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Background: Hepatocellular cancer (HCC) is one of the most common tumors

worldwide, and Ki-67 is highly important in the assessment of HCC. Our study

aimed to evaluate the value of ultrasound radiomics based on intratumoral and

peritumoral tissues in predicting Ki-67 expression levels in patients with HCC.

Methods: We conducted a retrospective analysis of ultrasonic and clinical data

from 118 patients diagnosed with HCC through histopathological examination of

surgical specimens in our hospital between September 2019 and January 2023.

Radiomics features were extracted from ultrasound images of both intratumoral

and peritumoral regions. To select the optimal features, we utilized the t-test and

the least absolute shrinkage and selection operator (LASSO). We compared the

area under the curve (AUC) values to determine the most effective modeling

method. Subsequently, we developed four models: the intratumoral model, the

peritumoral model, combined model #1, and combined model #2.

Results: Of the 118 patients, 64 were confirmed to have high Ki-67 expression

while 54 were confirmed to have low Ki-67 expression. The AUC of the

intratumoral model was 0.796 (0.649-0.942), and the AUC of the peritumoral

model was 0.772 (0.619-0.926). Furthermore, combined model#1 yielded an AUC

of 0.870 (0.751-0.989), and the AUC of combined model#2 was 0.762 (0.605-

0.918). Among thesemodels, combinedmodel#1 showed the best performance in

terms of AUC, accuracy, F1-score, and decision curve analysis (DCA).

Conclusion: We presented an ultrasound radiomics model that utilizes both

intratumoral and peritumoral tissue information to accurately predict Ki-67

expression in HCC patients. We believe that incorporating both regions in a

proper manner can enhance the diagnostic performance of the prediction

model. Nevertheless, it is not sufficient to include both regions in the region of

interest (ROI) without careful consideration.

KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most commonly

diagnosed cancer, with more than 700,000 new HCC cases and

600,000 deaths in the world every year (1). Although surgical

resection is the primary treatment for HCC with well-preserved

liver function, the 5-year survival rate is only 10%-20% (2), due to a

high recurrence rate after operation (3).

Ki-67 is an antigen associated with cell proliferation (4), playing

a role in the therapeutic response and prognosis of malignant

tumors (5). The Ki-67 proliferation index (PI) is commonly used

as a prognostic indicator in various cancers (6–8). In HCC patients,

high Ki-67 expression is associated with aggressive tumor

characteristics and adverse outcomes (9). Accurately identifying

Ki-67 expression is crucial, and the current evaluation of Ki-67

mainly depends on surgical pathology or needle biopsy. However,

surgical pathology is a time-consuming process, and needle biopsy

may not capture the complete heterogeneity of the tumor.

Therefore, a noninvasive preoperative approach is needed to

predict Ki-67 status and guide personalized treatment in

HCC patients.

Previous research has indicated that radiomics (10), which

involves converting medical images into imaging features and

selecting those highly related to tumors, holds the potential to

predict tumor phenotype, classification, stage, and other biological

behaviors (11–13). For instance, Wu et al. (14) analyzed computer

tomography (CT) findings of HCC patients and predicted the Ki-67

expression level based on texture features extracted from CT

images. Similarly, Fan et al. (15) developed a nomogram based on

radiomics features and clinical factors from enhanced magnetic

resonance imaging (MRI) images, showing promising

diagnostic performance.

The peritumoral tissue, which is the tissue surrounding the

tumor, can also provide valuable information about tumor

initiation and progression (16). By using radiomics to analyze

peritumoral tissue, it is possible to predict Ki-67 expression in

tumors (17). And in HCC, peritumoral tissue was thought to be

associated with MVI and invasiveness (18, 19).However, few studies

have evaluated the relationship between peritumoral tissues and Ki-

67 expression in HCC patients.

