Diagnosis by doctors

is subjective, and their individual experience levels vary. Even

experts find it challenging to make immediate and accurate

judgments when faced with diverse breast abnormalities, leading

to the potential for missed diagnoses and misdiagnoses.

Furthermore, training experienced clinicians requires substantial

investments of time and effort, posing challenges for professions

facing a shortage of technical expertise. Therefore, the development

of new technologies is necessary to address these aforementioned

challenges. The advancement and widespread adoption of

computer technology have facilitated the availability of sufficient

computational power for medical image analysis and processing.

This, in turn, mitigates the reliance on the expertise level of doctors

to some extent, with ML methods proving particularly suitable

under these circumstances.

ML is a subfield of artificial intelligence (AI) that emerged in the

1980s (Figure 1) (6). By training and learning, the machine extracts

the most relevant features from the dataset and constructs a model
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to handle unfamiliar data (7). ML comprises three main categories:

supervised learning, unsupervised learning, and reinforcement

learning. In supervised learning, well-labeled data is used to train

a model, which then generates predictions or classification

outcomes based on the provided data (8); In unsupervised

learning, computers address pattern recognition problems using

unlabeled training samples. For instance, unsupervised DL

algorithms can identify distinguishing features between benign

and malignant nodules, classifying them into respective categories

(8); Conversely, reinforcement learning relies on reward feedback to

maximize returns or accomplish specific objectives (9). The most

frequently employed supervised learning methods include Artificial

Neural Networks (ANN), Support Vector Machine (SVM) (10), and

Random Forest (RF) (11, 12). Clustering algorithms, such as K-

Means (13), Principal Component Analysis (PCA), and Singular

Value Decomposition, are the most common types of unsupervised

algorithms. Currently, computers are far from matching human

learning abilities; however, in certain practical applications, ML has

demonstrated impressive outcomes, even surpassing human

capabilities. Within clinical settings, ML technology can aid in

lesion localization to a certain extent, leading to a reduction in

misdiagnosis rates and an improvement in accuracy. Its application

in early breast cancer screening has yielded significant results,

particularly when combined with mammography X-ray,

ultrasound, breast MRI, and pathological diagnosis, alongside

other auxiliary examinations.

DL, as a subset of ML, is capable of automatically extracting

meaningful features from big data (14), including the development of

image recognition in three stages: text recognition, digital image

recognition, and object The basic structure of DL comprises the

input layer, hidden layer, and convolutional layer. The hidden layer

further consists of the convolutional layer, pooling layer, and fully

connected layer (15). The input layer primarily handles data input into

the convolutional layer for consolidation purposes, such as feature

scaling and data enhancement (16). The primary function of the

convolutional layer is to perform feature extraction and calculate the

convolution results of data feature mapping using trainable

convolutional filters and bias parameters (17). The pooling layer

filters and consolidates the features, which are then fed into the fully

connected layer for non-linear combination and output (18). The fully

connected layer is a structure where every neuron in two adjacent

layers is interconnected. Following this layer, the output layer

produces the classification result or probability. DL models have

extensive applications, encompassing various architectures such as

deep neural networks (DNNs), autoencoders (AEs), deep belief

networks (DBNs), deep convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and generative adversarial

networks (GANs).CNN is one of the most representative algorithms

in DL, known for its ability to extract high-level information from

similar features located at different spatial positions within the input

signal (19). Consequently, CNN has achieved significant success in

visual recognition and speech recognition tasks (19, 20), particularly

excelling in visual recognition due to its high-performance advantages

in image processing.

This narrative review provides a comprehensive review of the

progress and challenges in the field of ML and DL for mammography,
FIGURE 1

Relation between AI、ML and DL.
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aiming to facilitate researchers’ understanding of the latest

advancements. Several published review papers have been presented

in the last few years. However, all of them have only been addressed

one side focusing on one application or topic, such as Sechopoulos et al.

(21) for breast cancer detection with mammography, Gastounioti et al.

(22) for breast cancer risk prediction with mammography, Computer-

aided breast cancer detection and classification in mammography (23),

DL for breast cancer diagnosis (18), DL for Classification of Breast

Microcalcifications (24), and etc. This review paper has a distinctive

focus compared to previous articles for the following reasons. Firstly,

we aim to present an up-to-date examination of the advancements in

ML and DL techniques applied to mammography for breast diagnosis.

This review serves as a valuable reference for the development of new

diagnostic methods. Secondly, we comprehensively discuss the

utilization of ML and DL in various stages of mammography image

processing, including preprocessing, detection of masses and

microcalcifications, as well as segmentation and classification.

Furthermore, we address the existing challenges associated with ML

and DL approaches, such as limited training data, high implementation

costs, and suboptimal accuracy in lesion recognition. Lastly, based on

our thorough review, we have derived several significant conclusions

that can greatly benefit future research endeavors in the field of medical

imaging for breast cancer.
2 Methods

Several databases were searched, including PubMed, Web of

Science, and CNKI.The search was limited to studies published

between January 2018 and March 2023. Exclusion criteria were

applied, which encompassed studies lacking conventional
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performance metrics such as sensitivity, specificity, area under the

receiver operating characteristic curve, and others. Additionally,

studies consisting solely of guidelines, review articles, abstracts,

animal studies, or with a sample size smaller than 10 were excluded.

