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Immunotherapy for immune response has ushered in a new era of cancer

treatment. In recent years, new immunotherapeutic agents have been

introduced into clinical trials and even approved for marketing. However, the

widespread use of immunotherapeutic agents faces an unavoidable challenge:

immunotherapy does not work at all for some patients, or has good efficacy in

the initial phase, but immunotherapy resistance develops within a short period of

time, and immunotherapy can also cause serious adverse effects such as

autoimmune inflammation and non-specific inflammation. How to enable

patients to overcome drug resistance, reduce the toxic side effects of drugs,

enhance patient compliance and improve patient survival has become a problem

that clinicians have to face. The advent of nanotechnology provides an

encouraging platform for immunotherapy. It can not only improve the

bioavailability and stability of drugs and reduce toxic side effects, but also

reduce resistance to immunotherapy. Here, we discuss these research

advances and discuss potential challenges and future directions.
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Introduction

In 2013, tumor immunotherapy was named the most important scientific

breakthrough of the year by the journal Science for its outstanding efficacy and

innovation (1). Immunotherapy has now become an important treatment for many

malignant tumors, ushering in a new era of tumor treatment and bringing light to the

fight against tumors. However, as the use of immunotherapy has become more popular, the

problem of drug resistance to immunotherapy has gradually emerged. Due to its special

mechanism of action, the mechanism of resistance to immunotherapy is different from that

of resistance to conventional chemotherapy (2–6), so how to overcome resistance to

immunotherapy is currently an urgent challenge to be solved.

Recent advances in nanomedicine have led to a plethora of new nanomedicines

targeting immunotherapeutic targets (7–11). Furthermore, as research has progressed, it

has been found that nanomedicines not only have the ability to target drug delivery, but
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also have the ability to remodel the immune microenvironment,

thereby enhancing the efficacy of anti-tumor immunotherapy (12).

Therefore, we believe that nanomedicines provide a relevant

reference for basic research and the development of improved

clinical treatment regimens, and are expected to be an important

weapon in overcoming drug resistance in immunotherapy. In this

article, we review the mechanisms of immunotherapy resistance

and summarize the recent research advances in nanomedicine with

respect to the mechanisms of resistance, with the aim of providing

clues for overcoming immunotherapy resistance.
Mechanisms of immune resistance

Tumors are inherently complex and heterogeneous, and

resistance involves not only the tumor but also complex

metabolic, inflammatory and neovascular mechanisms, many of

which are still unknown. At present, the mechanisms of resistance

to immunotherapy can be divided into intrinsic and extrinsic

mechanisms. Intrinsic mechanisms of tumor immune resistance

include alterations in anti-tumor immune response pathways and

alterations in tumor cell signaling leading to a suppressive

immunosuppressive microenvironment. External factors mainly

include those associated with the local tumor microenvironment.

The tumor immune microenvironment is a complex network of

interactions involving tumor and various non-tumor cells,

including fibroblasts, macrophages, B/T lymphocytes and antigen

presenting cells (APCs), which in turn affect the whole body.
Aspects of tumor cell

APCs
The immune response pathway involves the processing of

tumor-associated antigenic peptides by antigen-presenting cells

(APCs), presentation to CD8+ T cells, stimulation of T cell

proliferation and activation, and activation of T cells to kill tumor

cells in the TME (13). Any alteration in the antitumor immune

response pathway has the potential to lead to resistance

to immunotherapy.

