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Deep learning auto-
segmentation on multi-sequence
magnetic resonance images for
upper abdominal organs

Asma Amjad1*, Jiaofeng Xu2, Dan Thill2, Ying Zhang1, Jie Ding1,
Eric Paulson1, William Hall1, Beth A. Erickson1 and X. Allen Li1*

1Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States,
2Elekta Inc., ST. Charles, MO, United States
Introduction: Multi-sequence multi-parameter MRIs are often used to define

targets and/or organs at risk (OAR) in radiation therapy (RT) planning. Deep

learning has so far focused on developing auto-segmentation models based on a

single MRI sequence. The purpose of this work is to develop a multi-sequence

deep learning based auto-segmentation (mS-DLAS) based on multi-sequence

abdominal MRIs.

Materials and methods: Using a previously developed 3DResUnet network, a

mS-DLAS model using 4 T1 and T2 weighted MRI acquired during routine RT

simulation for 71 cases with abdominal tumors was trained and tested. Strategies

including data pre-processing, Z-normalization approach, and data

augmentation were employed. Additional 2 sequence specific T1 weighted

(T1-M) and T2 weighted (T2-M) models were trained to evaluate performance

of sequence-specific DLAS. Performance of all models was quantitatively

evaluated using 6 surface and volumetric accuracy metrics.

Results: The developed DLASmodels were able to generate reasonable contours

of 12 upper abdomen organs within 21 seconds for each testing case. The 3D

average values of dice similarity coefficient (DSC), mean distance to agreement

(MDA mm), 95 percentile Hausdorff distance (HD95% mm), percent volume

difference (PVD), surface DSC (sDSC), and relative added path length (rAPL mm/

cc) over all organs were 0.87, 1.79, 7.43, -8.95, 0.82, and 12.25, respectively, for

mS-DLAS model. Collectively, 71% of the auto-segmented contours by the three

models had relatively high quality. Additionally, the obtained mS-DLAS

successfully segmented 9 out of 16 MRI sequences that were not used in the

model training.

Conclusion: We have developed an MRI-based mS-DLAS model for auto-

segmenting of upper abdominal organs on MRI. Multi-sequence segmentation

is desirable in routine clinical practice of RT for accurate organ and target

delineation, particularly for abdominal tumors. Our work will act as a stepping

stone for acquiring fast and accurate segmentation on multi-contrast MRI and

make way for MR only guided radiation therapy.

KEYWORDS

auto-segmentation, multi-sequence MRI, abdominal organs, deep learning, MRI-
guided RT
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1 Introduction

Magnetic resonance images (MRIs) offering both anatomic and

functional information along with superior soft tissue contrast are

becoming a leading image modality for radiation therapy (RT)

planning and delivery (1, 2). For certain tumor sites, such as

abdomen, MRI is the image of choice for accurate definition of

the targets and/or organs at risk (OARs) (3). In MRI-based RT

simulation, MRIs of multi-sequences with varying contrast, slice

thickness, pixel size, pulse times, and other parameters are often

acquired allowing to optimally define tumors and/or OARs (4). For

upper abdominal anatomy, where soft high tissue contrast is

essential, multi-sequence MRIs are desirable for the delineation

(5, 6). For example, it’s a common practice to use T1 weighted MRI

to define pancreas tumor and T2 weighted MRI to delineate OARs

(e.g., duodenum) (4). While useful, it is not practical to manually

segment all acquired images, hence a common practice is either to

use and segment a single sequence for planning in the absence of

contour availability on multiple sequences or use CT-MRI

registration to take advantage of MRI information when

segmenting CT. However, this in itself is a time-consuming

practice and is riddled with CT-MRI registration uncertainties.

To take full advantage of information from multiple MRI

sequences and to improve organs at risk (OARs) and tumor

segmentation, a fully automated solution is desirable.

