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Multi-organ spatial stratification
of 3-D dose distributions
improves risk prediction of
long-term self-reported severe
symptoms in oropharyngeal
cancer patients receiving
radiotherapy: development
of a pre-treatment decision
support tool

Andrew Wentzel1*, Abdallah S. R. Mohamed2,
Mohamed A. Naser2, Lisanne V. van Dijk2,
Katherine Hutcheson2, Amy M. Moreno2, Clifton D. Fuller2,
Guadalupe Canahuate3 and G. Elisabeta Marai1

1Department of Computer Science, The University of Illinois Chicago, Chicago, IL, United States,
2Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston,
TX, United States, 3Department of Electrical and Computer Engineering, University of Iowa, Iowa City,
IA, United States
Purpose: Identify Oropharyngeal cancer (OPC) patients at high-risk of

developing long-term severe radiation-associated symptoms using dose

volume histograms for organs-at-risk, via unsupervised clustering.

Material and methods: All patients were treated using radiation therapy for OPC.

Dose-volume histograms of organs-at-risk were extracted from patients’

treatment plans. Symptom ratings were collected via the MD Anderson

Symptom Inventory (MDASI) given weekly during, and 6 months post-

treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were

selected for analysis in this study. Patient stratifications were obtained by

applying Bayesian Mixture Models with three components to patient’s dose

histograms for relevant organs. The clusters with the highest total mean doses

were translated into dose thresholds using rule mining. Patient stratifications

were compared against Tumor staging information using multivariate likelihood

ratio tests. Model performance for prediction of moderate/severe symptoms at 6

months was compared against normal tissue complication probability (NTCP)

models using cross-validation.

Results: A total of 349 patients were included for long-term symptom prediction.

High-risk clusters were significantly correlated with outcomes for severe late

drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001,
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OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also

correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow

(p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75).

Proposed cluster stratifications show better performance than NTCP models for

severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561,

MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice

(AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show

better performance than baseline models for predicting late severe ratings for

all symptoms.

Conclusion: Our results show that leveraging the 3-D dose histograms from

radiation therapy plan improves stratification of patients according to their risk of

experiencing long-term severe radiation associated symptoms, beyond existing

NTPC models. Our rule-based method can approximate our stratifications with

minimal loss of accuracy and can proactively identify risk factors for radiation-

associated toxicity.
KEYWORDS

radiation therapy, clustering, head and neck cancer, stratification, symptom burden,
quality of life
1 Introduction

With advancements in precision radiation therapy and the

emerging dominance of HPV-driven tumors over smoking-

related tumors (1), patient survival has improved significantly

for Oropharyngeal Cancer (OPC) patients (2, 3). Despite this,

survivors that receive radiation therapy frequently suffer severe

lasting side effects that can significantly reduce quality of life

following treatment as a side effect of radiation-induced damage

to organs, such as xerostomia (drymouth) or difficulty swallowing

(4). Damage to vital organs such as salivary glands and swallowing

muscles from radiation is a major factor in reduced quality of life,

and precisely determining the risk associated with patient

treatment plans can help physicians improve patient endpoints

in two ways (5). First, it allows oncologists to identify which

organs to prioritize when designing individualized treatment

plans. Second, when risk of organ damage is unavoidable,

oncologists can prescribe preventative treatments, such as

occupational therapy, to minimize side effects.

Existing approaches to radiation treatment planning often

consider single-value dose thresholds for key organs (6). For

xerostomia, existing guidelines recommends limiting the mean

dose to the parotid glands to under 20Gy to the contralateral side,

or 25Gy for the ipsilateral side (7), although other research suggests

higher dose thresholds of 35.7Gy (8). Single-dose thresholds are

useful in their practicality for clinical researchers but suffer from

poor generalizability and fail to consider interactions between

multiple organs, or effects from different dose distributions that

yield similar mean doses.
02
Other approaches such as Normal Tissue Complication

Probability (NTCP) models attempt to account for 3-dimensional

dose distributions to organs by considering the contribution for

different parts of the dose-volume histogram to output a final risk

probability (9). Existing xerostomia NTCP models mainly consider

mean doses to organs at risk (10). NTCP models can outperform

dose thresholds but suffer from higher complexity that may lead to

overfitting on the data, and are difficult to use for dose planning

(11). More complex deep learning models have shown good

performance in predicting patient endpoints (12). However,

research has suggested that despite improvements in performance

from deep learning models, they don’t outperform standard

statistical approaches in practice due to their poor transparency

and generalizability (13).

To address this problem, we present an unsupervised learning

method for stratifying patients based on 3D dose distributions to

relevant organs-at-risk, to identify clusters of patients that are at risk

of radiation-associated long-term severe symptoms after treatment.

By using clusters as proxies for risk, these clusters can serve as risk

stratifications for patient symptoms that account for complex dose

distributions to multiple organs at risk, while maintaining simplicity

and actionability not seen in NTCP or more complicated models. To

translate these stratifications into more actionable doses, we also

propose a method of producing a set of dose thresholds to

approximate the high-risk group. Focusing on predicting patient-

reported drymouth, we compare our risk stratification to existing

dose-based models and models using clinical factors to show that our

cluster-based and simplified threshold-based stratifications can be

used to improve risk predictions of self-reported symptoms.
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2 Methods

2.1 Overview

We detail our methods in the following sections as follows: (1)

diagnostic and treatment data is collected and preprocessed from a

cohort of Oropharyngeal cancer patients. We then filter out relevant

patients and preprocess relevant features. (2) Patient treatment

plans are fed into a clustering algorithm in order to extract patient

risk clusters. (3) Ruling mining is used to produce a set of dose

thresholds that approximate the high-risk cluster. (4) We perform

multivariate correlation testing to show that the clusters are

correlated with severe long-term toxicities. (5) We perform cross-

validation using logistic regression to compare the performance of

our clusters to normal-tissue complication probability models. An

overview of our process is shown in (Figure 1). The remainder of

this subsection details an overview of our methodology.

First, we select a set of dosimetric features for organs relevant to

each toxicity, and cluster patients based on these features into three

clusters that correspond to low, medium, and high dose groups. We

then identify the high-dose group, which is assumed to be the group

at higher risk of long term drymouth due to damage to the relevant

organs. Thus, inclusion in this high dose cluster can be used as a

stratification metric for risk of tissue damage. In order to produce a

more actionable and explainable stratification, we also identify a

minimal set of dose thresholds to organs at risk which closely

models membership in this high-risk group.