High tumor mutational burden (TMB) (non-synonymous

mutations), microsatellite instability (MSI) and defective

mismatch repair (dMMR) are intrinsic tumor features associated

with anti-tumor immune responses and responses to immune

checkpoint inhibitors (ICIs) (14, 15). These responses are closely

associated with increased generation of tumor-associated antigens

(TAA) and tumor-specific antigens (TSA), with neoantigens

conferring greater immunogenicity and increased T-cell

infiltration, as has been demonstrated in a variety of tumors (16–

19). However, tumor cells tend to suppress T-cell activation by

reducing or losing antigen expression (20) and regulate

autoantigenicity by endocytosis of antigens or antigen shedding to

mediate immune escape. In addition, the host can selectively

eliminate TSA-expressing cells and, to some extent, promote the

production of tumor antigen-losing variants (21). Tumor cells, like

viruses, can also undergo ‘antigenic drift’, resulting in epitope
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mutations that alter tumor antigenicity and thus evade T cell-

mediated attack (22). Endoplasmic reticulum (ER) stress and

autophagy determine the immunogenicity of tumor cell death (23,

24). The high presence of LC3b puncta in the cytoplasm of tumor

cells represents an active autophagic mechanism within tumor cells

and is associated with the infiltration of tumor-infiltrating

lymphocytes (TILs) and a favorable clinical outcome, whereas

tumor cells do not respond to ER stress or autophagy induction

may lead to resistance to ICIS (25, 26).

Tumor cell-associated pathways
Deletion of the phosphatase and tensin homologue (PTEN)

gene on chromosome 10 has been shown to be directly involved in

the regulation of antitumor immunity. First, there is a significant

correlation between loss of PTEN and reduced T-cell infiltration,

ultimately leading to resistance to PD-1 monoclonal antibodies (27–

29). In addition, dysfunctional PTEN also promotes the aggregation

of suppressor immune cells, such as myeloid-derived suppressor

cells (MDSCs) and regulatory T cells (Tregs) (30–33). More

importantly, deletion of PTEN expression has been shown to

down-regulate autophagy (34, 35), which can effectively support

tumor progression.

In addition, alterations associated with the IFN-g pathway

can also affect immune resistance. In patients receiving

immunotherapy, tumor cells can downregulate or alter the IFN-g
pathway, such as loss-of-function alleles in the gene encoding JAK1/

2 and alterations in STAT1, to evade the effects of IFN-g and thus

develop resistance (36, 37). Zaretsky et al (38) showed that

melanoma patients resistant to PD-1 treatment acquired loss-of-

function mutations in JAK1/2. Although tumor cells were still

recognized by T cells, their JAK1/2 mutation rendered them

insensitive to the anti-proliferative effects of IFN-g and they

lacked IFN-g-induced PD-L1 and MHC class I surface expression.

Similarly, analysis of tumors from ipilimumab-refractory patients

showed that mutations in the IFN-g pathway genes IFNGR1/2,

JAK1/2 and IRF1 inhibit the response of tumor cells to IFN-g
signaling (39). This facilitates tumor escape from T-cell immunity,

thereby conferring resistance to anti-CTLA4 therapy.
Microenvironment

Immune checkpoint
Checkpoint blockade with specific mAbs helps to inhibit

pathways that maintain the duration and strength of the immune

system. Inhibition of these checkpoint molecules works by

reinvigorating the adaptive immune system and selectively

eliminating primary and metastatic tumors. Currently, cytotoxic

T lymphocyte-associated antigen-4(CTLA4), programmed death

receptor-1(PD-1) and its ligand(PD-L1) are the main targets of

immunotherapy and are the most widely used in clinical practice

(40). In one study, RNA sequencing analysis of patients with

NSCLC resistant to PD-L1 inhibitors demonstrated the presence

of PD-L1 variant fragments in patients and confirmed their

inhibitory effect on T-cell activity (37). TIM-3 (T cell

immunoglobulin domain and mucin domain-3) is a negatively
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regulated immune checkpoint expressed on the surface of T cells,

Treg cells and other innate immune cells and is capable of causing T

cell depletion in cancer and chronic viral infections. It has been

shown that T cells co-expressing TIM-3/PD-1 are more likely to fail,

and that patients who fail to respond to anti-PD-1 therapy are often

highly correlated with TIM-3 expression, while patients who are

resistant to PD-1 therapy are also due to selective overexpression of

TIM-3, resulting in tumor immune escape (41). Drugs and drug

combinations targeting TIM-3 are therefore being developed to

overcome immunotherapy resistance.

