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Shengming Deng1*
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3Department of Nuclear Medicine, The Affiliated Suqian First People’s Hospital of Nanjing Medical
University, Suqian, China, 4Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University,
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Purpose: The aim of this study was to investigate the predictive role of fluorine-

18 fluorodeoxyglucose positron emission tomography/computed tomography

(18F-FDG PET/CT) in the prognostic risk stratification of patients with invasive

breast cancer (IBC). To achieve this, we developed a clinicopathologic-radiomic-

based model (C-R model) and established a nomogram that could be utilized in

clinical practice.

Methods: We retrospectively enrolled a total of 91 patients who underwent

preoperative 18F-FDG PET/CT and randomly divided them into training (n=63)

and testing cohorts (n=28). Radiomic signatures (RSs) were identified using the

least absolute shrinkage and selection operator (LASSO) regression algorithm and

used to compute the radiomic score (Rad-score). Patients were assigned to high-

and low-risk groups based on the optimal cut-off value of the receiver operating

characteristic (ROC) curve analysis for both Rad-score and clinicopathological risk

factors. Univariate and multivariate Cox regression analyses were performed to

determine the association between these variables and progression-free survival

(PFS) or overall survival (OS). We then plotted a nomogram integrating all these

factors to validate the predictive performance of survival status.

Results: The Rad-score, age, clinical M stage, and minimum standardized uptake

value (SUVmin) were identified as independent prognostic factors for predicting

PFS, while only Rad-score, age, and clinical M stage were found to be prognostic

factors for OS in the training cohort. In the testing cohort, the C-Rmodel showed

superior performance compared to single clinical or radiomic models. The
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concordance index (C-index) values for the C-R model, clinical model, and

radiomic model were 0.816, 0.772, and 0.647 for predicting PFS, and 0.882,

0.824, and 0.754 for OS, respectively. Furthermore, decision curve analysis (DCA)

and calibration curves demonstrated that the C-R model had a good ability for

both clinical net benefit and application.

Conclusion: The combination of clinicopathological risks and baseline PET/CT-

derived Rad-score could be used to evaluate the prognosis in patientswith IBC. The

predictive nomogram based on the C-R model further enhanced individualized

estimation and allowed for more accurate prediction of patient outcomes.
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Introduction

Breast cancer (BC) is now the leading cause of malignancy

incidence and tumor-related deaths among females worldwide,

surpassing lung cancer (1). The comprehensive therapy of BC,

including surgery, chemotherapy, radiotherapy, and targeted

treatments, has been effective in reducing locoregional or distant

recurrences and prolonging survival (2–4). However, the intrinsic

intratumoral heterogeneity of BC has resulted in distinct patterns of

tumor progression, metastasis formation, and therapy resistance

(5). Despite active therapies, some patients still develop various

forms of resistance, which has not altered mortality outcomes (6, 7).

Clinicians have made initial prognostic predictions and

individualized therapies based on the tumor-node-metastasis

(TNM) staging system and molecular classification (8, 9).

However, it remains difficult to precisely predict the prognosis of

patients with advanced and inoperable BC. This can result in

overtreatment or undertreatment due to the high heterogeneity of

BC and the complexity of treatment strategies (10).

To improve risk stratification and monitor therapeutic efficacy

in BC patients, it is crucial to develop robust image-driven

biomarkers. Recently, fluorine-18 fluorodeoxyglucose positron

emission tomography/computed tomography (18F-FDG PET/CT)

has become a common diagnostic tool for BC patients, as it

combines functional metabolic quantification with morphological

imaging. This technique is useful for initial staging, prognostic

assessments, and response monitoring (11, 12). Certain studies have

indicated that preoperative metabolic parameters, such as

standardized uptake values (SUVs), metabolic tumor volume

(MTV), and total lesion glycolysis (TLG), serve as reliable

biomarkers associated with the prognosis of BC (13, 14).

However, these traditional metabolic factors may not fully

capture the spatial distribution between pairs of voxels (15, 16).