For this paper, we consider the following four self-reported

symptoms: drymouth, difficulty swallowing (swallow), excessive

mucus (mucus), and voice dysfunction (voice). Drymouth has

been shown to be an accurate indication of salivary function (14),

and other symptoms are included as we theorize that they are also

causally linked to damage to key tissues. Separate feature sets

(choice of organ and dose thresholds) and clusters are generated

for each symptom.
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Our symptom data is self-reported ratings of symptoms at their

worst between 0 (none) and 10 (the worst I can imagine) taken from

the MD Anderson Symptom Inventory (15). To identify long-term

outcomes, we consider the reported symptom rating during the

patient’s 6 month (late) followup. We consider whether the

reported symptom is > 4 (severe), as well as the change in

reported symptom from the patient’s reported drymouth at the

start of treatment is > 4 (severe change). These result in 2 binary

outcomes for each symptom. Values measured during treatment

were only used for imputing baseline values.

We demonstrate that our stratifications are highly correlated

with self-reported late symptoms using multivariate likelihood ratio

tests, and well as cross-validation to demonstrate that the clusters

provide better predictive performance for late symptoms relative to

existing clinical and normal tissue complication probability models

(7, 10, 16), while being more explainable and accessible in

real settings.
2.2 Data collection and preprocessing

Data were collected retrospectively from a continuously enrolled

cohort of Oropharyngeal patients treated using curative-intent

Radiation Therapy at the MD Anderson Cancer Center between

2010 and 2021. DVH histograms were collected from pre-treatment

CECT scans taken prior to the start of treatment. Organs of interest

were segmented, and dose-volume histograms were extracted using

commercially available software (17), as described in (18). Additional

information such as T-stage, N-stage (19), HPV/p16 status, tumor

location, demographic information, and initial ECOG performance

score (20) was collected from electronic health record data. T and N

stage are existing risk stratifications based on the size and spread of

primary and secondary tumors, respectively, while ECOG

performance score is an indicator of the patient’s level of

functioning at the start of treatment.
FIGURE 1

Overview of the methods used for each symptom of interest. First, relevant ROIS and DVH features are selected. These features are used to
vectorize each patient and cluster them using a Gaussian Mixture Model. Clusters are then converted into a set of dose thresholds to approximate
the high-risk group. Both clusters and simple clusters are evaluated using multivariate likelihood-ratio tests and cross-validation against NTCP
models with clinical covariates to assess how predictive they are of the symptom of interest at 6 months.
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To collect symptom information, patients were asked to fill out

an MD Anderson symptom inventory (MDASI) questionnaire (15)

at weekly intervals during treatment, as well as during follow up

sessions at 6 weeks, and 6 months after treatment, for a maximum

of 9 time points. These questionnaires asked patients to rate the

severity of 28 side effects, including drymouth, on a scale of 0-10.

Inclusion criteria for the patients were: 1) presence of OPC

confirmed via biopsy; 2) patient was treated using curative-intent

IMRT; 3) dose-volume histogram data available for organs at-risk in

the head and neck; 4) at least 70% of the items on the MDASI

questionnaire are available in the time period from the start of

treatment until 6 months after treatment; 5) symptom ratings

available at 6 months; 6) patients survived long enough for a 6

month follow up appointment. The final cohort consisted of

349 patients.

Because baseline ratings were not available for 59 (16.9%)

patients, we used a denoising neural network (21) to impute

missing values from related symptoms and the ratings at other

time points for patients with enough symptom ratings. To train the

symptom imputation model, all symptom ratings from all 10 time

points were used as input data. To ensure that enough symptom

data was available to impute missing values, we only considered

patients with a baseline drymouth rating and with at least 70% of all

symptom ratings across all timesteps available. In order to train the

network to learn to impute missing data, we used gaussian dropout

during training, where values were randomly get to 0 with a 50%

change during training, and the network was trained to reconstruct

the original values using the other symptom ratings. The denoiser

used two fully connected layers with a ReLU activation function
Frontiers in Oncology 04
followed by batch normalization. The model was trained using the

Adam optimizer and mean-squared-error loss with a learning rate

of.001 for 2000 with early stopping. The final model had a mean

reconstruction error of 6.18%
2.3 Clustering

In order to demonstrate that our approach can be generalized to

any outcome that is associated with radiation-induced tissue

damage, we apply our methodology for identifying high-risk

clusters for predicting late severe ratings for four different

symptoms: drymouth, swallow, mucus, and voice. Optimal cluster

parameters were identified using a previously published visual

analytics system developed for this project (22). For all outcomes,

we use 3 clusters, and consider the cluster with the highest total

mean dose to organs at risk to be the “high-dose cluster”. Organs

and DVH values used for each symptom cluster are given in

(Table 1). To account for bilaterality of the head, we consider the

side with the higher total mean dose as the primary side and encode

the parotid and submandibular glands on that side as the “ipsilateral

side”, and the organs on the other side as the “contralateral” side.

For example, when creating clusters for drymouth, we used the

doses to both parotid glands, both submandibular glands, and the

hard palate. We then considered the following DVH features from

each organ of interest: The dose delivered to 25% of the volume

(V25) through the dose delivered to 60% of the volume (V60),

collected in increments of 5%, which were selected by identifying

the dose features with the maximum mutual information with all
TABLE 1 Table of rules used to approximate the high-dose clusters for alternative outcomes, along with the precision, recall, and info gain associated
with each set of simplified clusters, to show how well the simplified clusters approximate the high-dose group.