TAMs
Tumor-associated macrophages (TAMs) have also been

implicated in patient response to immunotherapy (42, 43).TAMs

are classified into M1 and M2 macrophages based on their different

activation pathways and expression of surface molecules: M1 type

macrophages promote anti-tumor immunity and M2 type

macrophages promote tumor progression by supporting

angiogenesis, tumor cell metastasis and suppression of effector

CD8+ T cells and NK cells due to reduced efficiency of antigen

presentation (44–46). Recruitment of TAMs to tumor sites is

mediated by tumor-derived proteins (e.g. CSF-1, VEGF and

chemokines). The recruitment of TAMs to tumor sites is

mediated by tumor-derived effector proteins such as CSF-1,

VEGF and chemokines (47). tumors (48–51). A higher density of

TAMs is associated with a poor clinical prognosis in cancer patients

(52, 53). Fritz et al (54) found that depletion of TAMs can reduce

tumor growth in a mouse model of lung adenocarcinoma through

downregulation of M2 macrophages. It has been suggested that

inactivation of CCL2 and/or CCR2 signaling is responsible for this

phenomenon. Similar findings have been reported in other cancer

types (e.g. T-cell lymphoma (55), colorectal cancer (56), lung cancer

and breast cancer (56–58), where suppression or elimination of

these macrophages in the TME may improve patient prognosis.

MDSCs
MDSCs contain a panel of neutrophils and monocytes with

potent immunosuppressive properties that mediate immune

responses induced by T cells, B cells and NK cells (59). Higher

levels of neutrophils within the tumor are negatively associated with

clinical outcome in cancer patients (60). Indeed, using

multidimensional imaging, Si et al (61) provided direct evidence

that MDSCs inhibit the expression of Teff-secreted granzyme B and

Ki67 (markers of Teff cytotoxicity and proliferation, respectively).

The presence of MDSCs in TME is strongly correlated with the

efficacy of immunotherapy, as blockade of these cells leads to

improved preclinical (62) and clinical outcomes (63). Due to the

important role of MDSCs in promoting angiogenesis, tumor

invasion and metastasis, these cells have become therapeutic

targets for cancer (59, 64–68).

CAFs
Cancer-associated fibroblasts (CAFs) are diverse stromal cell

populations with multiple functions, including stromal deposition

and remodeling, crosstalk with infiltrating leukocytes, and
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interaction with cancer cells (69). The presence and role of

activated CAFs in the microenvironment has been associated with

poor prognosis in several cancers (70). CAFs suppress the immune

system by promoting physical and chemical barriers. CAFs induce a

TH2 phenotype in neighboring cells, and cytokines produced by

TH2 cells induce myeloid differentiation into MDSCs (71). CAFs

also induce monocytes to differentiate into M2-type TAMs (72, 73),

produce fibronectin and secrete TGF-b and IDO (74), further

indicating the expansion of Treg cells. In addition, CAFs inhibit

the activity of CD8+ T cells by expressing PD-L1 (75, 76).

NK cells
NK cells can facilitate the recruitment of DC to solid tumors by

releasing CC-chemokine ligand 5 (CCL5), XC-chemokine ligand 1

(XCL1) and XCL2. In addition, NK cells enter lymph nodes and

influence the T cell response; and through the regulation of antigen-

presenting cells, thereby regulating T cells. Activated NK cells can

kill immature DCs while retaining mature DCs, thus ensuring

successful T cell priming. Thus, the manipulation of NK cells in

cancer aims to initiate a multilayered immune response, ultimately

leading to protective and long-lasting immunity against the

tumor (77).

In recent years, NK cell-associated immunotherapy has

emerged as an alternative to ICB-based or vaccine-based

immunotherapy (78–81). However, its therapeutic effects are

largely limited by the downregulation of recognition ligands, and

its immune effects can be further blocked by the secretion of tumor

microenvironment such as transforming growth factor-b (TGF-b)
(82–84). Researchers have demonstrated the benefits of combining

immunotherapy with chemotherapy in cancer treatment (85–87).