Following the removal of duplicate studies and those containing

redundant or non-novel information, these libraries offer a large

number of candidate papers for this study (Figure 2).
3 Application of machine learning
in mammography

As the cause of breast cancer remains unclear, the focus of breast

cancer prevention primarily lies in secondary prevention strategies

Mammography imaging is a preferred method for clinical breast

disease examination due to its simplicity and high recognition rate for

early microcalcifications However, mammography has limitations in

cases of dense mammary glands, resulting in reduced accuracy (25).

ML-based mammograms overcome this limitation by employing ML

algorithms to perform tasks such as lesion detection, segmentation,

feature extraction, and benign and malignant classification,

eliminating the reliance on visual recognition (26) (Figure 3).
3.1 Preprocessing of mammography
images based on traditional
machine learning

Image preprocessing is essential due to the challenges

encountered in diagnosing mammography images of early breast

cancer, including small and irregular calcification points, diverse
FIGURE 2

Flow diagram of identification of researches included in the review.
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morphological distribution, poor contrast, and the presence of

residual lesion tissues in dense breast tissue. High resolution is

often necessary to overcome these challenges, which may require

extensive processing time if performed directly on the original

images. Common mammography preprocessing methods

encompass the removal of background and muscle tissue artifacts,

noise reduction, image enhancement, and image resizing. Various

algorithms can be applied during the preprocessing stage to

improve image quality, including adaptive median filtering,

his togram equal izat ion (HE) , dynamic thresholding ,

morphological operations, wavelet transform, Wiener filtering,

and contrast-limited adaptive histogram equalization (27). The

objective of mammogram preconditioning is to enhance contrast

effectively and remove unwanted details within the breast, including

the background and pectoral muscles visible in the Medial and

Lateral Oblique (MLO) position view, while preserving areas that

may hold diagnostic significance (23). Hazarika and Mahant (28)

utilized a combination of threshold-based segmentation and

morphological manipulation, achieving 98.7% accuracy in

identifying breast boundaries and removing the background from

the image. Bora et al. (29)employed Hough line transforms and

“texture gradient” and “Euclid distance regression” for

approximating the chest edge and segmenting muscles from

mammograms. Their method successfully removed pectoral

muscles from 96.75% of the images. Mammography images often

contain speckle noise, which adversely affects image contrast and

resolution. Thus, filtering techniques are necessary to remove noise

and improve image quality (30). Kavitha et al. (31) proposed the

OMLTS-DLCN model, which incorporates adaptive fuzzy median

filtering (AFF) as a pretreatment step to remove noise from

mammogram images. Arora et al. (32) employed the histogram

equalization (HE) method to enhance contrast effectively and

improve the image’s edge by expanding its dynamic range as part

of the image preprocessing stage.

Mammography image preprocessing primarily aims to remove

irrelevant information and noise, while retaining relevant and

useful information (33). Continuous advancements in

mammography technology have led to significant improvements

in picture quality, resulting in reduced noise levels. Due to the

similarity between noise and early calcification points, there is a risk

of misjudgment during the noise removal process, leading to

instances where the noise is not completely eliminated. Given the

similarity in grayscale between pectoral muscles and masses, it

becomes necessary to normalize the image or enhance contrast to

mitigate disturbances caused by the presence of pectoral muscles.

Hence, pretreatment plays a vital role in accentuating features,

enhancing feature contrast, and improving the reliability of

subsequent processing steps.
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3.2 Lesion detection of mammogram
images based on traditional
machine learning

Breast cancer originates from the aberrant proliferation of cells

in breast tissue, resulting in the development of diverse lesion types,

such as asymmetry between the left and right breasts, tissue

structure distortion, and the presence of microcalcifications

(MCs) and lumps in varying sizes and shapes (34). Breast masses

and microcalcifications are prevalent types of lesions encountered

in clinical practice. MCs are small calcium deposits commonly

found in the breast, appearing as bright spots on mammograms

(35). While individual MCs are not highly indicative of breast

cancer detection, the formation of microcalcification clusters

through the aggregation of microcalcifications serves as an

important early sign of breast cancer. Microcalcification clusters,

consisting of three or more calcification points per centimeter, can

lead to a preliminary diagnosis of early breast cancer. Thus, the

detection of microcalcification clusters holds significant value in the

early examination of breast cancer. Lumps typically manifest as

relatively dense areas (off-white areas) on mammograms. Benign

lumps exhibit a round, smooth, and well-circumscribed appearance,

while suspicious lumps display irregular, rough, and blurred

borders (35).

3.2.1 Microcalcification lesion detection
Duarte et al. (36) demonstrated a technique for segmenting

microcalcifications by combining geodesic active profiles with

anisotropic texture filtering. The images undergo preprocessing

through Alternating Sequential Filtering, and contrast

enhancement is achieved using Adaptive Histogram Equalization

(CLAHE) technology. The image set utilized in the system is

extracted from the DDSM database. This technique achieved an

average area overlap measurement of 0.52 ± 0.20, encompassing

87.4% of malignant cases and 86.4% of benign cases. Guo (37) et al.