CT, MR, and US play crucial roles in the evaluation of HCC: CT

can provide high-resolution images and has high sensitivity and

specificity for diagnosing HCC. MR can provide more detailed

anatomical and functional information, such as liver metabolism

and perfusion. US is a non-invasive, real-time, and repeatable
Abbreviations: HCC, Hepatocellular carcinoma; PI, proliferation index; CT,

computer tomography; MRI, magnetic resonance imaging; ROI, region of

interest; ICC, inter-/intra-class coefficients; LASSO, least absolute shrinkage

and selection operator; ROC, receiver operating characteristic; AUC, area

under the curve; DCA, decision curve analysis; SVM, support vector machine;

RF, random forest; KNN, K nearest neighbor; LR, logistic regression; ANN,

artificial neural network.
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imaging technique that holds high value for early diagnosis and

treatment monitoring of HCC (20, 21). By combining radiomics,

ultrasound has the potential to offer enhanced insights into HCC

(22). Against this backdrop, our study aimed to assess the predictive

value of radiomics features extracted from intratumoral and

peritumoral tissues using abdominal ultrasound in HCC patients

for Ki-67 status. We aimed to develop and validate an abdominal

ultrasound radiomics model, and to investigate the associations

between radiomics and Ki-67 expression in HCC patients.
2 Material and methods

2.1 Study population

Our study received ethical approval from our institutional ethics

committee. We conducted a retrospective analysis of ultrasonic and

clinical data from 145 patients diagnosed with HCC by

histopathological examination of surgical specimens in our hospital

from September 2019 to January 2023. The assignment of the

pathological diagnosis for each case was conducted in accordance

with the 2019 WHO Classification of Tumors of the Digestive System

(23). The inclusion criteria were as follows (1): ultrasound examination

performed within 1 week before the operation (2); age of 18 or older

(3); pathologically confirmed HCC (4); complete pathological data,

including the Ki-67 proliferation index (5); for patients with multiple

lesions, the largest lesion with matched pathological and

immunohistochemical diagnosis was selected. Exclusion criteria were

(1): incomplete clinical or pathological data (n = 17) (2); tumor therapy

prior to the operation (n = 8) (3); suboptimal image quality (n = 2).

Ultimately, 118 HCC patients were enrolled in the study, and they

were randomly assigned to a training group (n = 82) and a testing

group (n = 36) in a 7:3 ratio (Table 1). A flowchart illustrating the

inclusion and exclusion of patients is presented in Figure 1.
2.2 Image acquisition

The studies were donewith patients lying in a supine position with

both arms elevated above the head. And the image of the tumor at the

largest diameter was saved in digital imaging and communications in

medicine (DICOM) format for further investigation.

Ultrasound examination was performed by using one of the

following ultrasound machines: LOGIQ E8 (GE Healthcare, United

States; C5-1 convex array probes, 1–5 MHz); LOGIQ E9 (GE

Healthcare, United States; C5-1 convex array probes, 1–5 MHz);

Aplio 500 (Toshiba Medical systems, Japan; 6C1 probe, 1–6 MHz);

i800 (Cannon Medical systems Corporation, Japan; i8CX1 probe, 1-

8MHz); and Resona 7T (Mindray, China; SC6-1 U probe, 1-6MHz).
2.3 Histological and Immunohistochemistry

The specimens were fixed in 3.7% neutral formaldehyde,

paraffin-embedded, and cut into 4 mm thick sections. Ki-67

proliferation was detected using immunohistochemistry with the
frontiersin.org
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Ventana Benchmark Ultra automated staining system (Roche

Ventana, Inc.). Tumor nuclei with brown-stained nuclei were

considered positive for Ki-67 expression. The Ki-67 PI was

calculated as the percentage of positive nuclei, and HCC lesions

were classified into two groups based on their PI values: a high

expression group (PI > 20%) and a low expression group (PI ≤ 20%)

(24), as shown in Figure 2.
2.4 Tumor segmentation and
feature extraction

The intratumoral region of interest (ROI) segmentation was

manually delineated using ITK-SNAP software (Version 3.8.0,

www.itksnap.org) along the tumors’ edge. The peritumoral tissue

was defined as the tissue located at a distance of 2 cm from the

tumor. If the peritumoral ROI extended beyond the liver tissue, the

liver capsule was used as the boundary. This process was carried out

independently by two experienced sonographers who were blinded
Frontiers in Oncology 03
to the patients’ clinical data, as illustrated in Figure 3, and was

repeated one week later for consistency.
2.5 Feature extraction and
dimension reduction

Before extracting features, we standardized all ultrasound

images, which involved resampling the images to a uniform

spatial resolution of 3 x 3 x 3 mm3, normalizing the intensity

values to 32 grey levels using a normalization scale of 255, and

eliminating any machine-specific artifacts or noise.