Radiomics, which extracts advanced texture features from

medical images to non-invasively characterize tumor heterogeneity

and predict prognostic response, has emerged as a promising research

topic in BC (17–19). However, few studies have investigated the
02
predictive value of baseline PET/CT radiomics in BC prognosis (20,

21). Moreover, combining clinicopathological characteristics with

radiomic biomarkers to create predictive signatures and

constructing a nomogram is a prevalent and effective approach for

achieving prognosis prediction and individualized management (22,

23). In the present study, we aimed to develop a predictive nomogram

using the C-R model that combined clinicopathological and radiomic

signatures (RSs) based on pretreatment PET/CT to estimate the

survival prognosis of BC patients.
Materials and methods

Patients and follow-up

This retrospective study was approved by the medical ethics

committee of the First Affiliated Hospital of Soochow University

and waived additional informed consent (Trial registration number:

ChiCTR2300070309). The study was conducted in compliance with

the Declaration of Helsinki, and no personal information was

disclosed. The total cohort of consecutive patients who were

initially diagnosed with BC using 18F-FDG PET/CT and

confirmed by pathology in our institution between September

2016 and April 2022 were further checked by the following

criteria. Inclusion criteria were as follows: a) patients who did not

receive any therapy prior to the standard examination of 18F-FDG

PET/CT; b) patients ultimately diagnosed with invasive carcinoma

of BC, including invasive ductal, lobular, or papillary carcinomas,

and confirmed by puncture biopsy or surgical specimen; c) patients

with available clinical records and pathological data; and d) patients

with immunochemistry (IHC) examination, including estrogen

receptor (ER), progesterone receptor (PR), human epidermal

growth factor receptor 2 (HER2), and Ki-67. Exclusion criteria

were as follows: a) patients with the suboptimal quality of 18F-FDG

PET/CT images due to motion artifacts or abnormal biodistribution

of tracer; b) primary lesions with a too small size to be outlined the

volume of interest (VOI) for measurement (short-axis diameter <1
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cm); c) patients with other types of tumors; d) patients confirmed to

have other specific histological types of BC (sarcomas, lymphomas

and so on); and e) newly diagnosed patients with a follow-up time

of less than 8 months. The enrolled patients were randomly divided

into training and validation cohorts at a 7:3 ratio using computer-

generated random numbers.

All patients were followed up from the confirmed time of

primary diagnosis until the cut-off date of December 30, 2022,

using outpatient review data and telephone follow-ups.

Progression-free survival (PFS) was defined as the interval

between the date of first diagnosis and the first relapse, tumor

progression, death, or the last follow-up. Overall survival (OS) was

defined as the interval between the date of first diagnosis and death

from any cause or the last follow-up. The study endpoints were PFS

and OS.
Image acquisition and reconstruction

According to guidelines from the European Association of

Nuclear Medicine (EANM), patients must fast for at least 4 h and

ensure that their plasma glucose level is lower than 11.0 mmol/L

(about 200 mg/dL) prior to undergoing the 18F-FDG PET/CT

procedure in clinical studies (24). Approximately 40-60 min after

intravenous injection of 18F-FDG (4.07-5.55 MBq/kg), patients were

scanned using an integrated PET/CT scanner (Discovery STE,

General Electric Medical Systems, Milwaukee, WI, USA) to

acquire images from the base of the skull to the midthigh. Low-

dose (140 kV, 120 mA) CT images were used for subsequent

attenuation correction and anatomic localization of PET images,

with acquisition parameters including a transaxial field of view of 70

cm, pitch of 1.75, rotation time of 0.8 s, and slice thickness of 3.75

mm. PET image acquisition was performed at 2-3 min per bed

position, with a total of 8-10 bed positions. During image

reconstruction, the ordered subset expectation maximization

algorithm was used (two iterations and eight subsets) to ensure

that reconstructed voxel sizes were within 3.0-4.0 mm in

any direction.
Clinicopathological evaluation

The study collected several clinical factors, including age,

menopausal status, tumor location, initial TNM stage, treatment

strategies, and diagnosis time. Specimens obtained from core needle

biopsy and excisional biopsy were fixed in formalin solution,

embedded in paraffin, and stained with hematoxylin and eosin

(H&E staining). Stained sections were evaluated by independently

two experienced pathologists to confirm the histopathological type.