described a system for detecting microcalcified clusters present in

digital mammogram images. The zone growth method was

employed to eliminate artifacts in mammal X images. The top hat

transform and grayscale adjustment methods are utilized for

contrast enhancement. The contourlet transform is employed to

identify suspicious regions in the breast X image. Calcified clusters

are detected using unlinked pulse-coupled neural networks. The

proposed system achieved a good accuracy of 95.8%, sensitivity of

96.3%, and specificity of 94.7% when tested on the MIAS and JSMIT

databases, respectively. In the (38) study, the researchers proposed a

CAD system for mammography microcalcification detection based

on a new feature set. They employed statistical observations of

classical features (such as higher-order statistics, discrete wavelet
FIGURE 3

Workflow of computer-aided diagnosis of mammographic images.
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transform, and wavelet decomposition) for preprocessing, used the

t-test method for evaluation and feature reduction, and achieved

good results in sensitivity. Fadil et al. (39) proposed a computer-

based automated method for segmenting and classifying breast

microcalcifications in mammograms. They utilized discrete wavelet

transforms and random forests (DWT-RF) and tested the method

on 966 images (322 benign, 322 malignant, and 322 normal). The

results showed that DWT-RF achieved a sensitivity of 93%,

specificity of 97%, a false positive rate of 3%, and an accuracy of

95%. Moreover, the area under the ROC curve was 0.92, which is

comparable to the latest methods and other existing classifiers.

Suhail et al. (40) developed a novel method for classifying benign

and malignant microcalcifications. They utilized the improved

Fisher linear discriminant analysis (LDA) method to perform a

linear transformation of segmented microcalcified data and

employed junction SVM variants to classify between the two

classes. The results demonstrated an average accuracy of 96%.

Recently, the detection of microcalcification points in

mammography has gained significant attention as a challenging

research area. Despite numerous methods proposed for detecting

microcalcification points. However, due to the complex structure of

mammography X-ray images, uneven background, and the

presence of noise similar to microcalcifications, the detection of

microcalcification points still poses certain challenges. Current

methods have not yielded satisfactory results, with routine

examinations missing 10-30% of cases (41). Hence, researchers

should prioritize the development of new technologies to enhance

the efficiency and accuracy of detecting microcalcification points in

the breast. Additionally, most studies continue to rely on breast

image databases from Europe and North America, resulting in a

limited number of studies focused on dense mammary X-ray

images. Furthermore, there is currently no standardized breast

image database suitable for Asian women researchers. Therefore,

establishing a standardized breast image database specifically

tailored for Asia is an urgent concern.

3.2.2 Mass lesion detection
Huang et al. (42) conducted a retrospective analysis of

mammography images, encompassing 124 benign breast masses

and 139 malignant breast masses. They extracted the texture

features of mammography images and trained four models,

namely, linear discriminant analysis (LDA), logistic regression,

RF, and SVM, using the training set data. The performance of

these models was then verified using the validation set. The RF

model exhibited a higher compliance rate, Kappa coefficient, and

AUC value in both the training and validation sets. These results

highlight the advantages of ML models based on the texture features

of mammary X-ray images in distinguishing between benign and

malignant breast masses. Tourassi et al. (43) extracted the masses

from mammography images and created a region of interest (ROI)

database based on the ROI label information of the breast masses in

the DDSM database. They employed mutual information as a

similarity measure between the template image and the image

block to be matched. By calculating the similarity between all

suspected mass areas and the template image, they sorted the

similarity values and selected the area with the highest matching
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degree as the detected breast mass. Yu et al. (44) combined median

filtering, morphology, and Sobel edge detection to acquire the initial

rough edge of the mass. They subsequently employed gradient

vector flow snake (GVF-Snake) and gradient map adjustment to

perform the final mass segmentation.

Traditional methods for lesion area segmentation can be

categorized into region-based, threshold-based, edge-based,

feature-based, and theory-based approaches. However, due to the

irregular shape of lesions, irregular boundaries, and the presence of

grayscale heterogeneity within lesions, relying solely on a single

segmentation method often fails to achieve optimal results. Thus,

the current trend in research is to synthesize different methods to

enhance segmentation accuracy. Additionally, lesion detection

methods are frequently combined with segmentation algorithms

to simultaneously segment the lesion area and determine the

presence of lesions, thereby improving the effectiveness of

computer-aided diagnosis.
3.3 Segmentation of breast lesion areas
based on traditional machine learning

Accurate segmentation of the breast lesion area is fundamental

to mammography-assisted diagnosis technology as it serves as the

basis for subsequent feature extraction and classification of breast

lesions. Generally, the irregularity of a lump’s shape correlates with

its malignancy level (45). Traditional methods for breast lump

segmentation typically involve area-based algorithms (46),

contour-based algorithms (14), threshold segmentation (47), edge

detection (Table 1). Li et al. (48) developed SAP-cGAN, a

mammography mass segmentation model based on an enhanced

conditional generative adversarial network (cGAN). The model

incorporates a superpixel averaging pool layer in the cGAN

decoder, utilizing superpixels to enhance boundary segmentation.

Additionally, a multi-scale input strategy is employed to enable the

network to learn scale-invariant features and improve robustness.

The study demonstrated significant qualitative and quantitative

improvements of SAP-cGAN over baseline cGAN and other

methods in mammogram mass segmentation using CBIS-DDSM

and INbreast datasets. However, the SAP-cGAN model has

limitations when applied to mass segmentation involving complex

tissue structures. Kozegar et al. (49)propose a two-stage

segmentation method that incorporates shape information from

training samples. In the first stage, they utilize a novel adaptive

region growth algorithm to estimate the mass boundary roughly.