Outcome Cluster Organs

Cluster
DVH
Features Thresholds

N
(HD)

N (Simplified
HD)

Cluster
Precision

Cluster
Recall NTCP Organs

Drymouth

Both Parotid Glands,
Both Submandibular
Glands, Hard Palate V25-V60

Contralateral
submandibular
gland V45 > 61

219 205 0.98 0.89

Parotid glands,
Submandibular glands, soft
palate, upper lip, lower lip,
oral cavity, mylogeniohyoid

Contralateral
parotid gland
V45 > 0

Swallow

IPC, MPC, Supraglottic
Larynx, Esophagus,
Mylogeniohyoid Muscle V30-V65

IPC V50 > 40

60 65 0.892 0.967

IPC, SPC, Supraglottic Larynx,
Parotid Gland,
Cricopharyngeal Muscle

Supraglottic
Larynx V60 >
46

Mucus

Both Parotid Glands,
Both Submandibular
Glands V25-V65

Contralateral
Submandibular
Gland V50 >
48

184 171 0.988 0.918

Soft Palate, Hard Palate, Oral
Cavity, Mandible, Tonge,
Parotid Glands

Contralateral
Parotid Glannd
V45 > 0

Voice

Tongue, IPC, Larynx,
Supraglottic Larynx,
Contralateral
Submandibular Gland V45-V65

IPC V55 > 34

45 5.50E+01 8.00E-01 0.978

Larynx, Supraglottic Larynx,
Tongue, Genioglossus Muscle,
Mylogeniohyoid Muscle

Larynx Max
Dose > 66
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late patient symptoms. Each patient was thus encoded as a vector of

40 (5 organs x 8 features) values.

The patient dose distribution was modeled using a Bayesian

Gaussian Mixture Model (BGMM), an unsupervised machine

learning model that learns from the distribution of the data (23).

We chose to use mixture models as we found that they proved to be

effective at modeling patterns in the dose distribution due to

difference in the position of the underlying tumors (24). We

consider the bayesian variant of the model as it is traditionally

less sensitive to the choice of parameters (25). After training a three

cluster BGMM, the patients were clustered by assigning them to the

component with the maximum likelihood.
2.4 Simplified cluster generation

In this paper we are mainly interested in high-dose, high-risk

patients. To define the high dose (HD) group as follows. First, we

calculate the mean dose for the organs of interest used to define the

clusters. We then calculate the sum of the mean doses for each

cluster and consider the cluster with the highest total mean dose to

be the HD group. We verify that this HD group is also the group

with the highest incidence of severe late symptom ratings.

To make the model more accessible for users without access to

the original model, we also generate a “simplified” high risk group

(SHD) as follows. First, we look at all dose features for all organs

used in the cluster (e.g., V55 to the parotid gland). For each feature,

we test different value thresholds to split the cohort into 2 groups

(e.g., V55 to the parotid > 1). We then calculate the mutual

information between this split, and the HD cluster, and select the

25 feature splits with the highest mutual information gain. For each

rule, we then repeat this process only on the sub-cohort that meets

the criteria of the first rule and select the 25 sets of 1-2 feature splits

with the highest mutual information gain. We repeat this process

iteratively until we identify a set of dose thresholds that maximize

the mutual information with cluster membership. The group that

exceeds all thresholds in the data is considered the “simplified” high

dose (SHD) group. This results in a set of rules that can quickly

approximate the original HD group, while providing thresholds that

may be used for soft constraints when planning treatment plans.

Once the high-risk and simplified high-risk clusters were

identified, we performed a chi2 test between clinical covariate and

membership in either the original clusters or the simplified cluster.

T-test statistic and significance levels were collected for the

following covariates: Sex (male/female), T-stage, N-stage, HPV

p16 status, primary tumor subsite, radiation treatment type, if the

patient had surgery prior to treatment, age, total dose to the primary

tumor, and the dose-fraction.
2.5 LRT tests

For each endpoint we assess the predictive power of the original

and simplified clusters using a likelihood ratio test (LRT). For this, we

build maximum likelihood estimation models that consider clinical

covariates as well as models that include both clinical covariates and
Frontiers in Oncology 05
either all clusters or each cluster individually. We then perform an

LRT to identify if the goodness offit of the model with clusters added

has a statistically significant better fit than the baseline cluster with

only clinical covariates. Additionally, we consider the linear case

where we model the outcome on a 10-point scale using linear

regression. We report the p-values from the likelihood ratio test,

the odds ratios are taken from the model coefficients for each cluster,

and the change in Akaike (AIC) and Bayesian (BIC) information

criteria between each model and the clinical baseline mode. AIC and

BIC are estimates of the goodness of fit of a model that includes a

penalty for the number of variables considered, in order to prevent

overfitting, where lower scores indicate better fits (26). For BIC,

reductions in score relative to the baseline model of at least 2 indicate

reasonable evidence, while reductions of at least 6 indicate “strong”

evidence of improvement (27).

For the purpose of testing our models, we consider the following

covariates that serve as our clinical confounders: T-stage > 2 (T-stage);

N-stage > 1 (Nn-stage); HPV/p16 status (hpv); primary tumor at

the base of the tongue (BOT); primary tumor at the Tonsil (Tonsil);

age >= 65 years at the time of diagnosis (age); ECOG performance

score = 1; ECOG performance score = 2 (ECOG score); and if the

patient had a mean dose of > 20 Gy to both parotid glands, or > 25 Gy

to one parotid gland (Parotid Limit). These encodings were chosen as

they are clinically relevant confounders that have been found to be

most relevant when considering treatment type and outcomes. Sex

was not included as it was found to not have any correlation with any

outcome (p >.8) via chi-squared test, and 90% of the cohort was male.

We chose to include T-stage, N-stage, and HPV status separately as

our earlier work suggested that T-stage was more predictive of

dysphagia than AJCC status (28), which was designed to be

predictive of survival, and our cohort had a combination of AJCC

8th edition and 7th edition ratings.

To understand how our baseline confounders compare to our

clusters, we performed multivariate maximum likelihood

estimation to determine the odds ratio and p-value from the

likelihood ratio test between each confounder and outcome

individually. Additionally, we tested the correlation between

published dose thresholds to organs in the head and neck and

severe late drymouth. We also looked at correlations with published

dose limits to organs of interest. Rules for dose limits are described

in (Table 2).
2.6 Cross-validation

In order to compare our model to existing models, we compare

cross-validation performance of our clusters (3-level stratification)

to a baseline NTCP model based on previous literature. For the

NTCP model, we use logistic regression with clinical covariates as

well as the dosimetric values to organs at risk that best

approximated existing clinical models based on available

segmentation data (10, 16). For each outcome, we re-calibrate the

NTCP model on the training data during cross-validation in order

to ensure the optimal performance of the NTCP model for

comparison. All dosimetric values for NTCP models consider the

mean dose to the organs considered. For example, the final dose
frontiersin.org
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values considered in the NTCP model are the mean doses to the

following organs: parotid glands, submandibular glands, soft palate,

upper lip, lower lip, oral cavity, and mylogeniohyoid muscle. We

included the mylogeniohyoid muscle as we did not have separate

contour data for sublingual salivary glands.

