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Objectives: To explore the value of radiomics based on Dual-energy CT (DECT)

for discriminating preinvasive or MIA from IA appearing as GGNs before surgery.

Methods: The retrospective study included 92 patients with lung adenocarcinoma

comprising 30 IA and 62 preinvasive-MIA, which were further divided into a

training (n=64) and a test set (n=28). Clinical and radiographic features along

with quantitative parameters were recorded. Radiomics features were derived

from virtual monoenergetic images (VMI), including 50kev and 150kev images.

Intraclass correlation coefficients (ICCs), Pearson’s correlation analysis and least

absolute shrinkage and selection operator (LASSO) penalized logistic regression

were conducted to eliminate unstable and redundant features. The performance

of the models was evaluated by area under the curve (AUC) and the clinical utility

was assessed using decision curve analysis (DCA).

Results: The DECT-based radiomics model performed well with an AUC of 0.957

and 0.865 in the training and test set. The clinical-DECT model, comprising sex,

age, tumor size, density, smoking, alcohol, effective atomic number, and

normalized iodine concentration, had an AUC of 0.929 in the training and

0.719 in the test set. In addition, the radiomics model revealed a higher AUC

value and a greater net benefit to patients than the clinical-DECT model.

Conclusion: DECT-based radiomics features were valuable in predicting the

invasiveness of GGNs, yielding a better predictive performance than the clinical-

DECT model.
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Introduction

Lung cancer is the main cause of mortality among malignant

tumors. Non-small cell lung cancer represents approximately 85%

of all lung cancer cases, and adenocarcinoma is the primary

histological type (1, 2). Ground-glass nodules (GGNs) refer to

nodules with a slight increase in density on computed

tomography (CT) that do not cover the bronchial structures or

vascular edges (3). According to solid components, GGNs can be

divided into pure GGNs (pGGNs) and part-solid nodules. When a

GGN is persistent on HRCT, it usually indicates the existence of

lung adenocarcinoma (LUAD) or its precursors, including invasive

adenocarcinomas (IA), minimally invasive adenocarcinoma (MIA),

adenocarcinoma in situ (AIS) and atypical adenomatous

hyperplasia (AAH) (4–6), which can be difficult to distinguish

without any additional investigation or more invasive measures.

Preinvasive-MIA and IA required different surgical approaches,

postoperative treatments and had distinct prognoses. Limited wedge

resection or segmental resection is typically performed for

preinvasive-MIA to preserve maximum functional lung

parenchyma, while lobectomy is always performed for IA to reduce

tumor recurrence (7, 8). Thus, accurately predicting the invasiveness

of lung adenocarcinoma before surgical decision-making is crucial for

selecting appropriate surgical approach and improving prognosis.

Although some CT findings, such as maximal tumor diameter and

density, have previously been shown to aid in identifying tumor invasion

(9, 10), evaluating these characteristics relies on radiologists’ experience.

Dual-energy CT (DECT) has emerged as a potential clinical diagnostic

tool (11–13), enabling low-dose scanning, obtaining diagnostic images

and various quantitative parameters unavailable with conventional CT.

Recent studies (14, 15) have explored using DECT parameters, including

CT60 keV values, virtual HU, and normalized iodine concentration

(NIC), to assess the invasiveness of LUAD.

Radiomics can extract numerous quantitative features from

medical images and convert them into minable data for

subsequent analysis to support decision-making (16). Several

studies showed the potential of radiomics to predict LUAD

invasiveness based on conventional CT (17, 18). The developed

radiomics models performed moderately well in predicting tumor

invasion with areas under the curves (AUCs) of 0.77 and 0.79,

respectively. However, to our knowledge, no previous radiomics

analysis have examined the invasion of LUADmanifesting as GGNs

based on DECT. It is of great interest whether DECT-based

radiomics can improve the evaluation of tumor invasiveness.