We utilized the Pyradiomics (open-source Python package) to

extract high-order features from the original and filtered images,

such as Wavelet, LoG, Square, SquareRoot, Logarithmic,

Exponential, and Gradient filters, in addition to first- and second-

order features from preoperative abdominal ultrasound images.

Due to the wide range of magnitudes among the features, we

applied standard Z-score scaling to normalize them.
TABLE 1 Comparison of clinical characteristics between the high Ki-67 expression group and low Ki-67 expression group.

Variables High Ki-67 Group Low Ki-67 Group P

Age(year) 63.89 ± 10.96 66.43 ± 10.96 0.217

Sex 0.454

Male 49 43

Female 16 10

HBsAg 0.712

Positive 45 35

Negative 20 18

AFP (mg/mL) 2482.87 ± 11223.84 845.03 ± 4714.03 0.327

Alb (g/L) 38.61 ± 4.53 38.87 ± 4.09 0.746

ALT(IU/L) 38.24 ± 37.42 40.53 ± 36.98 0.743

AST(IU/L) 42.58 ± 46.88 46.16 ± 38.91 0.66

TBIL (µmol/L) 17.96 ± 20.1 16.2 ± 8.75 0.558

DBIL (µmol/L) 6.18 ± 11.42 6.12 ± 5.08 0.971

PT (s) 13.11 ± 1.42 13.17 ± 1.34 0.806

INR 1.05 ± 0.14 1.06 ± 0.11 0.664

Tumor Size(cm) 4.85 ± 2.77 5.0 ± 2.85 0.769

Cirrhosis 0.259

Absent 30 30

Present 35 23

Multifocality 0.371

Absent 51 45

Present 14 8
AFP, alpha fetoprotein; ALB, albumin level; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, directed bilirubin; PT, prothrombin time; INR,
international normalized ratio.
Multifocality absent means only one tumor lesion (51 cases in the High Ki-67 group and 45 cases in the Low Ki-67 group), multifocality present means there are multiple tumor lesions (14 cases
in the High Ki-67 group and 8 in the Low Ki-67 group).
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To assess the reproducibility of the radiomics features, we

computed inter- and intra-class coefficients (ICC). The inter-

class coefficients were derived by comparing the features

extracted by different sonographers, while the intra-class

coefficients were obtained by comparing the features extracted

at different times, one week apart. We only included features with

ICCs above 0.8 in subsequent feature selection, indicating

their reproducibility.

We utilized the variance method, t-test, and the least absolute

shrinkage and selection operator (LASSO) to determine the

optimal features.
Frontiers in Oncology 04
2.6 Radiomics Model construction
and evaluation

To identify the best-performing model, we constructed multiple

models using various approaches. We evaluated each model using a

receiver operating characteristic (ROC) curve and computed its area

under the curve (AUC) value.

Parameter selection plays a crucial role in optimizing the

performance of machine learning models. In this study, we

employed a two-stage approach (RandomizedSearchCV—

GridSearchCV) to select the best hyperparameters for multiple
FIGURE 2

Representative immunohistochemistry Ki-67 staining patterns and dot plots assessing the percentage of Ki-67 staining cells (original magnification,
200x). (A) Low Ki-67 expression (7%); (B) High Ki-67 expression (80%). Brown-stained nuclei were considered positive Ki-67 expression.
FIGURE 1

Flowchart of the inclusions and exclusions criteria of participants.
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machine learning models, namely Support Vector Machine

(SVM), Random Forest, K-Nearest Neighbors (KNN), Logistic

Regression, and Artificial Neural Network (ANN) (Supplement

Material I).