When evaluating the performance of our clusters during

cross-validation, we rank each cluster based on the number of

patients that experience the given outcome in the training data

and assign risk to patients in the test data based on the rank of

their clusters. In this way, the highest-risk cluster is given a risk

score of 1, while the second highest-risk cluster is given a risk

score of.5. For the simplified cluster, we always assign a risk of 1

to the high-dose cluster and 0 otherwise. For the whole dataset,

this is the equivalent of using the clusters as a xerostomia

risk stratification.

We report the area under the receiver-operator curve (AUC-ROC

score), which is a measure of the specificity of a test as the sensitivity

threshold changes (29); and the Mathew’s correlation coefficient

(MCC) (30), which is a special case of a correlation coefficient that

has been shown to be useful for evaluating binary outcomes for

imbalance data (31), of our risk stratification compared to the

baseline and NTCP models for all binary outcomes.
3 Results

3.1 Demographics

The distribution of patient symptom ratings is shown in

(Table 3). We see drymouth is the most prevalent symptom, with

late severe drymouth occurring in 43.8% of patients and an average

rating of 4.34 at 6 months, followed by severe mucus, which only

occurs in 16% of patients (mean rating 2.26). Voice had the lowest

number of patients with an average rating of 1.07 and only 4% of

patients reporting severe voice dysfunction and only 1.7% reporting

an increase of at least 5 point from baseline at 6 months.
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Demographics and demographics within the high-dose and

simplified high-dose clusters for each outcome are shown in

(Table 4). The cohort was predominantly male (90%) and HPV/

p16 positive (81%), with a mean age of 59 (95% CI 58-60). A

majority of patients were treated with volume-modulated arc

therapy or intensity modulated proton therapy (63%), while only

2 patients received 3d conformational therapy. 10% of patients

underwent surgery prior to radiation therapy.

Results of chi-squared tests between demographic features and

cluster membership is shown in (Figure 2). A significant correlation

was found between all cluster memberships and T-stage (p <.0001),

tumor subsite (p <.0001), and treatment modality (p <.05), while N-

stage was correlated with all but simplified swallowing risk (p <.05).

Patients in high-risk clusters had higher rates of stage T4 (10% vs

17-31%) and N2C/N3 tumors (14% vs 18-23%), which correspond

to patients likely to receive the most aggressive treatment.

Additionally, all high-risk groups had higher incidences of tumors

at the base of the tongue (BOT), and lower incidence of tumors in

the Tonsil. There was also a higher rate of patients that received

VMAT/IMPT in the high-risk clusters (63 vs 69-87%). All standard

clusters as well as simplified voice clusters were correlated with

lower rates of pre-treatment surgery (p <.05, 10% vs 0-7%). No

significant difference was found between ECOG performance score

and clusters. Drymouth and Mucus clusters were not correlated

with HPV status (p >.05), but there were fewer HPV+ patients in

the swallow high-dose (81% vs 78%, p <.01) and simplified high

dose clusters 81% vs 80%, (p <.05), as well as simplified voice (81%

vs 76%, p <.001).

Results for the correlation tests between baseline confounders,

existing dose guidelines, and late severe symptoms are shown in

(Figure 3). The factors most correlated with severe drymouth were

ECOG performance score >= 2, and primary tumor at the base of

the tongue (BOT). Oddly, T-stage 4 was negatively correlated with

drymouth, while the less-severe T-stage 3 was positively correlated.

The strongest predictors of negative outcomes are high doses to the

larynx and superior pharyngeal constrictor, which are traditionally
TABLE 2 Description of the dose limits considered to different organs (7), and the toxicity they are designed to avoid.

Organ Dose Limit (Gy) Outcome

Spinal Cord Max dose > 50 Myelopathy

Parotid Gland Mean dose > 25 for one OR Mean dose > 20 for both Xerostomia

Inferior Pharyngeal Constrictor (IPC) Mean dose > 50 Feeding Tube

Inferior Pharyngeal Constrictor (IPC 2) Mean dose > 60 Aspiration

Medial Pharyngeal Constrictor (MPC) Mean dose > 50 Feeding Tube

Medial Pharyngeal Constrictor (MPC 2) Mean dose > 60 Aspiration

Superior Pharyngeal Constrictor (SPC) Mean dose > 50 Feeding Tube

Superior Pharyngeal Constrictor (SPC 2) Mean dose > 60 Aspiration

Mandible Max dose > 70 Osteoradionecrosis

Larynx V50 > 27 Edema

Brachial Plexus Max dose > 60 Nerve Damage

Esophagus V35 > 50 OR V50 > 40 OR V70 > 20 OR V60 > 30 Esophagitis
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associated with swallowing complications and not drymouth. The

dose limits to the parotid glands intended to predict xerostomia

were negatively correlated with high drymouth, which is likely since

most patients whose doses were within acceptable limits were in the

low-dose cluster, which had anomalously high rates of drymouth

relative to the moderate dose group (38.3% vs 92.92%, respectively).
3.2 Cluster analysis

The final parameters for each outcome are shown in (Table 1).

Interestingly, we found similar simplified rules for predicting late

severe voice dysfunction (IPC V55 > 34) and late severe swallowing

issues (IPC V50 > 40). Similarly, rules for the high-risk mucus and

drymouth clusters show similar rules for thresholds to the

contralateral parotid glands (V45 > 61 and V50 > 48), and for the

contralateral parotid gland (V45 > 0). Notably, the optimal DVH

values were lowest for predicting drymouth than other symptoms

with values ranging from V25-V65, compared to V20-V60 for

drymouth. Clusters for swallow and voice also had higher optimal

DVH values, and generally included more muscles instead of

salivary glands.