Therefore, there is great interest in developing combined strategies

to enhance NK cell immunity.

Immune-related cytokines
Interferon gamma is a cytokine produced and secreted by

effector T cells (TEFFs) and APCs. It acts through the JAK-STAT

pathway (36) and has a dual role in anti-tumor immunity.

Interferon g can induce the production of the chemokines CXCL9

and CXCL10 and promote the recruitment of CXCR3+ lymphocytes

and other immune cells around tumor cells, thereby exerting an

anti-tumor immune effect (88); it can also exert direct anti-tumor

cell proliferation and pro-apoptotic effects by binding to cell surface

receptors and triggering a series of events that inhibit tumor cell

growth and promote tumor cell death (89); In addition, IFN-g can
play a role in immune escape by increasing the expression of PD-L1

on the surface of tumor cells (89), and therefore altered IFN-g
secretion is thought to be closely associated with immune

drug resistance.

Tregs
Tregs are an important subset of T cells that help prevent

excessive immune responses and autoimmunity, and can infiltrate

human tumors and promote tumor growth (90). These FoxP3-

expressing cells inhibit the Teff response either directly through

physical contact or indirectly by suppressing the secretion of
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inhibitory cytokines including IL-10, IL-35 and TGF-b (91–94).

After anti-CTLA-4 mAb treatment, the ratio of Teffs to Tregs was

positively correlated with treatment response depending on the

presence of macrophages expressing the Fcg receptor (95), and the

use of anti-CTLA4 antibodies with an enhanced Fcg R binding

profile is recommended to achieve robust anti-tumour responses

and improved survival (96). In a clinical trial using ipilimumab to

treat patients with advanced melanoma, increased TIL was found to

be associated with better outcomes (97). A clinical follow-up study

showed that although anti-CTLA-4 immunotherapy promoted

intra-tumoral Teff infiltration, it did not lead to FoxP3 T-cell

depletion in human cancers (98). These seminal studies on the

balance between Teffs and Tregs suggest that increased numbers of

tumour-infiltrating Teffs, rather than depletion of Tregs, can be

used to predict sensitivity to anti-CTLA-4 immunotherapy. If the

ratio of these two T cell subpopulations responding to

immunotherapy in TME is unfavorable to Teffs, resistance may

emerge throughout the course of treatment.
Treatment

Tumor cell aspects

Targeting APCs
Over the past few decades, tremendous progress has been made

in the clinical application of peripatetic immunotherapy in the fight

against tumors. However, given the cost and complexity of

generating tumor-specific T cells, there are many limitations to

the practical clinical application of secondary immunotherapy.

Nanomedicine can provide additional technical support to

overcome these limitations (Figure 1). Using artificial antigen-

presenting cells (aAPCs), scientists have loaded specific MHC

peptides and co-stimulatory molecules onto nanoparticles to

activate and promote the expansion of antigen-specific CD8+ T
Frontiers in Oncology 04
cells (99). In some aAPCs, cytokines can also be used to promote

activation and expansion of T cells in lymph nodes (100, 101). Iron-

dextran nanoparticles and anti-biotin protein-coated quantum dot

crystals have been synthesized using surface-coated MHC-I peptide

complexes and biotin-CD28. These nanoparticles(NPs) are

magnetic and can promote T-cell enrichment and activation

using magnetic fields to promote TCR aggregation (102). IL-2 can

activate T cells and with this in mind, Steenblock et al (100)

constructed carbon nanotube polymers as aAPCs in which IL-2

was encapsulated and modified with MHC-I and aCD28. These
aAPCs can induce activation and expansion of CD8+T cells with

very low concentrations of IL-2 compared to conventional methods.

In addition, Kelly et al (103) synthesized PLGA/PBAE aAPCs from

poly(lactic acid-glycolic acid) (PLGA) and cationic polybasic amino

esters (PBAE), nanoparticles that can expand antigen-specific

cytotoxic CD8+ T cells in vivo.