Based on the volume and roundness of the training samples, a

Gaussian mixture model is employed to determine the algorithm’s

similarity threshold. In the second stage, they introduce a novel

deformable model based on geometric edges, using the results from

the first stage as the initial profile. The study demonstrates the

effectiveness of the proposed supervised method in achieving

accurate mass segmentation results measured by the Dice

coefficient. Alam et al. (50) proposed a novel technique for

segmenting microcalcification (MC) clusters by employing a

series of morphological operations. The method aims to enhance

the accuracy of MC cluster segmentation by selecting the most
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significant features from the segmented image. These selected

features facilitate the generation of the final output in the CADx

pipeline. Jen et al. (51)proposed an anomalous feature detection

method for mammography based on a novel abnormality detection

classification approach. The method utilizes the gray value

quantification method to extract five features for detecting the

region of interest in the segmented mammogram image. Principal

Component Analysis (PCA) is then employed to determine the

weight. Experimental results demonstrate that the sensitivity of the

method, combined with feature weight adjustment, reaches 88%

and 86% on the MIAS dataset and DDSM dataset, respectively. Shi

et al. (52) propose an automated image processing pipeline that

primarily relies on pixel clustering without training to estimate

breast boundaries and simultaneously characterize breast tissue.

This pipeline includes skin boundary estimation, breast

segmentation, and calcification detection.

Lesion segmentation poses significant challenges due to the

highly irregular edges of malignant mass lesions, making it difficult

to achieve accurate resultsusing a single segmentation method.

Additionally, the presence of high-density breast tissue can lead

to erroneous segmentation of the dense area as a breast mass.

Therefore, addressing these issues necessitates the adoption of a

comprehensive range of methods to enhance segmentation

accuracy in the future.
3.4 Feature extraction and classification
of breast lesions based on traditional
machine learning

Following pretreatment and accurate segmentation of regions of

interest (ROIs) in mammograms, various features can be extracted to

classify ROIs as normal, benign, suspect, or malignant

microcalcifications (MCs). Common feature extraction methods

employed in the extraction stage of mammary lesion features

include grayscale co-occurrence matrix (GLCM), multidimensional

co-occurrence matrix, independent component analysis, genetic

algorithm, two-dimensional PCA, wavelet and curvature methods,

and PCA. These methods are utilized to extract features like entropy,

skewness, variance, and kurtosis (27).In 2017, Khan et al. (53)
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employed Gabor filters to extract features from textured

micropatterns at various scales and orientations. They utilized

Linear Discriminant Analysis (LDA) and Principal Component

Analysis (PCA) for dimensionality reduction and employed a

weighted SVM based on successive reinforcement learning for

classification. The method achieved an average accuracy range of

68% to 100%.Ghazouani et al. (54) propose a fully automated breast

cancer diagnostic method that utilizes small training datasets. The

method extracts features from mammography images using a

genetically programmed descriptor that leverages statistics of local

binary pattern-like local distributions defined at each pixel. This

approach yields promising results for both content-based retrieval

and classification problems. Additionally, The authors (55) present a

computer-aided diagnosis (CAD) system for classifying breast masses

within mammogram ROIs as malignant or benign. The system

employs 13 features based on GLCM to characterize textures.

These extracted features are inputted into a SVM classifier,

achieving an accuracy of 94%.Vijayarajeswari et al. (56) employed

the Canny edge detector, followed by the Hough transform, to extract

local texture features. They extracted four types of intensity-based

features (mean, entropy, standard deviation, and variance) and

utilized them as input for training classifiers. This method achieved

an accuracy of 94% in distinguishing normal and abnormal breast

tissue. In a study by (57), Haralick’s features were extracted from ROI

images, followed by nuclear principal component analysis to reduce

the dimensionality of the feature vectors. Subsequently, a wrapper-

based parameter optimization kernel extreme learning machine was

employed to identify the most significant features from the simplified

feature vector.Finally, a wrapper-based parameter optimization

kernel extreme learning machine is utilized to select the most

prominent features from the simplified feature vector. The multi-

level classification accuracy reached 92.61% in the digital breast

screening database. Omondiagbe (58)presents a hybrid approach

for breast cancer diagnosis that employs Linear Discriminant

Analysis (LDA) to reduce the high dimensionality of features and

subsequently applies a new dimensionality reduction feature dataset

to Support Vector Machines (SVMs). The method achieved an

accuracy of 98.82%, sensitivity of 98.41%, specificity of 99.07%, and

an area under the receiver operating characteristic curve of 0.9994.

SINGH et al. (59) initially enhanced the region of interest using
TABLE 1 Introduction to lesion segmentation.

Method Merits Demerits

Threshold-based segmentation Simple and easy to operate, high computing efficiency

The complexity of breast images arises from the similarity between
high-density tissues and glands in terms of their gray values,
making it challenging to identify an appropriate threshold.
Consequently, this adversely affects the segmentation of breast
masses.

Template-based matching
The extraction of the lump’s area is based on the characteristics
of the breast mass and the template’s similarity to the mass.

The calculation of a large number of organizational templates is
costly.

Based on a specific model
The method is relatively simple, eliminating the need for complex
feature extraction schemes and detailed segmentation of breast
tissue.

Strict reliance on the initial contour position is necessary, focusing
solely on the grayscale information of the edges in edge
understanding.

Combined segmentation
The combination of multiple features enables a more accurate
fitting of the characteristics of a breast mass.