Big data driven, deep learning auto-segmentation (DLAS) has

shown great potential and success for RT planning and delivery

guidance for a large cohort of tumor sites (7–9). However

considerably less previous work is seen for DLAS in abdomen,

especially on MRI, due in part to the complexity of this site in

regard to the huge variability of shape and volume of the digestive

organs (e.g., stomach, duodenum, bowels) and regularly occurring

motion and intensity artifacts in MRI (10). Additionally, most of

previous works were focused on the training and/or testing of DLAS

models based on single MRI sequence. For example, Fu et al.

proposed a CNN based prediction-correction network, with

embedded dense block for auto-segmentation of 6 abdominal

organs on a single sequence TrueFISP MRI. The novelty and high

accuracy of DLAS was achieved by introducing a sub-CNN

correction network in conjunction with the original prediction

algorithm (11). Liang et al. used TruFISP MRI for training and

T1 MRI for testing to auto-segment 5 organs using a fused

approach, incorporating MRI features and a self-adaptive, active

learning classification algorithm (12). BoBo et al. used a classical

fully convolutional neural network (FCNN) to auto-segment 6

organs in the abdomen (13). Chen et al. used two-dimensional

U-net and a densely connected network to segment 10 organs on

T1 VIBE MRI (14). Zhao et al. reported a novel multi-scale

segmentation network MTBNet, (multi-to-binary block)

integrated with the ProbGate and an auxiliary loss to segment 4

organs on T1-DUAL in phase and T2-SPIR MRIs, respectively (15).

Jiang et al, adopted a more unique approach of using CT labels to

segment unlabeled T1 and T2 MRIs. They used a variational auto-

encoder to segment 4 large to medium sized organs in abdomen

(16). Li et al, developed patient specific auto-segmentation model
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using single sequence daily MRI (T2 Haste) (17). To our knowledge,

there is no study so far reporting single DLAS model for abdominal

organs based on multi-sequence MRIs.

To improve efficiency in MRI-based RT, it is desirable to

develop single DLAS model for multi-sequence MRIs. The aim of

this work was to develop a generic multi-sequence DLAS model for

12 common abdominal organs based on 4 types of commonly used

MRI sequences in RT simulation. In addition, two sequence specific

DLAS models were also developed based on the same training and

testing datasets. The performance of the 3 DLAS models were

evaluated based on their clinical applicability, e.g., accuracy of the

auto-segmented contours, labor- and timesaving of segmentation

when compared to manual contouring.
2 Materials and methods

2.1 MRI datasets

The MRI data acquired during routine RT simulation of 71

patients with abdominal tumors, each with 2 out of the 4 MRI

sequences, two post-contrast T1 (Ax T1+(f) DIXON CAIPI BH

Equilibrium W, Ax T1+(f) DIXON CAIPI BH Eq (Full Liver)_W)

and two motion-triggered T2 (Ax T2 half-Fourier single-shot turbo

spin-echo (HASTE) and AX T2 HASTE 50%) sequences from a 3T

MRI simulator (Verio, Siemens) were used for the DLAS training (61

patients = 121 datasets) and testing (10 patients = 20 datasets). The

image acquisition parameters for these sequences are summarized in

Table 1. As the imaging data comprised of a wide range of contrast

variations and field-of-view settings, all images were pre-processed

using an in-house standardization workflow including: 1) bias field

correction, using an N4 algorithm (18), 2) noise filtering using

anisotropic diffusion (19), and 3) intensity normalization by

thresholding to volumetric median. Representative slices of the 4

image sequences before and after the standardization are shown in

Figure 1. For training, a Z-score normalization method was used on

both T1 and T2 weighted images for each patient base to better

accommodate the variations in the multi-sequence images. To avoid

negative values of outlier pixels, the pixel percentage intensity
TABLE 1 Image acquisition parameters of the T1 and T2 imaging
sequences.