The model with the highest AUC in the validation group was

selected as the top performer. The intratumoral and peritumoral

models with the best performance were merged using Logistic

regression. We employed the calibration curve to visually

illustrate the agreement between pathologically confirmed Ki-

67 status and the prediction of the merged model. Moreover,

we used decision curve analysis (DCA) to assess the clinical

utility of the models by estimating the benefits at various

threshold probabilities.
2.7 Statistical analysis

All radiomics procedures and statistical analyses were

conducted with Python software (Version 3.8.5). R language

(Version 4.2.2, R Foundation for Statistical Computing, Vienna,

Austria) was used for waterfall plots, calibration curves, and DCA.

Continuous variables were compared using t-test or Mann-

Whitney U test, and categorical variables were compared with

chi-square test. P values less than 0.05 were regarded as

statistically significant.
Frontiers in Oncology 05
3 Results

3.1 Characteristics of the study population

A total of 118 patients were ultimately included in this study, with

64 being confirmed to have high Ki-67 expression and 54 with low

Ki-67 expression. These patients were randomly divided into training

(n = 82) and validation (n = 36) groups. Table 1 presents the clinical

characteristics of all patients, and there were no significant differences

between the high and low Ki-67 expression groups in terms of all

clinical characteristics (p > 0.05). Moreover, we compared the clinical

characteristics of the high and low Ki-67 expression groups in the

training and validation sets. We found a significant difference in the

mean age of the high Ki-67 expression group in the validation set

compared to the low Ki-67 expression group (62.16 ± 6.86 vs 70.35 ±

10.89, p = 0.012). However, there were no significant differences in

other clinical characteristics (p > 0.05) (Table 2).
3.2 Feature selection

We initially extracted 1595 features from both the original and

filtered images, which were further refined by excluding 6 features in

the intratumoral model, 19 features in the peritumoral model, and 22

features in combined model#2 based on their intra- and inter-class
FIGURE 3

An example of delineating region of interest (ROI) on abdominal ultrasound imaging in ITK-SNAP software. (A): original image; (B): intratumoral ROI.
(C): peritumoral ROI; (D): combined ROI (intratumoral tissue + peritumoral tissue).
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coefficients. To reduce dimensionality, we removed low variance

radiomics features and those that were highly correlated (with an

absolute Pearson correlation greater than 0.8) with any other feature.

Further refinement was performed using T-test and LASSO

regression, resulting in 7 radiomics features in the intratumoral

model, 8 radiomics features in the peritumoral model, and 5

radiomics features in combined model#2 (Table 3). The detailed

LASSO results of the intratumoral model, peritumoral model, and

combined model#2 can be found in Supplementary Figure 1-3.
3.3 Intratumoral and peritumoral model

We utilized various modeling techniques, including Support

Vector Machine (SVM), Random Forest (RF), K Nearest Neighbor
Frontiers in Oncology 06
(KNN), Logistic Regression (LR), and Artificial Neural Network

(ANN), to identify the best modeling method.

In the intratumoral model, the SVM algorithm had an AUC of

0.796 (0.649-0.942), the RF algorithm had an AUC of 0.786 (0.637-

0.936), the KNN algorithm had an AUC of 0.772 (0.619-0.926), the

LR algorithm had an AUC of 0.777 (0.625-0.93), and the ANN

algorithm had an AUC of 0.765 (0.609-0.921). The SVM classifier

exhibited the highest performance in predicting Ki-67 expression in

the intratumoral model.

Similarly, the SVM algorithm was the most effective in the

peritumoral model with an AUC of 0.772 (0.619-0.926), while the

RF algorithm had an AUC of 0.755 (0.597-0.914), the KNN

algorithm had an AUC of 0.718 (0.551-0.886), the LR algorithm

had an AUC of 0.749 (0.589-0.909), and the ANN algorithm had an

AUC of 0.740 (0.578-0.902). The ROC curves for the validation
TABLE 2 Comparison of clinical characteristics between the high Ki-67 expression group and low Ki-67 expression group in training and validation
groups.