The algorithm exhibits complexity and is prone to over-detection.
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morphological operations. They then extracted cluster shape features

and cluster texture features and employed SVM for classification. The

feature set was augmented with a set of shape features obtained using

the recursive subsampling method, resulting in improved

classification accuracy, with an achieved accuracy of 94.25%.

Experiments demonstrated that the proposed classification system

effectively reduces classification errors and enhances the efficiency of

accurate diagnosis. Fanizzi et al. (60) propose an automated binary

model for tissue classification in digital mammograms. The model

utilizes statistical features obtained through multiscale decomposition

of images based on Haar wavelet transforms, as well as points of

interest and corners detected using the Speeded Up Robust Feature

and Minimum Eigenvalue Algorithm. State-of-the-art machine

learning classifiers, such as RF, are trained with these features to

address binary discrimination tasks. The proposed model’s

performance is evaluated through cross-validation on 260 regions

of interest (ROIs). Experimental results demonstrate the model’s

excellent prediction performance, withmedian Area Under the Curve

(AUC) values of 98.16% and 92.08% for normal/abnormal and

benign/malignant problems, respectively, along with accuracies of

97.31% and 88.46%.Ghasemzadeh et al. (61) extracted feature vectors

from mammogram images using the Gabor wavelet transform. They

conducted tenfold cross-validation through multiple experiments to

analyze the data complexity in each fold. The achieved results showed

an average accuracy above 0.939, average sensitivity up to 0.951, and

average specificity greater than 0.92. Naseem et al. (62) present an

automatic detection system for breast cancer diagnosis and prognosis

based on a classifier ensemble. They compare various ensemble

models and ML-based test models with and without upsampling

techniques on two benchmark datasets. They also investigate the

impact of using balanced class weights on prediction datasets and

compare the performance with other methods. The results

demonstrate the superiority of the ensemble method, achieving an

accuracy rate of 98.83%. Dhahbi et al. (63) proposed a grayscale

structural analysis method to characterize the region of interest in

mammography. They studied the utilization of research methods

such as GLCM, fractal analysis, Hilbert image representation,

Kolmogorov-Smirnov distance, and maximum subregion

descriptors. By extracting features directly from the entire region of

interest, the proposed method not only avoids the challenging

problem of breast mass segmentation but also considers the texture

surrounding the lesion, which significantly aids in breast cancer

diagnosis. Additionally, several classifiers including RF, SVM, and

decision trees were employed to differentiate between normal tissues

and masses. Empirical evaluation using a large database of

challenging suspicious regions extracted from the DDSM database

demonstrated the effectiveness of the proposed method in reducing

false positives in mammography mass detection.

In the clinical diagnosis of breast cancer, it is essential to

consider multiple types of lesions, including masses and

microcalcifications. Simultaneous classification of benign and

malignant lesions across different types is required. Currently,

there is a scarcity of research on classification methods for multi-

class lesions, and the achieved classification results are also subpar.

Addressing this gap in research is a crucial direction for

future studies.
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4 Application of deep learning
in mammography

The continuous development and optimization of DL models

and algorithms have significantly expanded the application of DL in

mammography image analysis (56). Table 2 presents a compilation

of state-of-the-art mammography imaging methods that employ

DL techniques
4.1 Deep learning-based detection
of mammogram lesions

Leong et al. (79) proposed an adaptive transfer learning deep

convolutional neural network for segmenting mammogram images

with calcified cases, aiming to assist in early breast cancer diagnosis

and intervention. Honjo et al. (73) p proposed a deep-learning-

based super-resolution (SR) model based on DL for identifying

microcalcifications (MCs) in mammography images. Researchers

conducted visual and quantitative comparisons between pre-

processed and post-processed images, demonstrating the model’s

potential in detecting and diagnosing microcalcifications. Zeiser

et al. (74) introduced a U-Net-based model for diagnosing CAD

systems in digitized mammograms, enabling lesion monitoring over

time. The proposed methodology involves (1): Preprocessing,

including removal of irrelevant information, contrast

enhancement, and area of interest extraction (2); Data

enrichment through horizontal mirroring, scaling, and resizing of

images (3); Training based on a six-membered U-Net model with

diverse characteristics. The results indicated that the best model

achieved a sensitivity of 92.32%, specificity of 80.47%, accuracy of

85.95%, Dice index of 79.39%, and AUC of 86.40%.Al-atari et al.

(65) presented an integrated CAD system for breast lesion detection

and classification using DL. They first utilized the YOLO detector

based on DL to evaluate breast lesion detection in the DDSM and

INBREAM mammogram databases, achieving overall detection

rates of 99.17% and 97.27%, respectively. Using the detected

breast lesions, the average overall accuracy of the CNN, ResNet-

50, and InceptionResNet-V2 classification models for the DDSM

and INbreasts datasets was reported as 94.50%, 95.83%, 97.50%, and

88.74%, 92.55%, 95.32%, respectively. The DL-based YOLO

detector improves lesion detection accuracy in mammography X-

rays, thereby enhancing the classification model’s diagnostic

performance for breast lesions. Sun et al. (71) proposed a novel

breast mass detection method that integrates mathematical

morphology, image template matching, CNN-based breast mass

detection, and a breast mass bounding box regression model using

the particle swarm algorithm. The proposed method’s detection

performance was experimentally evaluated on the mammography

image dataset DDSM and compared with the state-of-the-art breast

mass detection method. Niu et al. (77) utilized a convolutional

neural network method to classify benign and malignant masses in

mammography films. They employed a multi-scale residual

network and a dense connectivity network as the backbone

network to extract features from global and local image patches.
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Additionally, they employed the Convolutional Block Attention

Module to enhance the feature expression ability of the network.