Comparison of high-dose and low/moderate-dose-volume

histograms of the organs used for the high-dose clusters are in

(Figure 4). We can see that rules generally correspond to the ROIs

that show the highest difference in mean dose between high- and

low/moderate-dose groups. We see larger separations for the

contralateral submandibular glands, inferior pharyngeal

constrictors, and supraglottic larynx. We can also see that in the

high-risk group, mean dose to the submandibular glands tends to be

relatively high even at 80% penetration, while the dose to the dose to

the parotid gland will drop off to low or zero values at around 45%

penetration for the low/moderate dose groups. We also see
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relatively high levels of dose for the MPC and SPC (Figure 4-

swallow column) even at 80% penetration with limited dropoff.

The distribution of symptoms at the start of RT treatment and

at 6 months for each high-risk and low/moderate risk groups are

shown in (Figure 5). Mean ratings for all groups increase between

baseline and 6 months, although the difference in change is higher

for the high-dose groups. All high-dose clusters show a slightly

higher mean symptom rating at baseline than the low/moderate

dose groups, with differences of.14,.83,.01, and.78 for drymouth,

swallow, mucus, and voice, respectively. This difference increases at

6 months for all cases to 1.27,.126,.91, and 1.02 for drymouth,

swallow, mucus, and voice, respectively. The larger baseline

difference for swallow and voice likely corresponds to the higher

rates of stages T4 and N3 in these groups at the start of treatment,

which we don’t see in drymouth or mucus. The most significant

change is in the high-dose drymouth group, which has a mean

symptom rating increase of 3.87 between baseline and 6-months.
3.3 LRT test results

Results for LRT tests on all outcomes with clinical confounders are

reported in (Table 5). All outcomes show significant (<.01) correlation

between 3-level cluster stratifications and severe late symptoms. When

considering the change from baseline rating, we have significant

correlations for the high-dose clusters with all outcomes except for

“voice”, which may be because we only have 6 patients with a change

in voice ratings above 4 in the dataset (1.7%) (Table 3).

For absolute outcomes (rating > 4), Drymouth high-dose (HD)

and simplified high-dose (SHD) clusters had the highest

significance level (p <.0001) with odds-ratios of 2.942 and 2.767

for severe late drymouth, respectively. Voice had the highest odds-

ratios of all symptoms for severe voice dysfunction with values of
TABLE 3 Distribution of each symptom rating at 6 months, as well as the number of patients who have ratings or change in ratings above different
thresholds, corresponding to “any”, “moderate”, and “severe”.

Symptom
Avg
Rating

Rating
5% CI

Rating
Median

Rating
95% CI Threshold

Above
Threshold

Above
Threshold
(%)

Change
Above
Threshold

Change Above
Threshold (%)

Drymouth 4.34 0.4 4 9

0 331 94.8% 295 84.5%

2 241 69.1% 203 58.2%

4 153 43.8% 114 32.7%

Swallow 2.14 0 2 7

0 259 74.2% 199 57.0%

2 112 32.1% 73 20.9%

4 46 13.2% 29 8.3%

Mucus 2.26 0 2 8

0 255 73.1% 202 57.9%

2 120 34.4% 86 24.6%

4 56 16.0% 42 12.0%

Voice 1.07 0 0 4

0 167 47.9% 133 38.1%

2 51 14.6% 34 9.7%

4 14 4.0% 6 1.7%
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8.99 and 19.75 for the HD and SHD, respectively (p <.01). Swallow

HD and SHD clusters had odds ratios of 5.129 (p = .002) and 3.625

(p = .01), respectively. Finally, mucus HD and SHD clusters had

odds ratios of 3.18 (p = .001) and 2.37 (p = .01), respectively.

For relative outcomes (rating change from baseline > 4), we see

similar or slightly lower odds ratios but lower p-values, due to the

smaller number of measured outcomes, for Drymouth HD (OR =

2.38, p = .002), Drymouth SHD (OR = 2.447, p <.002), Swallow HD

(OR = 4.73, p = .014), Swallow SHD (OR = 3.76, p = .028), Mucus HD

(OR = 3.382, p <.001), andMucus SHD (p = 2.17, p = .032). However,

there is no correlation between Voice HD (OR = .96, p = .96) or Voice

SHD (OR = 2.55, p = .42) and change in voice ratings > 4.

Comparing 3-level cluster stratifications, HD cluster, and SHD

clusters, HD clusters tend to perform slightly better, except in the

case of predicting severe late drymouth and severe late voice, in

which the SHD clusters do marginally better. Inclusion of the 3-

level stratifications over the High-dose only clusters didn’t have a

notable difference in significance level. Except for change in swallow
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>4 from baseline, 3-level stratification tended to perform worse in

terms of change in Bayesian Information Criteria, suggesting that

majority of the information gain comes from the high-dose clusters.
3.4 Cross-validation results

We report results from performing cross-validation for several

alternative patient outcomes in (Table 6). ROC curves for each

outcome on severe ratings are shown in (Figure 6). In terms of ROC

and MCC, cluster stratification (3 clusters) outperformed baseline

NTCP models for all outcomes. Performance differences between

only the high-dose clusters (HD), simplified clusters (SHD), and all

clusters (3-level stratification) were mixed, with the high-dose

cluster outperforming all clusters for late mucus and drymouth,

but not voice or swallow.

For Drymouth outcomes, the HD cluster alone performed the

best for all measures, with an AUC of.6 for severe drymouth vs.56
TABLE 4 Patient demographics, treatment information of the cohort, as well as the distribution of features within the high-dose (HD) and simplified
high-dose (SHD) clusters for each outcome.

Feature

Cohort

Drymouth Swallow Mucus Voice

Value HD SHD HD SHD HD SHD HD SHD

Total 349 193 175 60 65 184 171 45 55

Sex Male 314 (90%) 171 (89%) 155 (89%) 58 (97%) 63 (97%) 163 (89%) 152 (89%) 43 (96%) 53 (96%)

T-stage
T3 48 (14%) 31 (16%) 24 (14%) 13 (22%) 15 (23%) 28 (15%) 22 (13%) 11 (24%) 13 (24%)

T4 34 (10%) 32 (17%) 31 (18%) 16 (27%) 15 (23%) 31 (17%) 31 (18%) 14 (31%) 15 (27%)

N-stage
N2a/N2b 164 (47%) 88 (46%) 81 (46%) 31 (52%) 36 (55%) 85 (46%) 81 (47%) 21 (47%) 28 (51%)