Sequence
Parameters

T1+(f) DIXON CAIPI BH
(Equilibrium/Eq (Full

Liver))-W

T2 (HASTE/
HASTE 50%)

MR acquisition type 3D 2D

Repetition time (TR) 4.29 msec 2000 msec

Echo time (TE) 1.23 msec 98 msec/96 msec

Slice thickness 3 mm 3 mm/5mm

Pixel spacing [1.640625, 1.640625] mm [1.1875, 1.1875] mm

Resolution 3 mm 3 mm/5mm

Flip angle 9° 150°
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distribution of [0.25%-99.75%] was used to calculate the mean and

standard deviation that were used subsequently to normalize the

whole image.

Contours of the 12 organs of interest: aorta, large and small

bowel, duodenum, esophagus, left and right kidney, liver, pancreas,

spinal cord, spleen, and stomach, were either created or slice-by-

slice reviewed by a single researcher (trained by experienced

oncologists) using oncologist provided and followed guidelines

and references (20, 21). Two experienced radiation oncologists

specialized for abdominal tumors, verified/spot check the final

contours for accuracy and consistency in contouring. Manual

contouring was done using a commercial clinical contouring tool

(MIM version 6.8.6, MIM Software Inc., Beachwood, OH, USA).

These manual contours were considered as manual reference

contours (MRC) in the DLAS training and testing.
2.2 Deep learning based
auto-segmentation (DLAS)

A modified ResUnet3D network was used to develop the MRI

based auto-segmentation models. The details of the algorithm were

reported in our previous work (22). The algorithm used encoding

and decoding structures to learn and generate label maps. Short-

and long-range connections were introduced in the convolutional

residual blocks, to among other things, decrease the number of

iterations, improve information transmission, and preserve

integrity of high-resolution features. In this work, a few additional

considerations were implemented. Two data argumentation

techniques were adopted to create additional training data with

larger variations to improve the model robustness and to avoid the

potential overfitting. Initially, an in-house developed 3D elastic

transformation with a minor random deformation on both images

and labels was applied on the fly for each case. These data can

potentially accelerate DLAS model training by learning embedding
Frontiers in Oncology 03
features, as opposed to the memorization of the pixel location of the

organs. The second data argumentation method employed a gamma

intensity transformation with a possibility p=0.3, with a gamma

uniform distribution of [0.7, 1.3]. This allowed us to mimic some

level of intensity variation across different MRIs (23). A common

practice in DLAS development is to crop the images, limiting

information to the relevant regions or organs of interest, thus

reducing the demand for large memory. In this work, we used

original image size as input to preserve and take advantage of the

relative spatial localization constraints for the multiple organs of

interest. The final presented models were trained with the original

image input size of 320 × 320 × 32 pixels. Moreover, a series of tests

were conducted including 5-fold cross validation and the impacts of

spatial resolution and scan length along z-axis, in order to optimize

DLAS performance for small, multi-segmented organs like pancreas

and duodenum. Three DLAS models were developed: 1) a multi-

sequence model (mS-DLAS), trained using 4 MRI sequences, 2) a

T1 model (T1-M), trained using the MRI data of the two T1

sequences, 3) a T2 model (T2-M), trained with the MRIs of the

two T2 sequences.
2.3 Performance of
auto-segmentation models

Performances of the obtained T1-M and T2-M models were

evaluated using the T1 and T2 images of the 10 testing cases,

respectively, whereas both these T1 and T2 images (total of 20

datasets) were used for the mS-DLAS testing. The following

quantitative metrics were calculated by comparing the auto-

segmented to the manual reference contours:
1. DSC to measure volumetric overlap.

2. Mean distance to agreement (MDA in mm) to measure

mean distance between points on each contour set.
FIGURE 1

Representative axial slices of the four image sequences used in the DLAS training and testing. Top) raw images; bottom) pre-processed, standardized
images.
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Fron
3. 95 percentile Hausdorff distance (HD95% in mm) to

achieve 95 percentiles of the maximum distance between

points on each contour set (24).