Finally, the characteristics of multi-scale image patches were fused

to achieve the classification of benign and malignant breast masses.
4.2 Deep learning-based segmentation
of breast lesions

Su et al. (72) eveloped a deep-learning model architecture for

detecting and segmenting breast cancer masses using

mammography. The model combines YOLO (You Only Look

Once) and LOGO (Local-Global) architectures for quality

inspection and segmentation. Firstly, YoloV5L6 was employed to

locate and crop the breast lump in the mammogram. Secondly, to

achieve a balance between training efficiency and segmentation

performance, the researchers modified the LOGO training strategy

by training the entire image and cropping the image on the global

and local Transformer model branches, respectively. These two

branches are then merged to make the final split decision. The

results demonstrate that the proposed YOLO-LOGO model

exhibits higher efficiency, improved performance, reduced

computing requirements, and enhanced versatility and accuracy

in computer-assisted breast cancer diagnosis. Zhou et al. (64)

present a novel DL-based method for extracting breast regions

that combines various pretreatment techniques, including noise

suppression using median filters, contrast enhancement using

CLAHE, and semantic segmentation using Deep lab v3+ models.

The method is trained and evaluated on the mini-MIAS dataset and

also evaluated on the INbreasts dataset. The results surpass those of

recent studies, highlighting the model’s capability to maintain

accuracy and runtime advantages across different databases with

varying image resolutions.Li et al. (67) propose a novel DL

framework for processing mammogram images that involves

mass segmentation and simultaneous prediction of diagnostic

outcomes. Firstly, they construct a quality and context texture

learner, known as the Locality Preserving Learner, using a stack

of convolutional blocks to map regions of interest to class labels at a

relatively large scale. Secondly, they employ the Conditional Graph

Learner, which combines graph and CNN, to learn correlations in

relatively small-scale ROIs and utilize the extracted segmentation

features to enhance the final quality classification performance. The

DUAL CORENET framework achieves optimal mammogram

segmentation and classification, exhibiting superior segmentation

performance at both low and high resolutions. Li et al. (48) propose

a novel network architecture for segmenting massive images in

digital mammograms. The architecture combines two modules

within the main basic cGAN framework: a superpixel average

pooling layer and a multiscale input module. These modules

provide prior boundary information and scale-invariant features.

The model’s performance is evaluated on large-scale images from

two commonly used datasets, CBIS-DDSM and INBREST. The

model achieves impressive results in terms of Dice and Jaccard

scores, accuracy, specificity, and sensitivity. For the CBIS-DDSM

dataset, the Dice and Jaccard scores are 93.37% and 87.57%,

respectively. For the INBREASTS dataset, the Dice and Jaccard
T
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scores are 91.54% and 84.40%, respectively. These findings indicate

that the proposed model outperforms current state-of-the-art breast

mass segmentation methods. Chakravarthy et al. (69) introduce an

enhanced version of U-Net called SKMAT-U-Net. This model

incorporates a selective kernel with an attention mechanism to

adaptively adjust the network’s receptive fields. It combines feature

maps extracted through extended and standard convolution

operations. The researchers then integrate four attention loss

functions based on the traditional cross-entropy loss function to

form a U-Net using the Mixed Attention Loss Function. The

proposed model effectively segments lesions in ultrasound images

of the mammary glands. Alkhaleefah et al. (70) developed a DL

model called Connected SegNets for segmenting breast tumors

from X-ray images. In the proposed model, two SegNet

architectures are connected by skip-the-loop connections between

their layers. To enhance the model’s robustness to noise during

training, the original SegNet’s cross-entropy loss function is

replaced by the intersection-over-union (IoU) loss function.

Contrast Limited Adaptive Histogram Equalization (CLAHE) is

applied to all datasets to enhance the compressed area and smooth

pixel distribution. Additionally, two image enhancements, rotation

and anti-warping, are employed to augment the training data and

mitigate overfitting. Experimental results demonstrate the

superiority of the proposed connected segmented network model

over existing methods, as evidenced by higher Dice score and IoU

score. Rodriguez-Ruiz et al. (80) proposed an automatic pectoral

muscle segmentation model based on the U-Net DL architecture.

The model was trained using 136 DBT images acquired by a single

system. It was then evaluated on 125 images of three different types:

Digital breast tomosynthesis (DBT), synthetic mammographic

image (SM), and digital mammography (DM). The obtained Dice

Similarity Coefficients (DSCs) ranged from 0.947 to 0.970, a visually

determined range ensuring adequate segmentation.
4.3 Feature extraction and classification of
breast lesions based on deep learning

Zhang et al. (75) proposed a multi-view feature fusion network

model for classifying mammograms using a multi-scale attention-

dense network as the backbone network for feature extraction. The

model incorporates two CNN branches to extract features from

mammography images captured from different perspectives,

enabling the network to leverage a broader range of spatial

information. Additionally, a multi-scale convolution module is

introduced to extract features at various scales within the images.