N2C/N3 48 (14%) 40 (21%) 40 (23%) 13 (22%) 12 (18%) 40 (22%) 40 (23%) 10 (22%) 13 (24%)

HPV
Unknown 43 (12%) 23 (12%) 20 (11%) 3 (5%) 4 (6%) 22 (12%) 19 (11%) 3 (7%) 3 (5%)

HPV + 282 (81%) 155 (80%) 142 (81%) 47 (78%) 52 (80%) 147 (80%) 139 (81%) 35 (78%) 42 (76%)

Subsite
BOT 162 (46%) 117 (61%) 114 (65%) 45 (75%) 49 (75%) 113 (61%) 112 (65%) 32 (71%) 40 (73%)

Tonsil 145 (42%) 52 (27%) 40 (23%) 11 (18%) 13 (20%) 48 (26%) 38 (22%) 10 (22%) 11 (20%)

Treatment

3D Conf. 2 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

VMAT/IMPT 221 (63%) 134 (69%) 120 (69%) 50 (83%) 52 (80%) 128 (70%) 118 (69%) 39 (87%) 46 (84%)

IMRT 74 (21%) 41 (21%) 39 (22%) 6 (10%) 8 (12%) 39 (21%) 38 (22%) 2 (4%) 5 (9%)

Prior Surgery Yes 36 (10%) 13 (7%) 13 (7%) 1 (2%) 2 (3%) 12 (7%) 13 (8%) 0 (0%) 0 (0%)

ECOG Perf.
Score

1 64 (18%) 41 (21%) 35 (20%) 13 (22%) 17 (26%) 37 (20%) 34 (20%) 12 (27%) 13 (24%)

2 6 (2%) 3 (2%) 0 (0%) 1 (2%) 1 (2%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

Unknown 18 (5%) 8 (4%) 8 (5%) 3 (5%) 3 (5%) 9 (5%) 8 (5%) 3 (7%) 3 (5%)

Age
Mean (95%
CI)

59 (58 -
60)

59 (58 -
61)

60 (58 -
61)

63 (61 -
66)

64 (61 -
66)

59 (58 -
61)

60 (58 -
61)

64 (61 -
67)

63 (61 -
65)

RT Dose
Mean (95%
CI)

53 (51 -
55)

51 (47 -
55)

51 (48 -
55)

51 (43 -
57)

52 (46 -
58)

52 (49 -
55)

51 (47 -
55)

53 (46 -
60)

54 (47 -
61)

Dose- Fraction
Mean (95%
CI)

26 (25 -
28)

26 (23 -
28)

25 (23 -
26)

24 (21 -
27)

25 (22 -
28)

26 (24 -
28)

24 (23 -
26)

25 (21 -
29)

26 (22 -
28)
fro
Continuous values show mean values and 95% confidence intervals within each group. Legend) T-stage: AJCC 8th edition T-staging; N-stage: AJCC 8th edition N-staging; HPV) Whether the
patient was HPV/p16+; Subsite: site of primary tumor (BOT, Tonsil, other); BOT, Base of Tongue; VMAT, volumetric modulated arc therapy; IMPT, intensity modulated proton therapy; IMRT,
intensity modulated proton therapy; ECOG Perf. Score, Eastern Cooperative Oncology Group pre-treatment performance score; RT Dose: total prescribed RT dose the the main tumor; Dose-
fraction: weekly dose delivered to the main tumor.
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for the NTCP + clinical covariates model. Using the 3-level

stratification achieved the same AUC score as the HD cluster, but

lower MCC, due to the higher number of clusters. SHD slightly

outperformed the NTCP model for absolute rating > 4 (AUC.57

vs.56), but not for change in rating > 4 (AUC.55 vs.57), although the

SHD had a higher MCC for both outcomes.

For Swallow, 3-level stratifications performed the best in terms

of AUC for rating > 4 (AUC = .63) and change in rating > 4 (AUC =
Frontiers in Oncology 09
.61). In all cases for swallow, the 3-clusters performed the best,

followed by the HD, SHD, and NTCP models performed the worst.

For Mucus, the SHD performed the best in terms of AUC for

both Mucus > 4 (AUC = .62) and change from baseline > 4 (AUC =

.64). Voice had mixed results in terms of performance. For Voice >

4, the 3-level model performed the best (AUC = .68), followed by

HD (AUC = .67), and SHD (AUC = .61), and finally the NTCP

model (AUC = .56). For change from baseline, all models
FIGURE 2

Results of a chi-squared test between covariates and membership in each set of clusters for each outcome. (HD) Standard clusters, (SHD) Simplified
clusters. Color and annotations encode t-statistic values while colored circles represent the significance level based on the p-value.
FIGURE 3

Heatmap of odds-ratios from fishers-exact test between late severe (> 4) ratings for each symptom, and confounders used in the data, (top) as well
as published dose limits. Statistically significant values (p <.05) are marked with green circles. Values < 1 indicates lower than average risk while
values > 1 indicate above average risk. BOT, Subsite at Base of Tongue; HPV+, HPV/p16 positive; IMPT, Intensity Modulated Proton Therapy); IMRT,
Intensity Modulated Radiation Therapy; Tonsil, Subsite at Tonsil; VMAT, Volumetric Modulated Arc Therapy; Concurrent, Chemotherapy concurrent
with radiation therapy; IC, Induction Chemotherapy; ECOG, Eastern Cooperative Oncology Group Performance Score.
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performed close to chance due to the lower number of positives,

with the highest performance from HD (AUC = .53).
4 Discussion

Our results demonstrate the benefits of grouping OPC RT

patients based on multi-organ key 3D dose spatial distribution

metrics related to patient outcomes. By identifying organs that may
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serve as failure points for essential functions, we were able to

identify a high-dose, high-risk group of patients. Both the original

high-dose cluster and the simplified version of this cluster are

strongly correlated with the severity of self-reported symptoms

that persist up to 6 months after treatment and improve predictive

models after accounting for clinical confounders and overfitting.