The expressions of ER, PR, HER2, and Ki-67 were detected using

IHC. ER and PR were considered positive if there was a proportion

of at least 1% of nuclear staining. HER2 status was confirmed using

a combination of IHC scores and fluorescence in situ hybridization

(FISH), where a positive result was defined as IHC 2+ and FISH
Frontiers in Oncology 03
gene amplification or IHC 3+ (25). Ki-67 cell nuclear staining of ≥

30% was considered a high expression.
VOI segmentation and radiomic
feature extraction

The Local Image Features Extraction (LifeX) package (version

7.0.0, available at https://www.lifexsoft.org/) was used to

automatically match and fuse PET and CT images in DICOM

format for quantitative PET/CT analysis (26). Two experienced

nuclear medicine physicians, who were blinded to the

clinicopathological results, manually segmented the transaxial

VOI layer by layer. The VOI was defined by integrating abnormal

uptake of 18F-FDG on PET and abnormal density on CT, which was

optimized by setting a threshold of 40% of the SUVmax to ensure

reproducibility (16). Once matched, the RSs (four or six

conventional features, nine first-order features, and 32 high-order

features) of the CT or PET images could be automatically extracted

from the same VOI. To avoid overfitting, significant RSs of the

training cohort were selected using correlation analysis, least

absolute shrinkage and selection operator (LASSO) regression

algorithm, and univariable Cox analysis before model

construction (17, 27). Finally, 10-fold cross-validation was used to

ensure the robustness of the optimal features.
Model construction and validation

The Rad-score was calculated using a linear fitting formula,

which involved multiplying the remaining features with their

respective weighted coefficients to create a radiomic model. Based

on the optimal threshold value of the Rad-score, as determined

through receiver operating characteristic (ROC) curve analysis, the

cohorts were divided into high-risk and low-risk groups. In addition

to clinicopathological factors, the Rad-score was further evaluated

using Kaplan-Meier (KM) analysis and log-rank tests. All

significant factors were entered into a multivariable Cox

proportional hazards regression to identify the final subset of

prognostic factors. Finally, the radiomic and clinical nomograms

were evaluated in the training cohort and then validated in the

testing cohort. To evaluate the discriminative ability, calibration,

and clinical usefulness of the models, we employed the Harrell

concordance index, calibration curves, and decision curve analysis

(DCA), respectively (28).
Statistical analysis

Statistical data were calculated and analyzed using IBM SPSS

Statistics (version 26.0, IBM Corp), Python (version 3.0, https://

www.python.org), MedCalc software (MedCalc Software, Ostend,

Belgium), and R (version 4.2.1, http://www.R-project.org). The

normality and homogeneity of variance for continuous data were
frontiersin.org

https://www.lifexsoft.org/
https://www.python.org
https://www.python.org
http://www.R-project.org
https://doi.org/10.3389/fonc.2023.1210125
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jia et al. 10.3389/fonc.2023.1210125
evaluated using the Kolmogorov-Smirnov test and Levene’s test,

respectively. The independent t-test and Mann-Whitney U test

were then used to evaluate any differences in baseline characteristics

between the training and testing sets. Meanwhile, the Chi-square

test and Fisher’s exact test were applied to analyze categorical

variables. For the final survival analysis, quantitative variables

were transformed into dichotomous variables to conduct further

univariate and multivariate Cox analyses, as well as to estimate

hazard ratios (HRs). A two-sided p-value of less than 0.05 was

considered statistically significant. Figure 1 provides an overview of

the study’s workflow.
Results

Patient population

In this retrospective study, 91 patients with BC pretreatment

who met the inclusion criteria were selected (in Figure 2). Table 1

summarizes the clinical characteristics of the training and

validation cohorts, and there were no statistically significant

biases in patient distribution between the two cohorts (all p >

0.05). During the follow-up period from the time of primary

diagnosis (median: 20 months, range: 4 - 95 months), 42 out of

91 patients (46.2%) developed PFS endpoints, and 27 out of 91

patients (29.7%) died. Patients without any PFS events who

survived at least 8 months after cancer diagnosis were considered
Frontiers in Oncology 04
as the control group (n = 49). The event rates of PFS (46.0% and