4. Percent volume difference (PVD) to account for difference

between the two volumes, a negative PVD indicates an

under drawn auto-segmented contour and vice versa (25).

5. Surface DSC (sDSC) to measure the overlap of two surfaces

(26). Unlike the volume overlap, a boundary overlap is

expected to provide more information and higher accuracy,

essentially since segmentation is an organ boundary

identification process.

6. Added path length (APL/mm) is the path length from the

manual reference contour that had to be added to correct

the auto-segmented contour boundary (surface) (27, 28).

Instead of standard APL, here we introduce a relative APL

(rAPL in mm/cc), which is defined as APL divided by the

volume. The rationale of using rAPL is to calculate the

editing distance per organ independent of the organ

volume. Otherwise, it can lead to a large APL value, just

because the organ volume is large and not necessarily

because it needs large edits.
Per our clinical experience and in-house discussion based on

literature survey, for sDSC and APL calculation, a tolerance of

2 mm was used. This tolerance is an estimation of the clinically

expected inter-observer variations in manual segmentation.

Based on the above metrics, the performance of the mS-DLAS

on the MRIs of the 4 sequences was compared with T1-M on T1

images and with T2-M on T2 images using the testing datasets of

the same sequences as those used in the model training. A schematic

of the testing data used for each model is shown in (Figure 2). In

addition, to test the model robustness, the mS-DLAS model was

applied to randomly selected 5 MRI datasets acquired using 16

sequences different from the 4 sequences used in the model training.

These different sequences included water and fat suppressed

protocols, arterial and venous imaging post contrast, delayed, and

in/out-of-phase.
3 Results

Segmentation times per case for the 12 organs using one of the

three generated models were observed to be in the range of 11-21

seconds, with an average of 15 seconds, on a common computer

hardware (Intel Xeon Gold, NVIDA GeForce RTX 2080 Ti and

NVIDA Quardro P2000 @ 2.6 GHz 128 GB RAM). Figures 3A-D

presents boxplots of 2 commonly used metrics DSC, MDA and 2

newly introduced sDSC, and rAPL metrics calculated from the

auto-segmented contours by the mS-DLAS model for the 12 organs

on the 20 testing datasets of the same 4 sequences as in the training

datasets. Figure 3E presents a radar plot of average values of each

metric for each of the 12 organs and each of the 3 developed models.

The radii or spoke, as represented by the solid line length is the
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average value of a metric per organ, relative to the maximum value

of the metric across all the 12 organs and the 3 models. For example,

the DLAS performed poorly for the esophagus as indicated by the

long spoke. Whereas relative short spokes with similar patterns

were seen for rest of the organs for the 3 models. The average values

of DSC over all the organs on the testing datasets of the same

sequences as in the model training were 0.882, 0.860 and 0.874, for

the T1-M, T2-M and mS-DLAS, respectively. The corresponding

values of MDA were 1.573, 2.128 and 1.790. The mS-DLAS

outperformed the T2-M model on T2 MRIs, whereas the T1-M

model outperformed the mS-DLAS on T1 MRIs, as shown in

(Table 2 and Figure 4).

Table 3 presents the average values of the quantitative accuracy

metrics calculated for the 12 organs for the 3 models across the

testing cases. The numbers highlighted in bold in Table 3, represent

the highest accuracy observed per organ, across all the models.

Moreover, each accuracy metric output was divided into 3

categories, as shown in Table 3: 1) “best” (pink filled), 2) “good”

(green filled), indicating need for minor adjustments, and 3) “sub-

optimal” (no fill), indicating the need for modifications. The “best”

and “good” accuracy thresholds were dictated as follows: DSC ≥ 0.9,

MDA ≤ 1.5mm, HD95% ≤ 5mm, PVD ≤ 3%, SDSC ≥ 0.85, rAPL ≤

5mm/cc; and DSC ≥ 0.8, MDA ≤ 3mm, HD95% ≤ 10mm, PVD ≤

6%, SDSC ≥ 0.75, rAPL ≤ 10mm/cc, respectively. It was observed

that 71% of the auto-segmented contours by the 3 models for all

organs fall into the best and good categories.