Variables
Training Group

P
Validation Group

P
High Ki-67 Low Ki-67 High Ki-67 Low Ki-67

Age(year) 64.61 ± 12.19 64.58 ± 10.49 0.992 62.16 ± 6.86 70.35 ± 10.89 0.012*

Sex 0.989 0.199

Male 37 29 12 14

Female 9 7 7 3

HBsAg 0.544 0.090

Positive 29 25 16 10

Negative 17 11 3 7

AFP (mg/mL) 2739.34 ± 12637.85 1077.99 ± 5666.61 0.471 1861.95 ± 6613.78 351.69 ± 961.05 0.371

Alb (g/L) 38.5 ± 4.39 38.91 ± 4.5 0.685 38.88 ± 4.83 38.8 ± 3.03 0.955

ALT(IU/L) 37.83 ± 26.06 47.1 ± 41.67 0.227 39.25 ± 56.07 26.62 ± 17.36 0.393

AST(IU/L) 40.86 ± 24.24 49.87 ± 44.26 0.25 46.75 ± 77.93 38.31 ± 21.91 0.678

TBIL
(µmol/L)

18.18 ± 22.51 17.64 ± 9.48 0.893 17.41 ± 12.43 13.16 ± 5.9 0.22

DBIL
(µmol/L)

6.58 ± 13.31 6.35 ± 4.79 0.924 5.22 ± 4.0 5.62 ± 5.63 0.81

PT (s) 12.97 ± 1.14 13.33 ± 1.33 0.196 13.44 ± 1.9 12.84 ± 1.29 0.289

INR

Tumor Size
(cm)

1.04 ± 0.1 1.06 ± 0.11 0.306 1.07 ± 0.2 1.05 ± 0.09 0.68

Cirrhosis 0.696 0.158

Absent 21 18 9 12

Present 25 18 10 5

Multifocality 0.362 0.797

Absent 36 31 15 14

Present 10 5 4 4
fr
AFP, alpha fetoprotein; ALB, albumin level; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, directed bilirubin; PT, prothrombin time; INR,
international normalized ratio.
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groups in the intratumoral and peritumoral models were displayed

in Figure 4.

To better illustrate the performance of the model, we plotted a

waterfall plot (Figure 5). The height of each bar in the chart

represented the model predicted value minus the cut-off. The bars

above the y=0 line indicate that the model predicts high Ki-67

expression, while the bars below the y=0 line indicate that the model

predicts low Ki-67 expression. The results demonstrated the

reliability of the intratumoral model and the peritumoral for

evaluating Ki-67 expression levels in patients with HCC.
3.4 Combined model

The combined model was built in two different ways: Combined

model#1, using logistic analysis to combine the most effective

intratumoral and peritumoral models; Combined model#2, by

drawing the ROI, in which both the tumor and the tumor margin

tissues were included.

In combined model#1, we adopted logistic regression to

coalesce the outcome of the intratumoral model and the

peritumoral model. The AUC of combined model#1 was 0.870

(0.751-0.989). According to the Delong test, we observed that

combined model#1 demonstrated a significantly higher diagnostic

efficacy in comparison to the peritumoral model (p < 0.05), yet not
Frontiers in Oncology 07
surpassing the intratumoral model (p = 0.269). In combined

Model#2, akin to the intratumoral and peritumoral models,

various modeling approaches were employed in the model

building. The maximum AUC of combined Model#2 was 0.762

(0.605-0.918) with the application of a LR classifier (Figure 6). Both

combined model#1 and combined model#2 could predict Ki-67

expression accurately (Figure 7).

No noteworthy disparity existed in the diagnostic prowess of

combined model#2 in comparison to that of the intratumoral model

(p = 0.734) or the peritumoral model (p = 0.596). Nevertheless, the

diagnostic capability of combined model#2 was inferior to that of

combined model#1 (p < 0.05).

Combined model#1 demonstrated the most noteworthy AUC

in the four models. Calibration graphs of combined model#1 and

Hosmer-Lemeshow test exposed a satisfactory concurrence

between the anticipated and pathologically affirmed Ki-67 status

(P = 0.663). Using DCA, the performances of all models were

evaluated. Each model showed a higher area under the decision

curve than the “treat all” (solid gray line) or “treat none” (dotted

gray line) approaches. Out of the four prediction models,

combined model#1 had the greatest area under the decision

curve and exhibited the most benefit over a wide range of

threshold probabilities (Figure 8).