46.4%, respectively) and OS (30.2% and 28.6%, respectively) were

not significantly different between the two cohorts, indicating a

balanced distribution.
RS selection and Rad-score construction

The intra-class correlation coefficient (ICC) of the extracted

radiomic features was above 0.75 between the two experienced

nuclear medicine physicians, and they reached a final agreement in

consensus. Pearson correlation analysis between the RSs was

visualized in Figure 3, and several strongly correlated clusters were

circled by black boxes. After using LASSO for dimensionality

reduction to remove redundant features (with zero coefficients), the

most significant prognostic signatures were selected to calculate the

Rad-score in the training cohort. Finally, a total of four RSs consisting

of two CT RSs [SHAPE_Volume(mL)CT and GLZLM_GLNUCT] and

two PET RSs (NGLDM_CoarsenessPET and GLZLM_GLNUPET)

were chosen for predicting PFS. With regard to OS, two CT RSs

(NGLDM_CoarsenessCT and NGLDM_ContrastCT) and three PET

RSs (SHAPE_SphericityPET, NGLDM_CoarsenessPET, and

GLZLM_GLNUPET) were involved in the predictive formula as

follows: Rad-scorePFS= - 0.0941130 × SHAPE_Volume(mL)CT-

0.033147 × GLZLM_GLNUCT + 0.057186 × NGLDM_

CoarsenessPET- 0.105334 × GLZLM_GLNUPET. Rad-scoreOS =

0 . 1 0 6 5 3 9 × NGLDM_Co a r s e n e s s C T + 0 . 0 5 0 6 5 5 ×
FIGURE 1

Workflow diagram of this retrospective study. The typical example of PET/CT image reconstruction in a patient with BC, whole-body maximum
intensity projection (MIP) of PET image (A), axial views of low-dose CT, PET or PET/CT infusion scans (B–D). Arrows point to tumor lesions. The
dotted line circles the VOI in magnified PET/CT image (E), from which first-order (F, G) and high-order (H) radiomic features were extracted. The
IHC and FISH of representatively pathological section (I, J). Waterfall plot of radiomic score (Rad-score) and KM curve of survival analysis during
model construction (K, M), DCA, and calibration curve during model validation (N, O).
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TABLE 1 The clinicopathological features of the enrolled population.

Total
(n=91)

Training
(n=63)

Testing
(n=28) t/x2 p

Age (years) 53.33 ± 13.46 53.05 ± 13.47 54.00 ± 13.66 -0.307 0.760

Menopausal Status 0.266 0.606

Premenopausal 34 (37.4%) 25 (39.1%) 9 (33.3%)

Postmenopausal 57 (62.6%) 39 (60.9%) 18 (66.7%)

Tumor Location 3.650 0.056

Left 51 (56.0%) 40 (62.5%) 11 (40.7%)

Right 40 (44.0%) 24 (37.5%) 16 (59.3%)

Histological Type 0.809 0.368

IDC 82 (90.1%) 56 (87.5%) 26 (96.3%)

*Other 9 (9.9%) 8 (12.5%) 1 (3.7%)

Clinical Stage 1.866 0.393

I-II 22 (24.2%) 18 (28.1%) 4 (14.8%)

III 34 (37.4%) 23 (35.9%) 11 (40.7%)

(Continued)
F
rontiers in Oncology
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FIGURE 2

The flowchart of the selection process according to eligibility and exclusive criteria. BC, breast cancer; IHC, immunohistochemistry.
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NGLDM_ContrastCT + 0.049265×SHAPE_SphericityPET +

0.097559×NGLDM_CoarsenessPET - 0.013341×GLZLM_GLNUPET.

The median Rad-score calculated using the above formula was 0.2923

(range: 0.0475 - 0.5508) for PFS and 0.4227 (range: 0.1636 - 0.9299)
Frontiers in Oncology 06
for OS. Moreover, the optimum threshold generated from the ROC

analysis of PFS and OS was 0.3776 and 0.3197 in the training set,

respectively. Table 2 shows that the area under the curve (AUC) was

0.670 (95% CI: 0.541 - 0.782) for PFS and 0.706 (95% CI: 0.579 -
TABLE 1 Continued

Total
(n=91)

Training
(n=63)

Testing
(n=28) t/x2 p

IV 35 (38.4%) 23 (35.9%) 12 (44.4%)