Consequently, the aim of the study was to identify the value of

DECT-based radiomics in differentiating preinvasive-MIA from IA

characterized as GGNs and compared its predictive value with the

clinical-DECT model.
Materials and methods

Patients

From January 2021 to February 2022, we included 220 patients

with pulmonary nodules who performed DECT-enhanced scanning
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before surgery at our institution. 128 participants were removed due

to (1): solid nodules (n=41) (2); large lesions over 3cm (n=6) (3);

inflammatory lesions (n=36) (4); non-adenocarcinoma (n=29) (5);

preoperative adjuvant therapy (n=16). Thus, 92 patients were

included with 62 cases of preinvasive-MIA and 30 cases of IA

and then were randomly assigned to a training (64 patients) and test

cohort (28 patients), with a ratio of 7:3 (Figure 1).
Pathological analysis

All surgical specimens were fixed in formalin and stained with

hematoxylin-eosin as routinely prescribed by our hospital. Two

pathologists examined the specimens and recorded the pathological

subtype of each tumor following the International Association for the

Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/

European Respiratory Society (ERS) (19). All GGNs were separated

into preinvasive-MIA (AAH, AIS and MIA) and IA groups.
DECT acquisition

Following the standard procedure, the CT scans were taken using

a dual-layer spectral CT (IQon; Philips Healthcare). The acquisition

parameters were as follows:120kVp, with the automatic regulation of

the tube current; 512 × 512 matrix; collimation 64 × 0.625 mm;

reconstructed slice thickness and interval 1.5 mm/1.5 mm. A contrast

medium (Iohexol, 320 mg/ml) was injected intravenously at a rate of

2–2.5 ml/s. Conventional images were reconstructed using the iDose4

(Philips Healthcare) algorithm, and spectral-based images (SBIs)

were reconstructed using a spectral reconstruction algorithm.
Image analysis

Two radiologists (HSS and YTZ, with 31 and 2 years of

experience in thoracic radiology, respectively) blind to the clinical

and histologic findings analyzed CT images and measured the

quantitative parameters in the artery phase (AP) and venous phase

(VP). Tumor size and density (part-solid nodules and pGGNs) were

chosen to help identify tumor invasion in patients with LUAD.

Spectral CT images were quantitatively analyzed by commercially

available tools (IntelliSpace Portal v. 10.1, Philips Healthcare).

Reconstructed images were as follows: iodine-based material

decomposition images, effective atomic number (Zeff) images, and

101 sets of virtual monochromatic images (VMIs). The rules for

measuring GGNs were shown below (20, 21): (I) Select a region-of-

interest (ROI) to cover over 70% of the tumor area in the largest slice,

avoiding major vessels and bubbles. (II) Keep the ROIs consistent in

size and position across different image types and phases. (III) Take the

average values of 2 independent measurement results for analysis and

comparison. The following imaging parameters were acquired: CT

attenuation values of nodules from VMIs (including 40 kev and 100

kev), iodine concentration (IC), and Zeff at AP and VP. Since the body

weight, circulation status and body composition could affect IC values,

they were standardized to that of the aorta in the same slice to obtain
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the normalized iodine concentration (NIC): NIC = IC Ca/IC aorta, as

previously described (22).Mean IC values were recorded for lesions and

aorta ROIs. The slope of the spectral curve [slope(k)] was computed:

slope(k) = |CT number (40 keV) − CT number (100 keV) |/60.
DECT images segmentation

Studies (23, 24) have shown that VMIs generated by spectral CT

can improve reproducibility in measuring part-solid nodules. The

monochromatic reconstructions at 50-55 keV yield the best image

quality for lung parenchyma. Thus, we chose to delineate tumors on

50kev monoenergetic images. Two junior radiologists (XH and YZ

with 6 and 2 years of experience in thoracic imaging, respectively)

delineated the ROI on DECT images semi-automatically layer by

layer using 3D-slicer software. The 3D-slicer software was then used

to automatically reconstruct the three-dimensional volumes of

interest (3D-VOIs) (Figure 2). To evaluate intra-and inter-

observer repeatability of feature extraction, images from 30

patients were randomly chosen and independently segmented on

the target slice by the same radiologist (YZ) after one week and

another radiologist (SHS) with 31 years of experience, respectively.