Examples of mS-DLAS generated contours (dark-colored lines)

on representative axial images of the 4 sequences are shown in

Figure 5. On each image, the MRC (light-colored lines), and the

auto-segmentation of the sequence-specific model corresponding to

the image sequence (medium-colored lines) is also shown for
FIGURE 2

Schematic of DLAS models implemented to respective MRI
sequences.
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FIGURE 3

(A–D) Boxplots of 4 accuracy metrics calculated for the auto-segmented contours created by the mS-DLAS model for 12 organs. High DSC and
sDSC values and consequently low MDA and rAPL trends are observed for most of the organs, thus indicating accuracy of DLAS; (E) A radar plot of
average values of each metric for each of the 12 organs and each of the 3 developed models. The radii or spoke, as represented by the solid line
length is the average value of a metric per organ, relative to the maximum value of the metric across all the 12 organs and the 3 models.
TABLE 2 Comparison of single sequence models (T1-M and T2-M) with the general sequence independent model ms-DLAS on T1 and T2 images.

DSC MDA/mm HD95%/mm PVD/% sDSC rAPL/mm/cc

Model performance on T1 images

T1-M 0.882 1.573 6.171 -8.516 0.844 12.18

mS-DLAS 0.881 1.637 7.078 -8.373 0.846 11.2

Model performance on T2 images

T2-M 0.860 2.128 8.542 -10.71 0.777 14.25

mS-DLAS 0.867 1.942 7.777 -9.535 0.785 13.11
F
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comparison. As presented in Table 3, a reasonable overlap of auto-

segmentations of the three DLAS model with the MRC was seen for

majority of the organs. For all 3 models, the best performance was

seen either for large/medium size organs with limited motion, or for

organs with stable spatial dimensions e.g., liver, kidneys, spleen,

stomach, and aorta. For long thin organs like esophagus, or multi-

segment organs like pancreas and duodenum somewhat suboptimal

segmentation accuracy was observed. The accuracy of all the 3

DLAS models was relatively inferior in the regions with organ

abutting or junction (e.g., gastroduodenal junction, duodenojejunal

flexure) as shown in Figure 5C.

As mentioned in the results section, 71% of the contours were

found to be acceptable, however, to fix the “good” and “sub-

optimal” DLAS contours, manual editing will be required. Hence,

to facilitate and identify the extent and quality of the edits required

the DLAS segmentation from the T1-M and T2-M models, an

organ-based scorecard to categorically label a DLAS contour in

terms of its editing functions and number of slices requiring edits

was created. The score ranged from 1 to 6, with score 1 requiring no

edits, corresponding to “best” category in Table 3, and score 6

requiring the re-creation of contour manually. The details of the

scoring criteria and corresponding score of each organ are shown in

the Table 4. Moreover, it was observed that, on average, the total

editing time for the auto-segmented contours of the 12 organs in a

case with average score of 3 (corresponding to “good” category in

Table 3) was approximately 15 minutes, at least 25 minutes shorter

than the manual contouring time.
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In the tests of applying the mS-DLAS model to the 16 different