This methodology can serve as a valuable tool for identifying

potential causes of lasting toxicities because of radiation-induced

damage that outperforms existing models and can be used alongside
FIGURE 4

Comparison of Dose-volume features between patients in each high-dose cluster (red) and those in low- or moderate-dose clusters (blue). Each
plot shows the dose-volume histogram for each patient. Darker lines show the median values within each group. Dashed lines show the thresholds
used for producing the simplified cluster, excluding rules that use max-dose to the ROI. Patient histograms that pass through the upper-right
window of all plots in their row are in the simplified high-dose cluster.
FIGURE 5

Histogram of symptom ratings before treatment (top), 6 week (middle) and 6 months (bottom) after treatment for each cluster (colored bars)
compared to the rest of the cohort (black outline). Lines show median rating for patients within (colored) and patients not in the cluster (black).
Mean values for high-dose clusters are labeled in colored boxes while the moderate/low dose clusters are labeled with black boxes.
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NTCP risk prediction models. Additionally, we provide a rule

mining algorithm that can simplify our rule set into a set of

actionable dose thresholds that can be used without access to the

original model.

Existing approaches for normal tissue toxicity probability

(NTCP) calculation for risk prediction rely on summary

dosimetric parameters (11), such as generalized equivalent

uniform dose (32), maximum, or mean dose to a region of

interest. Normal Tissue Complication Probability (NTCP) models

can address three-dimensional dose distributions to individual

organs to predict outcomes. Existing models suffer from

limitations imposed by challenges of dealing with correlated dose

features, assumptions of linear relationships between dose and

effect, and reliance on simplifying 3-dimensional dose

distributions to a single unit (33). We attempt to address these

issues with the use of clustering on 2-dimensional dose-volume

histograms, which allows us to capture patterns in the dose

distribution that encompass relationships between many

correlated features in a way that does not assume linearity or

uncorrelated dose features. Additionally, our simplified

stratifications are transparent, which makes them more

convenient to use when incorporating them into existing

treatment guidelines and accounting for patient-specific

information. Finally, we note that while we directly compare our
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model to NTCP models, these metrics can be used alongside each

other, as NTCP models are designed for use in calculating specific

risks when using dose planning software, while our methods are

designed to provide convenient risk stratification for identifying

high-risk patients and giving simple dosing guidelines.

Outside of NTCP models, the most common risk stratification

for OPC patients is AJCC TNM staging. T, N, and M-staging

criteria consider the size and spread of the primary tumors,

secondary tumors, and distant metastasis, respectively, to predict

survival (19). While TNM staging is not directly related to late

toxicity risk, it can serve as a proxy for the aggressiveness of

treatment and is correlated with radiation-associated dysphagia in

patient outcomes (28).

In our cohort, the predominant lasting toxicity was severe

drymouth, which occurred in 43.8% of patients, while only 5.2%

of patients reported no drymouth at 6 months, which makes it of

particular interest for clinical applications. Our cluster parameters

for drymouth include the submandibular glands, and the hard

palate, which are all possibly causally linked to patients

experiencing drymouth. When considering the simplified cluster,

we found using the V45 to the contralateral submandibular gland

and the V45 to the contralateral parotid gland achieved a sensitivity

and specificity of.89 and.98, respectively. This suggests that

treatment planning should prioritize reducing the dose delivered
TABLE 5 Results from LRT tests for severe late drymouth and severe late change in drymouth for swallowing, mucus, and voice outcomes using their
clusters.

Outcome

Swallow Mucus Voice Drymouth

All HD SHD All HD SHD All HD SHD All HD SHD

Rating > 4

P-value 0.001 0.002 0.010 0.003 0.001 0.010 0.004 0.009 0.000 0.000 0.000 0.000

Odds Ratio N/A 5.129 3.625 N/A 3.182 2.373 N/A 8.987 19.749 N/A 2.942 2.767

DAIC -10.6 -7.6 -4.7 -8.0 -9.3 -4.7 -7.2 -4.8 -11.1 -12.3 -14.2 -12.0

DBIC -2.9 -3.7 -0.9 -0.2 -5.4 -0.8 0.5 -0.9 -7.2 -4.6 -10.4 -8.2

DRating > 4

P-value 0.002 0.014 0.028 0.002 0.001 0.032 0.046 0.976 0.409 0.009 0.002 0.002

Odds Ratio NA 4.726 3.762 NA 3.382 2.171 NA 0.960 2.559 NA 2.382 2.447

DAIC -8.8 -4.1 -2.8 -8.1 -8.4 -2.6 -2.1 2.0 1.3 -5.4 -7.3 -7.4

DBIC -1.1 -0.2 1.0 -0.4 -4.5 1.3 5.6 5.9 5.2 2.3 -3.5 -3.6
frontier
All) all clusters, results do not include odds ratio; HD) Highest dose cluster; SHD) Simplified high-dose cluster using the threshold rules; DAIC) Change in Aikake Information Criteria from
inclusion of the cluster in a regression model; DBIC) Change in Bayesian Information Criteria from inclusion of the cluster in a regression model.
TABLE 6 Area-under the curve score (AUC) and Mathew’s correlation coefficient (MCC) scores from 5-fold cross-validation testing using cluster
stratification and NTCP models for severe (> 4) self-reported symptoms at 6 months.

Outcome Swallow Mucus Voice Drymouth

Metric All NTCP HD SHD All NTCP HD SHD All NTCP HD SHD All NTCP HD SHD

Rating > 4

AUC 0.63 0.56 0.61 0.57 0.60 0.49 0.61 0.62 0.68 0.56 0.67 0.61 0.60 0.56 0.60 0.57

MCC 0.20 -0.03 0.20 0.09 0.16 -0.04 0.16 0.17 0.18 -0.02 0.21 0.09 0.14 0.06 0.20 0.14

DRating > 4

AUC 0.61 0.50 0.60 0.57 0.63 0.50 0.64 0.64 0.52 0.52 0.53 0.45 0.58 0.57 0.58 0.55

MCC 0.14 -0.02 0.14 0.08 0.19 -0.03 0.19 0.18 0.00 -0.01 0.02 -0.03 0.11 0.08 0.16 0.09
All) Stratification with all clusters; NTCP) Fitted NTCP logistic regressionmodel; HD) Stratification with only the high-dose cluster; SHD) Stratification with only the simplified high-dose cluster rules.
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bilaterally to the submandibular salivary glands, as well as sparing at

least 55% of the contralateral salivary gland from irradiation. These

findings suggest that damage to both sets of salivary glands, rather

than one, is a major factor in determining severe drymouth, as

sparing a single set of glands may be able to mitigate the severity of

experienced drymouth. At the same time, high dose to the

contralateral side of the head is also correlated with larger and

more extensive tumor spread, which may be a confounding factor

that we would like to investigate in future work (28).