As current T cell expansion rates are not ideal, research should

also focus on biomaterials to improve in vitro T cell expansion (101,

102, 104). Cheung et al (105) designed an APC mimetic scaffold

(APC-ms) that mimics natural APCs and compared this APC-ms to

commercial expansion beads. This APC-ms promoted polyclonal

expansion of mouse and human T cell generations by 2-10 times

compared to commercial expansion beads (Dynabeads). The APC-

ms consist of a liquid lipid bilayer supported by mesoporous silica

microrods. After a single stimulation, the APC-ms resulted in

antigen-specific expansion of a subpopulation of cytotoxic T cells

in much larger numbers than autologous monocyte-derived

dendritic cells. aAPCs may become the next focus of research in

cancer nanomedicine, so more attention needs to be invested in

optimizing the physicochemical properties of aAPCs, for example.

Targeting tumor cell-associated
signaling pathway

Given the important role of PTEN in immunotherapy

resistance, the design of PTEN-targeted nanomaterials has been
FIGURE 1

Targeted APCs to improve cancer immunotherapy.
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the focus of many scientists. Kinoh et al (106) used pH-sensitive

epirubicin-loaded micellar nanodrugs to synergize the efficacy of

anti-PD-1 antibody (aPD-1) against PTEN-positive and PTEN-

negative glioblastoma in situ (GBM). The combination of

epirubicin-loaded micelles (Epi/m) with aPD-1 overcame the

resistance of GBM to ICIs and reduced PD-L1 expression on

tumor cells by inducing immunogenic cell death (ICD),

eliminating MDSC and transforming the otherwise immune

insensitive GBM into a hot tumor with high infiltration of anti-

tumor immune cells. Catania et al (107) designed a combined local

treatment based on Adriamycin (DOX) as an inducer of ICD and

CpG (toll-like receptor-9 agonist, TLR-9 agonist) to synergistically

eliminate GBM and found that a single intratumoral administration

of HA-DOX + HA-CpG was effective in prolonging the survival of

GBM animals. Teo et al (108) combined siRNA with folic acid-

modified PEI, resulting in significant PD-1 silencing and enhanced

T-cell activation. Yang et al (109) combined anti-PD-L1(aPD-L1)

with multiple polyethylene glycol (PEG) chains to improve the

efficacy and safety of checkpoint blockade treatment in GBM. In

mice with GBM in situ, single doses of glycosylated and

polyethylene glycol-linked antibodies reactivated anti-tumor

immune responses and induced immune memory to protect the

animals from recurrent tumor cell attack and to suppress

autoimmune responses in healthy tissues of the animals.

In addition to GBM, PTEN-targeted nanomaterials have been

investigated for other tumor applications. Lin et al (110) delivered

mRNA via polymeric nanoparticles to effectively induce PTEN

expression in melanoma and prostate cancer cells, which in turn

induced autophagy and triggered cell death-related immune

activation by releasing damage-related molecular patterns. In vivo
Frontiers in Oncology 05
experiments showed that PTEN mRNA nanoparticles reversed the

immunosuppressive TME by promoting CD8+ T cell infiltration

into tumor tissue, increasing pro-inflammatory cytokine expression

and reducing Treg cells and MDSCs. The combination of PTEN

mRNA nanoparticles with immune checkpoint inhibitors, aPD-1

antibodies, in a subcutaneous model of PTEN-mutant melanoma

and PTEN-negative prostate cancer in situmodels, produced potent

anti-tumor effects (Figure 2).
Microenvironment

Targeting immune checkpoint
When anti-CTLA4 antibodies are loaded into functionalized