Clinical T Stage 0.646 0.886

cT1 15 (16.5%) 11(17.2%) 4 (14.8%)

cT2 38 (41.8%) 28 (43.8%) 10 (37.0%)

cT3 3 (3.3%) 2 (3.1%) 1 (3.7%)

cT4 35 (38.4%) 23 (35.9%) 12 (44.4%)

Clinical N Stage 2.949 0.223

cN0 16 (17.6%) 14 (21.9%) 2 (7.4%)

cN1-2 39 (42.8%) 25 (39.1%) 14 (51.9%)

cN3 36 (39.6%) 25 (39.1%) 11 (40.7%)

Clinical M Stage 0.187 0.665

cM0 57 (62.6%) 41 (64.1%) 16 (59.3%)

cM1 34 (37.4%) 23 (35.9%) 11 (40.7%)

ER Status 0.033 0.856

Positive 56 (61.5%) 39 (60.9%) 17 (63.0%)

Negative 35 (38.5%) 25 (39.1%) 10 (37.0%)

PR Status 0.892 0.345

Positive 37 (40.7%) 24 (37.5%) 13 (48.1%)

Negative 54 (59.3%) 40 (62.5%) 14 (51.9%)

HER2 Status 1.133 0.287

Positive 31 (34.1%) 24 (37.5%) 7 (25.9%)

Negative 60 (65.9%) 40 (62.5%) 20 (74.1%)

Molecular Subtype 0.707 0.892

HR+/HER2- 43 (47.2%) 29 (45.3%) 14 (51.9%)

HR+/HER2+ 14 (15.4%) 10 (15.6%) 4 (14.8%)

HER2+ 18 (19.8%) 14 (21.9%) 4 (14.8%)

TNBC 16 (17.6%) 11 (17.2%) 5 (18.5%)

Ki-67 0.193 0.66

<30% 30 (33.0%) 22 (34.4%) 8 (29.6%)

≥30% 61 (67.0%) 42 (65.6%) 19 (70.4%)

Treatment 1.059 0.589

NAC 21 (23.0%) 13 (20.3%) 8 (29.6%)

PCT 27 (29.7%) 19 (29.7%) 8 (29.6%)

Other 43 (47.3%) 32 (50.0%) 11 (40.7%)
frontier
Descriptive statistics were summarized with mean±standard deviation and analyzed by independent t-test. Categorical variables were shown as numbers and percentages and analyzed by
Pearson's Chi-square test or Fisher's exact test. *Other: including invasive lobular or papillary carcinomas. Abbreviations: IDC, invasive ductal carcinoma; ER, estrogen receptor; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; NAC, neoadjuvant chemotherapy; PCT, postoperative chemotherapy.
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0.814) for OS. Accordingly, patients were classified into low-score

and high-score groups (Rad-scorePFS> 0.3776; Rad-scoreOS> 0.3197).

Then, Rad-score was incorporated into the subsequent survival

analysis as a potential prognostic biomarker. Univariate Cox

regression indicated that Rad-score was closely associated with

both PFS (p=0.039) and OS (p=0.0085) and was shown by KM

survival curves (Figures 4G, 5E).
Combined model construction

The log-rank test was used to perform a univariate analysis of

clinicopathological and radiomic features in predicting the
Frontiers in Oncology 07
prognosis of BC. Additionally, characteristics with a p-value <0.05

were included in the final multivariate Cox regression (Table 3). In

the univariate analysis of PFS, it was found that age, menopausal

status, clinical stage, clinical N stage, clinical M stage, ER status, PR

status, Ki-67, SUV parameters (SUVmax, SUVmin, SUVmean, and

SUVpeak), and Rad-score were potential biomarkers. Among them,

age (HR = 3.532, P = 0.013), clinical M stage (HR = 2.977, P =

0.017), SUVmin (HR = 4.240, P = 0.001), and Rad-score (HR =

2.660, P = 0.044) were independent factors for prognosis in the

multivariate proportional hazards model (Figure 6). Meanwhile, age

(HR = 5.644, P = 0.013), clinical M stage (HR = 3.499, P = 0.057),

and Rad-score (HR = 3.627, P = 0.026) were selected from

significant factors (age, menopausal status, clinical stage, clinical
FIGURE 3

The heat map of Pearson correlation analysis among 97 radiomic features. Correlation coefficients were displayed by color scale. Boxes circled the
clusters that were closely related. Representative RSs were marked by arrows. RSs, radiomic signatures; NGLDM, Neighboring Gray-level
dependence matrix; GLZLM, Gray-Level Zone Length Matrix; GLNU, Gray-Level Non-Uniformity for zone.
TABLE 2 The Harrell's C-index and AUC results in the training and validation cohorts.