We observed combined model#1 had the largest AUC,

accuracy, and F1-score in the four models (Table 4).
TABLE 3 The finally selected radiomics features and their coefficient values.

Model Filter Feature class Feature Coefficient

Intratumoral model

wavelet-LHH glrlm HighGrayLevelRunEmphasis 0.06926744

wavelet-LHH glrlm LowGrayLevelRunEmphasis -3.22125E-15

wavelet-HLH glcm SumEntropy 0.07984176

wavelet-HHH firstorder Skewness 0.02174849

wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.06275222

square glszm LowGrayLevelZoneEmphasis -0.02366083

exponential glszm GrayLevelVariance -0.03274517

Peritumoral model

wavelet-HLL glszm SmallAreaHighGrayLevelEmphasis -0.001741

wavelet-HLL ngtdm Strength -0.059366

wavelet-HHH glszm SizeZoneNonUniformityNormalized 0.004511

wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.049172

exponential glcm Idn -0.05651

exponential glszm ZoneVariance 0.0323

logarithm glrlm ShortRunLowGrayLevelEmphasis -0.134367

gradient ngtdm Strength -0.060406

Combined model#2

wavelet-LHL firstorder Mean -0.05218

wavelet-HLH firstorder Mean 0.047801

wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.113069

exponential glcm Idn -0.036239

gradient ngtdm Strength -0.081881
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A B

FIGURE 4

Receiver operating characteristic (ROC) curve results from different modeling methods in the intratumoral model and peritumoral model. The SVM
algorithm showed the highest diagnostic performance with an AUC value of 0.796 (0.649-0.942) in the intratumoral model (A) and 0.772 (0.619-
0.926) in the peritumoral model (B).
A

B

FIGURE 5

The waterfall plot displays the model’s performance in the intratumoral model validation group (A) and the peritumoral model validation group (B).
The height of each bar in the chart represented the model predicted value minus the cut-off. The bars above the y=0 line indicate that the model
predicts high Ki-67 expression, while the bars below the y=0 line indicate that the model predicts low Ki-67 expression.
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A B

FIGURE 6

(A) Receiver operating characteristic curve analysis of combined model#1; (B) Receiver operating characteristic (ROC) curve results of different
modeling methods in combined model#2. The LR algorithm showed the highest diagnostic performance with an AUC value of 0.762 (0.605-0.918).
A

B

FIGURE 7

The waterfall plot displays the model’s performance in combined model#1 validation group (A) and combined model#2 validation group (B). The
height of each bar in the chart represented the model predicted value minus the cut-off. The bars above the y=0 line indicate that the model
predicts high Ki-67 expression, while the bars below the y=0 line indicate that the model predicts low Ki-67 expression.
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A B

C

FIGURE 8

(A). Comparison of receiver operating characteristic curves for differentiation of the four models; (B). Calibration curve of combined model#1
presented a good agreement between the predicted and pathologically confirmed Ki-67 status with dotted line (actual calibration) closed to dashed
line (perfect calibration); (C). Decision curves for the intratumoral model, peritumoral model, combined model#1, and combined model#2.
TABLE 4 The performance of the intratumoral model, peritumoral model, combined model#1, and combined model#2 in predicting Ki-67 expression.

Intratumoral model Peritumoral model Combined model#1 Combined model#2

tp 18 8 14 15

fp 7 0 2 6

fn 1 11 5 4

tn 10 17 15 11

AUC 0.796 0.772 0.87 0.762

Sensitivity (%) 94.74% 42.11% 73.68% 78.95%

Specificity (%) 58.82% 100.00% 88.24% 64.71%

Precision (%) 72.00% 100% 87.50% 71.43%

Recall (%) 94.74% 42.11% 73.68% 78.95%

Accuracy (%) 78% 69.44% 80.56% 72.22%

F1-score 0.8182 0.5926 0.8 0.75
F
rontiers in Oncology
 10
tp, true positive; fp, false positive; fn, false negative; tn, true negative; AUC, area under the curve.
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4 Discussion

We evaluated the performance of an ultrasound radiomics model

for preoperative prediction of Ki-67 expression in HCC patients. The

study showed that the model, based on both intratumoral and

peritumoral tissues, exhibited excellent performance and

generalization ability in predicting Ki-67 expression. As far as we

know, this is the first study to assess the reliability of such an

ultrasound radiomics model that combines both intratumoral and

peritumoral tissues for predicting Ki-67 expression.