mesoporous silica (FMS) and administered intratumorally, they

prolong local release under physiological conditions compared to

free antibodies. FMS can be non-covalently linked to antibodies to

promote sustained prolonged release (111, 112). Blockade of PD-1

with siRNA loaded into cationic lipids and polymeric NPs has been

investigated (112). Wang et al (113) combined the synergistic

delivery of anti-PD-1 antibodies and CpG oligodeoxynucleotides

to prevent cancer recurrence. ye et al (114) demonstrated dual

targeting of IDO and PD-1 by a microneedle-based transdermal

delivery approach. Xiao et al (115) designed aPD-L1 functionalized

mimetic polydopamine-modified gold nanostellar nanoparticles

(PDA/GNS@aPD-L1 NPs) which, in addition to disrupting PD-1/

PD-L1 immunosuppressive signaling, aPD-L1 scFv on the

membranes of PDA/GNS@aPD-L1 NPs contributed to the

accumulation of PDA-GNS at tumor sites. Importantly, PDA-

GNS-induced photothermal ablation of tumors reverses the
FIGURE 2

Targeted tumor cell-Associated signaling pathway to improve cancer immunotherapy.
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immunosuppressive tumor microenvironment, further enhancing

the efficacy of PD-1/PD-L1 blockade therapy.

Combination immunotherapy with PD-L1 antibodies and

CXCL12 inhibitors has better anti-tumor efficacy than single

immunotherapy (116, 117). However, combination therapy has

some drawbacks, including unpredictable PK/PD and overlapping

toxicity. Therefore, targeting PD-L1 while reducing the duration of

drug administration in vivo may help to reduce the cytotoxicity

caused by free aPD-L1. Based on this concept, Miao et al (118)

designed a chimeric PD-L1 trap protein. When a plasmid encoding

the PD-L1 trap protein was encapsulated in lipid-fisetin DNA NPs

and delivered to CT26 colon tumors and KPC pancreatic tumors,

the highest expression was observed from day 2 to day 4 and finally

declined by day 6. This transient expression and high affinity for

PD-L1 molecules could serve as a promising therapeutic approach

with reduced side effects.

Targeting TAMs
NP can also regulate TAMs by inhibiting macrophage

recruitment, by inhibiting TAMs survival through the use of

chemicals, by enhancing the activity of M1-type TAMs and by

blocking the activity of M2-type TAMs (Figure 3) (119). Qian et al

(120) used a novel bi-peptide in which scavenger receptor B type 1

(SRB1) was linked to a specific TAMs binding peptide which

specifically blocked the M2-TAMs survival signals. Alternatively,

we could try to reprogramme M2-type TAMs back to M1-type

(121–123). When IL-12 in poly(b-amino ester) NPs was

administered intravenously in a B16F10 melanoma model, M2-

type macrophages were reduced and M1-type macrophages were

increased (121). Specific miRNA-125b increased expression of

MHCII, CD40, CD80, CD86 and increased responsiveness to

IFN-g in macrophages (124). Parayath et al (125) intraperitoneal

injection of miRNA 125-b complexed with hyaluronic acid-fixed

poly(ethyleneimine) NPs into the TME of G12/P53 mice resulted in

increased M1-type macrophages and decreased M2-type
Frontiers in Oncology 06
macrophages. Zanganeh et al (126) repolarized M2-type TAMs

back to M1-type via hydroxyl radicals for breast cancer treatment.

Macrophages produce H2O2, which can be converted to cytotoxic

hydroxyl radicals via iron oxide NPs. When co-cultures of

macrophages and MMTV-PyMT cancer cells were treated with

iron oxide NPs, there was an increase in the number of M1-type

cells and a decrease in the number of M2-type cells. The effect of

M1-type TAMs in the TME could be maximized by the use of

immune checkpoint blockers or combination therapy with NPs

carrying these modulators. Parayath et al (127) found that

hyaluronic acid-based nanoparticles encapsulated with miR-125b

(HA-PEI-miR-125b) could specifically target homozygous ID8-

VEGF ovarian cancer mouse The imbalance in the ratio of M1 to

M2 TAMs populations and the uncontrolled increase of M1 TAMs

stimulate the inflammatory response. In contrast, TAMs can

sometimes express both M1- and M2-type markers (128), which

limits the application of specific targeting of M2-type TAMs.