Training cohort Validation cohort

PFS C-index (95% CI) AUC (95% CI) C-index (95% CI) AUC (95% CI)

Clinical Model 0.761 (0.666 - 0.857) 0.739 (0.614 - 0.841) 0.772 (0.656 - 0.888) 0.816 (0.620 - 0.938)

Radiomic Model 0.613 (0.492 - 0.735) 0.670 (0.541 - 0.782) 0.674 (0.532 - 0.815) 0.599 (0.394 - 0.781)

C-R model 0.786 (0.697 - 0.875) 0.787 (0.667 - 0.880) 0.816 (0.685 - 0.947) 0.830 (0.636 - 0.946)

OS

Clinical model 0.794 (0.703 - 0.885) 0.731 (0.605 - 0.834) 0.824 (0.666-0.981) 0.780 (0.579 - 0.915)

Radiomic model 0.730 (0.640 - 0.819) 0.706 (0.579 - 0.814) 0.754 (0.584-0.923) 0.711 (0.505 - 0.867)

C-R model 0.878 (0.816 - 0.940) 0.789 (0.669 - 0.881) 0.882 (0.781-0.984) 0.859 (0.671 - 0.962)
C-index, concordance index; CI, confidence interval; AUC, area under the curve; C-R model, clinicopathologic-radiomic-based model.
frontiersin.org
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N stage, clinical M stage, PR status, and Rad-score) to construct the

integrated model for predicting OS. Furthermore, the remaining

factors had a strong predictive value for PFS and OS in the training

cohort, which was similar to the results observed in the validation

cohort through KM analyses (Figures 4, 5).
Model validation and assessments

To evaluate the probability of 1-, 2-, and 3-year PFS and OS, we

established nomograms for an integrated model that incorporated

the most valuable clinical and imaging parameters (Figure 7). For
Frontiers in Oncology 08
the training cohort, the concordance index (C-index) and AUC of

the C-R model were 0.786 (95% CI: 0.697 - 0.875) and 0.787 (95%

CI: 0.667 - 0.880), respectively, for PFS prediction. These values

were superior to those of the single clinical or radiomic models,

demonstrating the good predictive accuracy of the C-R model

(Table 2). Similar performance was observed for OS, where the

C-index and AUC of the C-R model were 0.878 (95% CI: 0.816 -

0.940) and 0.789 (95% CI: 0.669 - 0.881), respectively, and were

higher than those of other models. The C-R model was successfully

validated in the testing set. In the validation cohort, the C-index of

the C-R model was 0.816 (95% CI: 0.685 - 0.947) for predicting PFS

and 0.882 (95% CI: 0.781 - 0.984) for predicting OS. Using ROC
D
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FIGURE 4

The KM analysis of independent factors for predicting PFS in the training cohort and in the testing cohort (A, B: age; C, D: clinical M stage; E, F:
SUVmin; G, H: Rad-score).
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curve analysis, we found that the C-R model had a higher AUC

compared with the other two models for predicting PFS (AUC =

0.830, 95% CI: 0.636 - 0.946) and OS (AUC = 0.859, 95% CI: 0.671 -

0.962) (Table 2). Figure 8 presents the DCA and calibration curve of

the nomogram (2-year predictive probability of the C-R model) for

PFS and OS. The DCA for the PFS nomogram indicated that the net

benefit of the clinical and C-R models was slightly higher compared
Frontiers in Oncology 09
with the radiomic model within reasonable threshold probabilities

(Figure 8A). Regarding OS, while there was no significant difference

observed among the three models, all of them provided overall net

benefits in clinical application (Figure 8B). Both calibration curves

of the nomograms for PFS and OS showed accurate discrimination

between prediction and observation in the testing set

(Figures 8C, D).
TABLE 3 The results of the univariate and multivariate Cox regression analysis.