In our study, both the radiomics models based on intratumoral

and peritumoral tissues demonstrated accurate prediction of Ki-67

expression. The intratumoral model had an AUC of 0.796(0.649-

0.942), while the peritumoral model had an AUC of 0.772(0.619-

0.926). Furthermore, the Delong test revealed no significant

difference in diagnostic performance between the two models,

suggesting that peritumoral tissues also provide valuable

information for predicting Ki-67 expression.

Our study combined both intra-tumor and peri-tumor tissues in

the analysis, providing a more comprehensive representation of the

tissue microenvironment surrounding the tumor. Combined model#1

showed better diagnostic performance than the peritumoral model,

but not the intratumoral model. This result demonstrated the

capability of the intratumoral model. Although no significant

difference was found between the intratumoral and combined

model#1, incorporating the peritumoral model contributed to a

larger AUC, accuracy, F1-score, and a better DCA result. Compared

to other radiomics models that only focus on intratumoral tissue, our

study may provide improved accuracy and robustness in predicting

Ki-67 expression in HCC. The additional information from the

peritumoral tissue can help to better capture the tumor biology and

heterogeneity as supplemental data in combined model#1.

We combined intratumoral and peritumoral tissues in two

ways: using logistic regression to combine the models, or

including both regions in the ROI. The combined model using

logistic regression achieved better diagnostic performance, likely

because it takes into account the interplay between the intratumoral

and peritumoral features in a more sophisticated way. Logistic

regression is a statistical model that can be used to predict a

binary outcome based on a set of input features (25). In our

study, the outcome was the expression of Ki-67 in HCC, and the

input features were the radiomics features from both the

intratumoral and peritumoral regions. By using logistic regression

to combine the radiomics models, we can take into account the

interplay between the intratumoral and peritumoral features in a

more nuanced way. The logistic regression model can learn the

relationship between the features, and weigh each feature according

to its contribution to the prediction. This can help to identify the

most important features and improve the overall accuracy of the

model. In contrast, simply including both the intratumoral and

peritumoral regions in the ROI may not fully capture the interplay

between the features. This approach may also result in larger ROIs,

which can increase the noise and variability in the features, and may

not effectively capture the most important features for the

prediction (26, 27). We think the use of logistic regression to

combine the radiomics models was a more sophisticated
Frontiers in Oncology 11
approach that can take into account the relationship between the

features in a more effective way, and can help to improve the

accuracy of the prediction of Ki-67 expression in HCC.