Targeting MDSCs
Strategies to regulate MDSCs primarily require specific

blockade of MDSCs development, differentiation of MDSCs into

mature cells, and depletion and inhibition of MDSC function by

small molecule drugs (129–133). Gold NPs based on high-density

lipoprotein (HDL) loaded with apoA-1 have been used to inhibit

MDSCs, and in a study in B16F10 melanoma mice, MDSCs were

depleted by lipid-encapsulated calcium phosphate NPs loaded with

gemcitabine (134, 135). Plebanek et al (136) synthesized a HDL

receptor with high affinity for HDL that inhibited MDSCs activity

by specifically binding SCARB1. In another study, Kong et al (137)

used mesoporous silica NPs loaded with all-trans retinoic acid and

Dox, coated with IL-2 and subsequently modified with

dipalmitoylphosphatidylcholine cholesterol and DSPE-PEG 2000.

Intravenous administration of these NPs reduced the MDSCs

population by 2.7-fold and increased the population of NK cells,

mature DCs and cytotoxic T cells in the TME. Similarly, IL-2
FIGURE 3

Targeted TAMs to improve cancer immunotherapy.
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encapsulated NPs were designed to remodel the TME cell

population, but were associated with poor secondary cytokine

responses (138).

Targeting CAFs
Blocking the pathway activated by CAFs can reverse

mesenchymal-mediated multidrug resistance. In one study, targeting

CAFs with anti-FAP SCFV-modified ferritin nanomaterials

containing the photosensitizer zinc hexadecafluorophthalocyanine

led to CAF ablation and increased the number of CD8+ T cells in

the TME when irradiated with 671nm light (139). Intraperitoneal

injection of homogeneous gold nanoparticles in the ASPC1 human

pancreatic cancer cell and CAF19 pancreatic stellate tumor mouse

models led to a reduction in fibronectin, collagen and a-SMA (140).

These NPs specifically target a-SMA-positive CAFs through the

interaction of serum albumin encapsulated on NPs during

circulation with cysteine-rich acidic protein (SPARC) secreted on

the surface of CAFs (141).
Targeting NK cells
NK cells play a pivotal role in tumor immunotherapy, and more

and more scholars have started to design nanomedicines for NK

cell-related immune resistance. Liu et al (142) designed a

nanoemulsion system (SSB-NMs) to load TGF-b inhibitors and

selenocysteine (Se-C), and the experimental results showed that the

nanoparticles significantly enhanced the efficacy of NK cell-

mediated immunotherapy against triple-negative breast cancer.

Lai et al. (143) used a selenium-containing ruthenium complex

(Ru-Se) to synergistically enhance NK cell-mediated killing of

prostate cancer cells. The complex was found to effectively

enhance NK cell lysis of PC3 cells and was demonstrated in 10

clinical patients. NK cells are superior to T cells in their ability to

fight tumors in the absence of specific antigens, making them a

potential target for tumor immunotherapy.
Targeting immune-related cytokines
Zaretsky et al (38) melanoma patients resistant to PD-1

treatment acquired loss-of-function mutations in JAK1/2.

Although tumor cells were still recognized by T cells, their JAK1/2

mutation rendered them insensitive to the anti-proliferative effects of

IFN-g and they lacked IFN-g induced PD-L1 andMHC class I surface

expression. Similarly, analysis of tumors from patients resistant to

treatment with the anti-CTLA4 drug Ipilimumab showed that

mutations in the IFN-g pathway genes IFNGR1/2, JAK1/2 and

IRF1 inhibit the response of tumor cells to IFN-g signaling (39).

This facilitates tumor escape from T-cell immunity, thereby

conferring resistance to anti-CTLA4 therapy.

After treatment with Frax NEs, the T cofactor 1 (Th1) cytokine

of IFN-g was effective in inducing anti-tumor immunity (144).