Variable

PFS OS

Log Rank Cox Regression Log Rank Cox Regression

x2 p HR (95%CI) p x2 p HR (95%CI) p

Age (years) 5.879 0.015* 3.532(1.301-9.593) 0.013 9.696 0.002* 5.644(1.430-22.277) 0.013

Menopausal Status 4.524 0.033* 4.644 0.031*

Tumor Location 0.233 0.629 0.078 0.780

Histologic Type 2.992 0.084 2.16 0.142

Clinical Stage 16.067 <0.001* 19.806 <0.001*

(Continued)
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FIGURE 5

The KM analysis of meaningful biomarkers for predicting OS in the training cohort and in the testing cohort (A, B: age; C, D: clinical M stage; E, F:
Rad-score).
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Discussion

Recent studies have revealed various clinical endpoints among

individuals with BC, and precise prediction based on non-invasive

machine learning methods has become increasingly prevalent in

prognostic research (29–31). These promising results have

encouraged the emergence of combination models based on

clinical, histological, and imaging features to better meet clinical

requirements (32, 33). In this study, we established novel nomograms

that reflected the underlying role of clinicopathological and radiomic

biomarkers extracted from 18F-FDG PET/CT to estimate the

outcomes of BC patients. Regarding the prediction of PFS, the C-

index of the C-R model, clinical model, and radiomic model was

0.786, 0.761, and 0.613 in the training group and 0.878, 0.794, and

0.730 in the testing group, respectively. With regard to the endpoint

of OS in the training test, the C-index of the three models was 0.816,

0.772, and 0.674, and it became 0.882, 0.731, and 0.706 in the testing

test, respectively. These findings suggested the superior predictive

performance of the combination model in both the training and

validation cohorts compared to other single models.

Traditionally, clinicians have relied on TNM staging to make

prognostic assessments based on physical examinations and clinical

symptoms. With the emergence of PET/CT scans, these assessments

have been improved. However, patients at the same stage still show

varying outcomes, even when treated with similar strategies, as the
Frontiers in Oncology 10
stage changes. Therefore, there is an urgent clinical need for an

accurate predictive method of prognosis, particularly for highly

heterogeneous malignancies, such as BC. In our retrospective study,

metabolic parameters of PET/CT played an invaluable role in

predicting the risk of disease recurrence. Shingo Baba et al. have

revealed a correlation between higher SUVs extracted from PET

images and a poor prognosis of BC. On the other hand, Evangelista

et al. have found that MTV and TLG are independent factors in

predicting BC recurrence, while SUVmax demonstrates poor

prognostic performance. However, it is important to note that

metabolic parameters can be influenced by various physiological

and technical factors. In the end, only SUVmin is identified as

independently associated with PFS.

To comprehensively quantify tumor heterogeneity, radiomics

can provide more detailed information on the tumor

microenvironment beyond visual features, allowing for the

reflection of multiple clinical endpoints. High-dimensional

features, such as NGLDM and GLZLM, have been found to be

associated with survival time in various tumor types and have been

used in the construction of the Rad-score (34–36). These studies

have also confirmed that Rad-score is an independent biomarker for

predicting survival status. In our present study, NGLDMCoarseness,

NGLDMContrast, and GLZLMGLNU were selected using LASSO

regression and used to calculate the Rad-score, which was found

to be a meaningful predictor of both PFS and OS. As far as we know,
TABLE 3 Continued

Variable

PFS OS

Log Rank Cox Regression Log Rank Cox Regression

x2 p HR (95%CI) p x2 p HR (95%CI) p

Clinical T Stage 1.273 0.736 6.472 0.091

Clinical N Stage 9.238 0.010* 16.255 <0.001*

Clinical M Stage 15.472 <0.001* 2.977(1.217-7.283) 0.017 19.46 <0.001* 3.499(0.962-12.727) 0.057