Experimental results demonstrate the model’s strong performance

in both classification tasks. The model achieves an accuracy of

94.92% and 95.24%, sensitivity of 96.52% and 96.11%, and AUC

values of 94.72% and 95.03% for classifying normal and abnormal

mammograms, and benign and malignant mammograms,

respectively. Shen et al. (76) propose a novel DL framework

composed of two primary stages: Suspicious Region Localization

(SRL) and Multicontext Multitask Learning (MCMTL). In the first

stage, SRL is responsible for generating the region of interest (ROI)

and extracting multi-sized patches from these suspicious regions. In
Frontiers in Oncology 11
the second stage, the MCMTL network combines the features of the

multi-sized patches from the suspicious areas to perform

simultaneous classification and segmentation. The proposed

method demonstrates performance that is on par with the most

advanced methods reported in the literature. Aljuaid et al. (15)

propose a computer-aided diagnostic method for breast cancer

image classification utilizing deep neural networks (ResNet 18,

ShuffleNet, and Inception-V3Net) and transfer learning. The

method leverages BrakeHis’ publicly available breast cancer

images and considers various image magnification factors and

data augmentation techniques to enhance the classification

process. Three deep neural networks were employed to classify

the breast cancer images using an image-based approach. The

results indicate that the average accuracy for binary and

multiclass classification ranged from 97.81% to 99.70%. The

researchers concluded that ResNet was the most accurate and

efficient classifier among the three models. Baccouche et al. (78)

developed a stacked ensemble of ResNet models (ResNet50V2,

ResNet101V2, and ResNet152V2) to classify breast masses as

malignant or benign and assess their BI-RADS category on a

scale of 2 to 6, considering their shape (oval, round, lobulated, or

irregular). The results of the proposed method demonstrate

improved classification performance compared to individual

models and other methods applied to existing benchmark

datasets. Agarwal et al. (66) propose a patch-based CNN method

for automatic detection of breast lesions in full-field digital

mammograms (FFDM). They employ transfer learning by

training CNNs on a large public database of digitized

mammograms (CBIS-DDSM dataset) and transferring the model

to a smaller digital mammogram database (INbreast dataset) for

evaluation. VGG16, ResNet50, and InceptionV3 are used as depth

feature extractors, and the InceptionV3-based model achieves the

best detection results with a true positivity rate (TPR) of 98%.

LKavitha et al. (31) proposed the Optimal Multi-Level

Thresholding-based Segmentation with DL enabled Capsule

Network (OMLTS-DLCN), a breast cancer diagnostic model

based on digital mammograms. The model incorporates Adaptive

Fourier Filtering (AFF) as a pretreatment step to remove noise from

mammogram images. It employs the Optimal Kapur’s based

Multilevel Thresholding with Shell Game Optimization (OKMT-

SGO) algorithm for segmentation and lesion detection in

mammogram images. Additionally, the model utilizes a Capsule

Network-based feature extraction method and a Back-Propagation

(BP) neural network for breast cancer detection. The diagnostic

performance of the OMLTS-DLCN model was evaluated using the

benchmark Mini-MIAS dataset and DDSM dataset, achieving high

accuracy rates of 98.50% and 97.55%, respectively. Escorcia-

Gutierrez (68) proposes an automated DL-based breast cancer

diagnosis method called ADL-BCD technology, which employs

digital mammograms for the detection of breast cancer. ADL-

BCD technology encompasses GF-based preprocessing, Tsallis

entropy-based segmentation, ResNet34-based feature extraction,

chimp optimization algorithm (COA)-based parameter tuning,

and wavelet neural network-based classification. The use of COA-

based hyperparameter optimization significantly enhances

diagnostic efficiency. The ADL-BCD method was evaluated using
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a benchmark dataset, and the simulation results demonstrate its

superior performance compared to existing methods across various

evaluation measures.
4.4 Conclusion based on deep learning

The rapid development of DL and the significant improvement

in computer performance have made DL a prominent research area

for analyzing and processing medical images to aid in lesion

diagnosis. Traditional computer-aided diagnosis (CAD) systems

lack deep networks and can only extract shallow features, resulting

in poor system performance. DL, on the other hand, can

automatically extract informative features from medical images,

including those that may not be easily visible to the naked eye. This

capability greatly enhances the diagnostic accuracy and efficiency,

particularly in the context of breast lesion diagnosis. Recent studies

have demonstrated that DL applied to breast cancer screening is

approaching the diagnostic proficiency of experienced radiologists

(81).. However, the challenge of relying on ROI annotation in DL

techniques has yet to be effectively addressed. Therefore, further

research should be conducted to explore DL techniques that reduce

the dependency on ROI annotation. However, the challenge of

relying on ROI annotation in DL techniques has yet to be effectively

addressed. Therefore, further research should be conducted to

explore DL techniques that reduce the dependency on ROI

annotation. Some researchers (82, 83) have employed various DL

techniques to detect and classify suspicious areas in mammography

images, resulting in improved model performance to some extent.

Moreover, considering that DL training and validation sets require

extensive data, the creation of a large publicly available dataset

with high accuracy, resolution, and diversity becomes necessary.

This dataset will facilitate the training of CAD models with

superior performance. Consequently, the integration of DL

into mammography CAD systems represents a promising

direction for advancing computer-aided diagnosis technology for

mammography images.
5 Discussion

Mammography is a widely used method for early diagnosis of

breast cancer. It offers high-resolution X-ray images that enable the

visualization of different layers of breast tissue. This technique is

effective in detecting breast hyperplasia, benign and malignant

tumors, as well as disorders in breast tissue structure (84).