Transforming growth factor-b (TGF-b), chemokine (C-C motif)

ligand 2 (CCL2) and interleukin 6 (IL6), which inhibit the

development of anti-tumor immunity, were reduced. Although

Frax NEs have shown an inhibitory effect on tumor growth, this

monotherapy is only partially effective against tumors and does not
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maintain the tumor growth effect long after administration

has stopped.

Targeting Tregs
Lin et al. (110) constructed PTEN mRNA nanoparticles (mPTEN

@ NPs) delivered to tumour cells with PTEN deletion or mutation to

restore the TME, stimulate immune response and enhance the efficacy

of immune checkpoint blockade (ICB) therapy by inducing autophagy

activation and damage-associated molecular patterns (DAMPs)

release. In their study, mPTEN @ NPs restored tumour sensitivity to

immunotherapy and triggered the release of DAMPs and autophagy,

thereby promoting the formation of autophagosomes. In vivo studies

showed that PTEN repair induced a strong CD8+ T cell response and

restored TME by inhibiting the production of Tregs and monocyte

MDSCs and promoting the production of pro-inflammatory

cytokines. In addition, they evaluated the anti-tumour effects of

mPTEN @ NPs in combination with anti-PD-1 immunotherapy in a

PTEN-deficient or mutated tumour model, showing that this

combination therapy strategy has significant therapeutic efficacy and

immunological memory. These results suggest that nanomedicine

mRNA repair of tumour suppressors can enhance the sensitivity of

tumors to ICB therapy and provide an effective cooperative treatment

strategy for a variety of malignancies.
Conclusion and perspective

Despite the remarkable achievements of immunotherapy in

cancer treatment, all current treatment strategies have serious

limitations and often encounter difficulties in clinical treatment.

There are many reasons for treatment failure, including poor oral

bioavailability of some drugs and serious drug-related side effects.

The most challenging problem is that patients receiving

immunotherapy almost always develop drug resistance. While

much progress has been made in recent years in understanding

the mechanisms of resistance to cancer immunotherapy,

overcoming drug resistance remains an important unmet clinical

need. Thus, immune resistance in tumors has become a major

obstacle to cancer immunotherapy, and overcoming resistance is a

goal actively pursued by current and future oncologists (145).

The emergence of nanotechnology offers a novel solution to

immunotherapy resistance. Nanomedicines can improve the

bioavailability of insoluble drugs, prolong drug circulation, cross

the biological barrier, achieve tumor-targeted therapy through

passive or active targeting, improve anti-tumor effects and reduce

tumor resistance to immunotherapy. A number of nanomaterials

have now completed Phase III clinical trials (Table 1).The

convergence of these two disciplines will certainly provide a

tremendous impetus to improve cancer treatment. The advantages

of nanomedicines over current therapeutic strategies will continue to

be exploited as more nanomedicines are developed and optimized. It

is therefore believed that nanomedicines will be an attractive strategy

for reversing or overcoming resistance to cancer immunotherapy.

Drug resistance in tumor immunotherapy involves multiple

mechanisms working together, so here we have only reviewed the
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more mature aspects of nanomaterial development, as for other

aspects of drug resistance mechanisms such as hypoxic

environment (146, 147), lactate metabolism (148), glycolytic

metabolism (149), tryptophan metabolism (150), cholesterol

metabolism (151–154), which also play an important role in drug

resistance. These mechanisms of drug resistance may also provide

additional clues for the application of nanomedicine.

Currently, a lot of researchers are concentrating on creating

organically produced NPs, which are safer as well as more

biocompatible and able to activate the body’s own immune cells

and use that immune response to help eradicate cancers (155). But

in this case, there is a more subtle biological element and a well-

defined treatment process. In conclusion, it is encouraging to see

how NPs might increase the body’s immunological resilience. It is

thought that through in-depth research in this area and the design

of more effective nanomaterials, it is possible to overcome immune

resistance, reduce toxic side effects on patients, and achieve better

therapeutic effects for the benefit of cancer patients, despite some

limitations in its clinical application.
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