ER Status 3.902 0.048* 3.678 0.055

PR Status 5.084 0.024* 5.357 0.021*

HER2 Status 0.027 0.870 0.035 0.853

Molecular Subtype 4.626 0.201 4.763 0.190

Ki-67 4.174 0.041* 1.157 0.282

Treatment 5.994 0.050 4.931 0.085

SUVmax 7.058 0.008* 2.028 0.154

SUVmin 5.359 0.021* 4.240(1.814-9.910) 0.001 2.598 0.107

SUVmean 3.950 0.047* 1.686 0.194

SUVpeak 6.130 0.013* 1.685 0.194

MTV 1.772 0.183 3.848 0.050

TLG 2.891 0.089 3.758 0.053

Rad-score 4.261 0.039* 2.660(1.029-6.880) 0.044 6.930 0.008* 3.627(1.171-11.241) 0.026
frontier
The clinicopathological factors and Rad-score were analyzed by the log-rank method in univariate analysis, and then characteristics with p < 0.05 were taken into the multivariate Cox regression
to construct the final model. HR, hazard ratio; CI, confidence interval; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SUV, standardized
uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis; Rad-score, radiomic score. *P < 0.05.
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our study is one of the few articles that have focused on predicting

BC prognosis using PET/CT imaging and histology.

In addition, age and clinical M stage were also identified as

prominent predictors for both PFS and OS in our study. Specifically,

our study found that patients over the age of 50 and those with

distant metastases (clinical M stage: M1) and higher Rad-score were

more likely to experience earlier disease progression or even death.

Moreover, recent research has confirmed that visually represented

nomograms based on clinicopathologic risk factors and rad-score

can significantly contribute to the prediction of prognosis (37). The

C-index, along with its 95% CI, DCA, and calibration curve in the

testing cohort, can provide a more comprehensive assessment,

including discrimination, clinical applicability, and calibration of

the nomogram for the predictive model (38). Therefore, we aimed

to establish an integrated model visualized by a nomogram to assess

the potential prognostic value of BC patients by combining PET/

CT-based radiomics with clinical features.

However, our work has some limitations that need to be
Frontiers in Oncology 11
acknowledged. Firstly, our limited population needs to be taken into

account, although it is homogeneous in terms of histology types.

Our assumptions need to be further strengthened in multicenter

prospective cohorts. Secondly, previous literature has shown that

radiological signatures derived from PET/CT may be influenced by

the equipment and software used for image acquisition,

reconstruction, and analysis (39). All patients underwent PET/CT

examination with consistent scanners in our study. Thirdly,

although the inter-observer agreement was repeatable (ICC >

0.75), selection bias was inevitable. Lastly, the survival study

highly depended on follow-up time, and adequate interviews will

be necessary to validate our results.
Conclusion

In conclusion, we established a complex model that

incorporated both clinicopathologic and radiomic factors, which
FIGURE 6

Two women with similar lesions were initially diagnosed with BC. Axial low-dose CT images (A, D) and infusion PET/CT images (C, F). Black and
white arrows point to the primary lesions located on the right breast. The histograms of CT intensity for the VOI (B, E). The former (age: 32 years,
IDC: grade 2, molecular type: HR+/HER2-, clinical stage: T4N1M0, Rad-score: 0.1647) who underwent neoadjuvant chemotherapy didn’t have any
obvious disease progression during the 19-month follow-up. The latter (age:61 years, IDC: grade 2, molecular type: TNBC, clinical stage: T4N3M1,
Rad-score: 0.3089) underwent postoperative chemotherapy and died after 20 months. These primary lesions were similar on PET/CT images but
showed significant differences in the histograms of the radiomic features and clinical outcomes.
A B

FIGURE 7

Predictive nomogram of C-R model for PFS (A) and OS (B) in the testing cohort. Summed by the points of every risk factor, the final points are
located on the Total Point axis. R.score, radiomic score.
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could potentially serve as a biomarker for risk stratification of

prognosis in patients with invasive BC. Our strategy demonstrated

not only a great net benefit at a large range of threshold probabilities

but also accurate discrimination in clinical applications.
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FIGURE 8

The DCA of three models for PFS and OS in the testing cohort (A, B). The y-axis measures the net benefit, which is calculated by summing the
benefits (true positive results) and subtracting the harms (false-positive results). The calibration curves of C-R models’ nomograms for the 2-year
probability of PFS and OS (C, D). The dashed line indicated a perfect match between the actual probability (y-axis) and the nomogram-predicted
probability of 2-year PFS and OS (x-axis).
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