When comparing our clusters for different symptoms we see

that the optimal parameters for predicting both drymouth and

mucus include the parotid glands and submandibular glands, which

indicate that mucosal dysfunction may be related to drymouth. Our

parameters for swallow and voice issues consider larger sets of

muscles closer to the area around the neck and base of the tongue,

while mucus and drymouth focus on salivary glands in the mouth.

Additionally, we see that the optimal parameters for swallow and

voice consider radiation at larger levels of penetration into the

volume (V30-V65) and contain smaller high-risk clusters (Table 6).

This may reflect a greater tolerance in muscle tissue over salivary

glands to radiation. Overall, the alternative symptoms considered

were reported as severe (> 5) less frequently than drymouth, which

may explain the larger p-values on LRT tests relative to drymouth,

even when performed on predictive models was good for high-dose

and simplified high-dose clusters.
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While our models represent an improvement over existing

tools, overall performance remains relatively low, with clinical

baseline models performing only slightly above chance, which

may reflect the difficulty in precisely identifying patients at high

risk of symptoms using only EHR and dosimetric data. Notably, the

previously suggested dose limits for the parotid gland to limit

xerostomia are not correlated with drymouth, with most

outcomes yielding a negative odds ratio, likely due to other

confounders in the data. Of our confounders, we found that the

strongest predictors were ECOG performance score, having a tumor

at the base-of-tongue, and receiving proton therapy. The

relationship between tumors at the BOT supports the theory that

higher doses to the submandibular glands are related to drymouth.

Preliminary analysis suggests that patients with a primary subsite at

the BOT are associated with higher doses to the contralateral

submandibular gland (Figure 7), with an average mean dose of

66Gy and 54Gy to the ipsilateral and contralateral submandibular

glands, respectively, vs 62Gy and 34Gy for other subsites. On the

other hand, BOT tumors are not associated with higher doses to the

parotid glands.

Interestingly, we also found that late T-staging (T4) andN-staging

(N3) was strongly predictive of severe swallow and voice dysfunction,

but not mucus or drymouth. Both swallow and voice also had a higher

difference in baseline symptom ratings between the high-dose and

moderate-dose groups, as well as higher rates of tumors at the base-of-
FIGURE 6

ROC Curves for predicting symptom ratings > 4 at 6 months for each symptom ratings. Cluster stratifications include: all clusters (blue), the high
dose cluster (cyan), and the simplified high dose cluster (red). Baseline models for comparison are NTCP logistic regression models which includes
dosimetric variables and clinical variables.
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tongue. This suggests that there may be additional effects caused by

the tumor itself in addition to radiation damage. Regarding treatment

modality, we didn’t find a correlation between method and outcomes

(Table 3), but we did find a correlation between treatment method

and cluster, with the HD clusters being a higher portion of patients

that received VMAT or IMPT, especially for the swallow and

voice clusters.

Our results consider both overall severity at 6 months (rating >

4), as well as severe change in rating relative to baseline ratings

(change > 4). The inclusion of the severe change outcome is

designed to filter out patients with high baseline symptoms,

whose toxicity may not be related to radiation-induced damage.

Results show that our model still improves over the baseline in these

cases, with a slight decrease in measured effect size, which is likely

due to the smaller number of outcomes. However, we don’t find a

significant correlation when considering severe change in voice

outcomes, which may be because only 1.7% (6) of patients in the

data report this outcome (Table 3). Additionally, we see that the

high-risk clusters have a lower incidence of patients with prior

surgery than the main cohort, or the low-risk group. These findings

support the idea that the differences in patient outcomes are likely

related to radiation-driven effects, and not confounders due to the

impact of prior treatment.

With respect to our study’s limitations, while our methodology

attempts to identify the organs most likely to have a causal effect on

outcomes, the nature of radiation dosing makes identifying causal

relationships difficult due to the highly correlated nature of the
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doses. Spatially adjacent organs have highly correlated doses which

makes disentangling their effects difficult without very large

datasets. Additionally, our results are sensitive to the choice of

dose parameters and require parameter tuning in order to translate

our results to other cohorts. Although we focus on HNC cancer

here, our method could be generalized to other types of cancer that

are linked to radiation-associated side effects, although other

localized considerations may need to be taken, such as greater

shape variability in the case of bladder cancer. Since the thresholds

may be affected both by the specific organ and treatment methods,

generalizing these results to other cohorts requires calibration of

dose-volume parameters used in the clustering. Additionally, our

reliance on imputation for 17% of the baseline symptoms may

introduce some bias. Finally, while we attempt to use baseline

features to correct for high initial symptoms, this approach may

under-count patients whose initial symptoms were caused by the

tumor itself as the initial symptoms not due to radiation damage

would decrease after completion of treatment.

Future work could also consider modifying the dose

distributions on a per-organ basis, as the submandibular glands

may have lower threshold tolerances than larger muscles such as the

tongue. The model may be further improved by using segmentation

of specific sublingual and salivary glands in the mouth, beyond the

two sets that we consider. Additionally, while we only consider dose

plans prepared before treatment, future research could consider the

impact of anatomical data as well as the impact of changes in dose

due to temporal anatomical changes in response to treatment (34).
FIGURE 7

Dose distribution for patients with tumors at the BOT, Tonsil, and any other subsite for the parotid and submandibular salivary glands. Each row
represents Mean Dose, V45, and V55, respectively. BOT subsite is associated with higher average doses to the contralateral submandibular glands,
suggesting more frequent bilateral irradiation. Each rectangle in the plot represents the value range for a quantile.
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Finally, we plan on incorporating additional information that may

provide additional insight into patient risks, such as tumor location

and bilaterality. Finally, other work may investigate correlating

doses to more complicated patterns of symptom progression

rather than simply considering late severe symptoms, such as

those being investigated in other works such as (35).

In conclusion, our paper presents an unsupervised

methodology for identifying patients with high doses to a set of

organs, which we have shown are associated with a higher risk of

lasting severe symptoms. Our model uses unsupervised Gaussian

Mixture Models and approaches based in rule mining to find

stratification rules that consider failure points at multiple organs

in order to identify high-risk patients.
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