sequences not used in the training datasets, it was observed that the

MS-DLAS model was able to create reasonable contours on the

MRIs of 9 out of the 16 sequences. As an example, Figure 6 shows

the mS-DLAS segmentation on representative axial, sagittal and

coronal images of four T1 sequences different to those used in the

training. For the images with distinct contrast (e.g., fat suppressed,

in-phase and out-of-phase), the mS-DLAS performed relatively

poor, indicating that these images may need to be included in the

model training.
4 Discussion

As multi-sequence MRIs are commonly used in RT, sequence

independent DLAS solution is practically desirable in MRI-based

RT. In this work, we developed such a general multi-sequence

model (mS-DLAS) for abdominal organs and showed that the

obtained mS-DLAS model generated contours of high quality and

accuracy, as was expected from the 2 sequence-specific models (T1-

M and T2-M) for the 2 sequences used in the model training. All

models obtained were able to segment the 12 common organs on an

MRI image in an average of 15 seconds. Considering an average of

75 slices in an MRI dataset, the auto-segmentation time of 0.2 sec/

slice on MRI is less than 0.3 sec/slice on CT (total 70 seconds) as

previously reported (22). The MS-DLAS model can even create

reasonable contours on certain sequences that were not included in
B

C D

A

FIGURE 4

Organ based performance of T1 model vs. mS-DLAS on T1 MRI and T2 model vs. mS-DLAS on T2 MRI. Empty box plots represent the mS-DLAS, the
filled box plots represent T1-M and T2-M.
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TABLE 3 The 3D average values of 6 contour accuracy metrics calculated for the auto-segmented contours for 12 organs using 3 DLAS models.

HD95%/mm PVD/% sDSC rAPL/mm/cc

LAS T1-M T2-M mS-DLAS T1-M T2-M mS-DLAS T1-M T2-M mS-DLAS T1-M T2-M mS-DLAS

5 1.62 2.64 2.11 -2.15 -8.95 -5.71 0.99 0.89 0.95 0.13 5 2.31

5 18.97 14.87 23.68 0.27 -4.51 1.73 0.73 0.77 0.76 9.54 7.9 7.54

1 9.39 19.52 14.51 -7.77 -6.06 -11.8 0.74 0.68 0.71 11.54 10.92 12.07

2 12.68 12.69 12.68 -18.8 -13.8 -13.5 0.72 0.64 0.68 22.34 21.65 21.79

8.87 13.63 10.02 -36.3 -39.4 -31.2 0.7 0.62 0.7 56.79 67.31 54.16

9 1.62 2.92 2.12 -1.9 -0.83 -2.91 0.98 0.91 0.95 0.96 2.66 1.75

1 1.69 2.6 2.1 -0.06 -2.95 -2.64 0.97 0.92 0.94 1.35 2.45 1.85

4 2.93 5.64 3.92 -1.64 -3.74 -2.22 0.91 0.79 0.86 0.139 2.62 1.92

1 6.8 16.61 6.57 -16 -21.7 -14.8 0.73 0.63 0.68 19.3 22.8 18.24

1 3.01 3.03 3.18 -12 -19.7 -17.8 0.87 0.82 0.85 16.54 20.86 18.74

7 1.8 3.17 3.86 -1.97 -2.73 -1.22 0.97 0.9 0.93 0.721 1.99 1.26

4.66 5.19 4.66 -3.95 -4.21 -5.37 0.81 0.76 0.79 5.45 4.85 5.38

unfilled cells respectively. Bold numbers represent highest accuracy per metric for each organ, amongst the 3 models.
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DSC MDA/mm

T1-M T2-M mS-DLAS T1-M T2-M mS-D

A_Aorta 0.96 0.91 0.94 0.5 1.05 0.7

Bowel_Large 0.85 0.86 0.85 3.8 2.85 3.8

Bowel_Small 0.85 0.84 0.84 2.38 3.42 2.8

Duodenum 0.77 0.73 0.75 2.76 3.01 2.9

Esophagus 0.7 0.66 0.71 2.26 4 2.

Kidney_L 0.97 0.95 0.96 0.51 0.9 0.6

Kidney_R 0.97 0.95 0.96 0.55 0.84 0.7

Liver 0.98 0.96 0.97 0.99 1.63 1.2

Pancreas 0.82 0.77 0.81 1.92 3.97 2.0

SpinalCord 0.8 0.8 0.8 1.2 1.23 1.2

Spleen 0.98 0.96 0.97 0.57 1.01 0.9

Stomach 0.93 0.92 0.93 1.44 1.62 1.