Radiomics features can be grouped into first-order, second-

order, and high-order ones. First-order, or histogram features, refer

to gray-level values of single voxels, not considering spatial

correlations. Second-order, typically called texture analysis, depict

spatial relationships between voxels with similar gray levels within

lesions (28), usually GLCM and GLRLM being used to indicate

tumor heterogeneity and complexity (29, 30). High-order features

are derived from filters applied to images, such as Wavelet, LoG,

Square, SquareRoot, Exponential, Logarithm, and Gradient (31),

gathering more hidden information from images (32). Most

radiomics models were based on low-order features (first-order or

second-order), with little evidence of whether whole-order

radiomics features (first-order, second-order, and high-order) can

predict Ki-67 expression in HCC patients. We obtained eight

radiomics features, five of them being wavelet features, the result

suggesting wavelet is essential for predicting pathological results, as

in previous studies (33, 34). Wavelet filter divides images into sub-

images of different frequency components, allowing to explore

spatial heterogeneity within ROIs at multiple scales (34). Wavelets

are mathematical functions that can be used to analyze signals and

images in a multi-scale manner, allowing for the extraction of

features at different levels of detail. In the context of HCC

evaluation, wavelet features may be useful in capturing the

complex patterns of Ki-67 expression that are associated with the

cellular proliferation and aggressiveness of the tumor. Additionally,

wavelets have been successfully used in other imaging-based studies

to extract features that are indicative of specific biological processes

(35). The fact that wavelet features were found to be the most

predictive in our study suggested that they are capturing relevant

information about Ki-67 expression in HCC and that they may be

particularly well-suited for this type of analysis. In our opinion, the

use of wavelet features in predicting Ki-67 expression in HCC

highlights the potential of multi-scale analysis for radiomics studies

and provides a promising direction for future research in this area.

There is ongoing research to identify clinical parameters that can

accurately predict Ki-67 expression preoperatively in patients with

HCC. Currently, there is no established clinical parameter or

combination of parameters that can reliably predict Ki-67

expression in HCC. However, several factors have been associated

with increased Ki-67 expression, including larger tumor size, higher

serum alpha-fetoprotein levels, and the presence of vascular invasion

(15, 24, 36). Other factors, such as age, underlying liver disease, and

liver function, may also play a role in determining Ki-67 expression in

HCC (37, 38). In our research, only age was found to be significantly

different between the high Ki-67 expression group and the low Ki-67

expression group in the validation set. And there was no significant

difference in other clinical parameters between low and high ki-67

expression groups. We think the relationship between clinical

parameters and Ki-67 expression in HCC is complex and

predicting Ki-67 expression only by clinical parameters is difficult.

Our research has demonstrated that ultrasound based radiomics

analysis of intratumoral and peritumoral tissues can provide valuable

pathological information about HCC. We hope that our study can offer
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insights into challenging issues, such as themonitoring strategy for early

or very early stages of liver cancer, in which the exact value of

ultrasound is subject to certain controversies. Park HJ et al. (39)

thought that while ultrasound holds some value in the surveillance of

HCC, its sensitivity is relatively low, particularly in the early and very

early stages of liver cancer. Therefore, it is recommended to

complement ultrasound with other imaging techniques such as CT

and MRI. However, both the Japanese guidelines and the American

Association for the Study of Liver Diseases guidelines endorse

ultrasound surveillance for early detection of HCC in patients with

cirrhosis or chronic hepatitis B. Furthermore, the ultrasound contrast

agent Sonazoid can provide insights into the blood supply features of

HCC, assisting in determining the need for treatment in low-vascularity

nodules smaller than 1cm (21). A meta-analysis suggested combining

ultrasound with AFP significantly increases early HCC detection,

making it a preferred surveillance strategy for cirrhosis patients until

better options are available (40). We hope radiomics may provide

valuable insights to help ultrasound overcome these limitations (41).

There were some limitations in our study: First, this was a

single-center study, which may not represent the population of

interest as a whole. Second, the sample of our study was small. The

small sample size may limit the ability to control for potential

confounding factors, such as age, sex, and comorbidities, which may

affect outcomes. Third, this was a retrospective study, which may

introduce potential selective bias. Fourth, the influence of different

ultrasound devices was not analyzed in our study, which may affect

the reproducibility and generalizability of the radiomics model.

Fifth, it should be noted that all patients included in our study were

surgical cases, which might introduce a certain degree of selection

bias as individuals with advanced stages who were not eligible for

surgical treatment were not included in the study. This limitation

may impact the generalizability of the findings to the broader

patient population with the condition under investigation. Finally,

we did not select the entire tumor as the ROI but chose the section

where the tumor had the maximum diameter. This may lead to the

loss of partial information, and the obtained radiomic features may

not represent the entire tumor.
5 Conclusion

We provided an ultrasound radiomics model combining

intratumoral and peritumoral tissues which could accurately predict

Ki-67 expression in patients with HCC patients. By combining both

intratumoral and peritumoral information, our model may provide a

more comprehensive picture of the disease and may help to improve

patient prognosis and treatment planning. According to our view, the

use of both intratumoral and peritumoral tissue in the radiomics

model was a unique and valuable approach that can provide new

insights into the biology of HCC and help to improve patient care.
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