Additionally, mammography provides clear images that facilitate

before-and-after comparisons, making it highly significant for early

detection, diagnosis, and treatment. This narrative review provides

an analysis and discussion on the current state of computed breast

diagnosis technology, encompassing both traditional ML methods

and DL. Firstly, the paper introduces the definition and

fundamental theoretical knowledge of ML and DL. It then

explores the research on the application of traditional ML

techniques in mammography, including preprocessing, feature

extraction, lesion segmentation, and benign and malignant
Frontiers in Oncology 12
classification. Subsequently, the paper delves into the application

of DL in mammography, covering lesion detection, segmentation,

and classification, while briefly outlining the advantages and

disadvantages of DL. Despite the deepening of research on

computer diagnosis of breast cancer, there are still many challenges:
(1) The available sample data for glandular structure distortion

and asymmetric dense shadow is limited and lacks

standardization. Currently, most research focuses on

mass and microcalcification detection, neglecting the

investigation of glandular structure distortion and

asymmetric dense effects. Therefore, it is crucial for

researchers to prioritize the development of models for

detecting multiple lesions and creating automated tools

for identifying glandular structure distortion and

asymmetric dense effects.

(2) The variability in shapes and edges of suspicious lesions,

along with the blurred boundary between the lesion and the

surrounding tissues, results in unstable lesion depiction and

increases the risk of misdiagnosis. Although ML-assisted

breast diagnosis has significantly improved accuracy,

establishing a stable lesion identification system and

implementing it on a large scale remain challenging

research areas. Therefore, there is a need for further

improvements in techniques for automated detection and

segmentation of breast lesions in mammograms.

(3) Despite the increasing research on DL, its application still

faces limitations. Firstly, training a new DL system requires

a large amount of raw data. Secondly, the lack of a unified

standard in datasets due to technological, equipment, and

operator limitations hinders the reproducibility of research

findings across different datasets. Moreover, DL technology

is costly to learn, and its internal workings are highly

complex (85). Furthermore, DL models typically provide

output results without easy-to-understand explanations.

(4) There is a lack of data with complete annotations, and the

existing database is small. Both traditional ML and DL

require a significant amount of labeled data for training.

However, obtaining such data is challenging due to the

highly specialized and fragmented nature of medical data.

Consequently, in future research, it is imperative to expand

the dataset and explore the utilization of DL and other

approaches to enhance data availability.

(5) Exploring the integration of artificially defined features

with deep features to enhance the performance of DL

models is a pertinent research question. The conventional

approach of feature extraction faces challenges, such as low

efficiency, and the high data processing cost associated

with DL.
6 Conclusion

Breast cancer poses a significant threat to women’s health and

mortality, emphasizing the importance of early detection and
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treatment. Mammograms serve as a highly effective and reliable tool

for timely identification and diagnosis of breast cancer (86). CAD

systems built on mammography have aided doctors in decision-

making and reduced diagnostic errors to some extent, traditional

ML-based CAD systems encounter challenges in terms of limited

generalization ability, inadequate automation, continued reliance

on manual intervention, and a high demand for operators

possessing specialized domain knowledge and engineering skills.

However, with the advancement of DL research, DL-based CAD

systems emerge as a viable solution to address these issues

effectively, significantly enhancing the efficiency of breast

cancer diagnosis.
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microcalcification clusters. Sādhanā (2018) 43:39. doi: 10.1007/s12046-018-0805-2

60. Fanizzi A, Basile TMA, Losurdo L, Bellotti R, Bottigli U, Dentamaro R, et al. A
machine learning approach on multiscale texture analysis for breast microcalcification
diagnosis. BMC Bioinf (2020) 21:91. doi: 10.1186/s12859-020-3358-4

61. Ghasemzadeh A, Sarbazi Azad S, Esmaeili E. Breast cancer detection based on
Gabor-wavelet transform and machine learning methods. Int J Mach Learn Cyber
(2019) 10:1603–12. doi: 10.1007/s13042-018-0837-2

62. Naseem U, Rashid J, Ali L, Kim J, Ul Haq QE, Awan MJ, et al. An automatic
detection of breast cancer diagnosis and prognosis based on machine learning using
ensemble of classifiers. IEEE Access (2022) 10:78242–52. doi: 10.1109/
access.2022.3174599

63. Dhahbi S, Barhoumi W, Kurek J, Swiderski B, Kruk M, Zagrouba E. False-
positive reduction in computer-aided mass detection using mammographic texture
analysis and classification. Comput Methods Programs BioMed (2018) 160:75–83.
doi: 10.1016/j.cmpb.2018.03.026

64. Zhou K, Li W, Zhao D. Deep learning-based breast region extraction of
mammographic images combining pre-processing methods and semantic
segmentation supported by Deeplab v3. Technol Health Care (2022) 30:173–90.
doi: 10.3233/THC-228017

65. Al-Antari MA, Han SM, Kim TS. Evaluation of deep learning detection and
classification towards computer-aided diagnosis of breast lesions in digital X-ray
mammograms. Comput Methods Programs BioMed (2020) 196:105584. doi: 10.1016/
j.cmpb.2020.105584
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