Accuracy per metric is categorized as “best”, “good”, and “suboptimal” with pink, green and
8
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the model training datasets if the MRI contrasts are not

substantially different from those in the training.

It has been discussed in the literature that the use of traditional

contour accuracy metrics like DSC and MDA along with the

acceptability criteria recommended by the TG 132 (27) is not

sufficient to comprehensively evaluate DLAS performance from a

practical point of view (28). To address this issue, we presented 6

volumetric and surface metrics to probe the multifaceted accuracy

of the DLAS outputs. For example, of interest is PVD > 0 observed

for large bowel with T1-model and the ms-DLAS model. This

observation is a manifestation of the T1-w image contrast. Because

of small contrast differences between the background and air in the

bowels, DLAS often overestimated the segmentation. Large -ve

PVD values, indicate under-drawn or incomplete segmentation,

an expected observation for small organs like spinalcord or organs

like pancreas and duodenum having multiple spatially located

segments (tail, body, head for pancreas and junctions with
Frontiers in Oncology 08
stomach and ileum for duodenum) as shown in Figures 3, 5. It

has been reported that among the quantitative metrics, APL has the

best correlation with the editing time taken to correct for the DLAS

contour (29). Based on the evaluation using the 6 metrics, we

observed that the T1-M model performed the best among the three

models with average DSC, MDA, HD95%, PVD, SDSC, and rAPL

values over all 12 organs of 0.882, 1.573, 6.171, -8.516, 0.844, and

12.18, respectively. The mS-DLAS performance was comparable to

that for the two sequence-specific models with overall accuracy

difference within the error ranges of the T1-M and T2-M results.

At the present time, development of DLAS on abdominal MRIs

is generally sparse. Studies available in the literature are based on

either CT or single sequence MRI. The present effort, reporting

DLAS based on multi-sequence MRI, is the first of its kind. We

compared the performance of the presently developed models with

models reported in literature, trained on single MRI sequence, using

different algorithms and training datasets (11–15). Figure 7 reports
FIGURE 5

Comparison of the manual reference contours (light-colored line) with the auto-segmented contours by the multi-sequence mS-DLAS (dark-
colored lines) and the sequence-specific models (e.g., T1-M or T2-M) (medium-colored lines) on four representative axial slices of 2 T2 (A, C) and 2
T1 (B, D) images.
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the DSC values of the presented models as well as the studies

existing in literature. Note that only DSC values of 9 organs were

available from the previous works for the comparison. While no

direct comparison of model performance was conducted, our DLAS

models resulted in the highest DSC values (> 0.9) for five organs,

i.e., kidneys, liver, spleen, and stomach, whereas comparable

performance was observed for small bowel with DSC of 0.85 from

the present work versus 0.87 reported by Chen et al. (14), and for

duodenum and pancreas with DSC of 0.77 and 0.82 from this work

versus 0.8 and 0.88 in the Chen’s work (14).

A concern in MRI-based DLAS is the intensity/signal

distortions in the MRI. While various pre-processing techniques

were used in this study to minimize this effect, high intensity

inhomogeneity or significant drop in signal can lead to inaccurate

auto-segmentation. It was observed that the best DLAS occurred on

images with clear and high contrast (the histogram had two clear,

sharp peaks), whereas relatively poor performance was seen in

images with poor contrast and intensity, e.g., at the superior edge of
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the upper abdomen region that led to inaccurate auto-segmentation

of liver and stomach in the superior slices of the scan. Another such

example is esophagus, as shown by large variations in accuracy

metrics (Figure 3). Bad segmentation of esophagus in this case is

associated to missing DLAS, because of poor image contrast,

leading to inaccurate boundary distinction. Moreover, poor DLAS

results were observed in the cases where organs were removed

or substantially deformed due to surgical procedures (e.g.,

pancreaticoduodenectomy) performed before RT. In such

situations, which happen to be a small cohort of patients in our

clinic, additional caution needs to be exercised for using DLAS as it

can lead to inaccurate or even erroneous contours for the organs

near the missing or deformed organs.

For MRI-based mS-DLAS to be used in routine clinical practice

of RT for abdominal tumors, substantial future work is required to

develop robust global DLAS models where large datasets of multi-

machine and multi-sequence MRIs are used for the model training

and testing.
TABLE 4 (A) Scorecard criteria (1-6) quantifying the extent of edits required for the auto-segmentation of T1-M and T2-M models. (B, C) Scorecard for
the auto-segmentation on T1-images and T2 images.

(A) # of edited slices Editing time Scoring Criteria Organs involved

1 0 0 No edits required Aorta, kidneys, spinalcord, spleen

2 < 3 or < 5 3 min Deletion of extra inaccurate regions, expansion of whole organ like spinalcord Kidneys, spleen, spinalcord

3 < 10 8 min Fix incomplete segmentation of organs, Duodenum, pancreas

4 20 or < 50% Edits performed at organ junctions or hilum Liver, kidneys

5 > 50% Bowels, duodenum, esophagus

6 > 80% It is recommended to redo the contour Bowels

(B) A D E K_L K_R L P SC S ST B_L B_S

1 2 5 2 2 2 2 5 3 2 2 5 5

2 1 5 5 2 1 4 3 2 2 4 5 6

3 3 4 2 2 2 2 3 1 2 2 4 4

4 2 3 5 3 3 4 1 2 3 6 5

5 1 5 2 2 2 2 3 1 2 3 5 5

(C) A D E K_L K_R L P SC S ST B_L B_S

1 3 6 6 3 3 5 5 3 3 5 5 6

2 1 3 2 2 2 3 3 2 2 3 4 6

3 4 5 2 2 1 4 3 1 2 4 5 5

4 2 3 3 2 3 3 1 4 4 5 6

5 1 5 2 2 2 2 3 2 3 2 5 6

Each column with initials is the 12 organs (Aorta, Duodenum, K_R (left kidney), K_R right kidney, Liver, Pancreas, SC (SpinalCord), Spleen, STomach, B_L (large bowel), B_S (small bowel).
Each row represents a testing case.
Per Table A, each color represents a number on the score card, for example, pink cell represent score of 0, i.e., no edits required category.
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FIGURE 6

Auto-segmented contours by the multi-sequence mS-DLAS model on representative axial, sagittal and coronal images of 4 T1 weighted MRI
sequences not used in the model training.
FIGURE 7

Comparison of DSC calculated from the presented DLAS models with previously reported auto-segmentation studies based on abdominal MRIs.
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5 Conclusions

We developed a multi-sequence deep learning auto-segmentation

model based on abdominal MRIs. The proposed model can learn and

segment onmulti-contrast T1, T2MRI images, included in its training

and on sequences not used in training but are used in routine clinical

practices, for example venous and arterial scans. The mS-DLAS was

found to be fast and accurate for most of the organs, using 6 accuracy

metrics and a scorecard criterion to predict editing times of these

DLAS contours. For MR only RT and MRgART acquisition of new

sequences to facilitate planning and treatment is part of the clinical

processes, and integration of sequence specific DLAS models in

clinical workflow will become a labor-intensive task, as it will

require updates based on clinical needs. Our work to develop single

DLAS model to segment multi-sequence, multi-contrast MRI is a

potential solution to facilitate this issue. For future studies, we aim to

improve the sequence-independent aspect, by training a global DLAS

model, to incorporate multi-machine MRIs, that are desirable in

routine clinical practice of RT, particularly for MR guided adaptive

treatments of abdominal tumors.
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