Intra-and inter-observer agreement in the imaging evaluation was

assessed by the intraclass correlation coefficient (ICC) (25).
Radiomics feature extraction

Studies (26, 27) have shown that venous phase images can better

reflect tumor microcirculation and result in high clinical usefulness.

Low-energy images (40–70 keV) in VMI can substantially increase

vascular contrast, while high-energy images(80-190kev) can

decrease the metallic artifact to improve the detection of lung

nodules (28). As a result, the data in venous phase were

transmitted to workstations to generate VMIs with 50 keV and

150 keV energy levels for radiomics investigation. A Radiomics

system (ultra scholar, ShuKun (BeiJing) Technology) was used for
Frontiers in Oncology 03
the extraction of radiomics features, and a third-party Python

library called Pyradiomics was used for extracting all the

radiomics features in the feature extraction module (29). Before

radiomics examination, each 3D CT image was resampled to a

spacing of (0.7, 0.7, 1.5) mm using a B-spline curve interpolation

algorithm. 1037 3D-radiomics features were extracted for each VOI

(types and numbers are displayed in Figure 2, and details are

available at pyradiomics.readthedocs.io/en/latest/features.html).
Delta- and mean-radiomics features

For DECT scans with 50 keV and 150 keV energy levels,

radiomics features (RFs) were extracted for these two energy

levels, respectively. The delta-RFs referred to the relative net

change of RFs between two energy levels (30):

Relative Net Change 

=  (Feature150kev  – Feature50kev)=Feature50kev

And mean-RFs referred to the mean values of RFs between two

energy levels:

Mean RF  =  (Feature150kev  + Feature50kev)=2
Statistical analysis

All statistical analyses were carried out using R (version 4.0.2;

http://www.Rproject.org) and the SPSS software (SPSS, version 21,

IBM, Chicago, IL, USA). The ‘glmnet’ package was used for LASSO

binary logistic regression. The ‘rms’ package was used for multivariate

binary logistic regression. The ‘pROC’ program was employed to

conduct receiver operating characteristic (ROC) analysis. Categorical

variables were represented as frequency (percentage) and Fisher’s exact

X2 test was applied to compare categorical variables. We used the

Shapiro-Wilk test to check the normality assumption of the continuous
FIGURE 1

Study flowchart. MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinomas.
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data. When the data were normally distributed, they were expressed as

mean ± standard deviation and the independent sample t test was

applied to compare them. If the data distribution was not normal, they

were represented as median (interquartile range, IQR) and the Mann-

Whitney U test was employed for the nonparametric analysis. P<0.05

(two-tailed) was regarded as statistically significant.

All radiomics features were normalized to the z-score. To eliminate

redundant and unstable features, ICC calculation and Pearson’s

correlation analysis were conducted (r>0.8, ICC>0.75). Least absolute

shrinkage and selection operator (LASSO) analysis was carried out to

identify characteristics for further evaluation (31). The maximum area

under the curve (AUC) and five-fold cross-validation served as features

filtering criteria. A multivariate logistic regression (LR) algorithm

established a classification model based on the selected features. Two

models were then constructed: a clinical-DECT model incorporating

clinical andDECT quantitative parameters and a radiomicsmodel based

on the radiomics features. The accuracy, sensitivity and specificity were

calculated for each model. The confounder matrix illustrated the

predictive ability. The DeLong test was performed to verify the

efficiency of different models for diagnosis. Moreover, we conducted a

decision curve analysis (DCA) to evaluate the clinical value of themodels

by estimating the net benefits under different threshold probabilities.
Results

Clinical characteristics and quantitative
DECT results of adenocarcinoma

The study included 62 preinvasive-MIA and 30 IA patients. Table 1

summarizes the clinical characteristics, main CT features (tumor size

and tumor density type) and quantitative results (IC, Zeff and slope[k])
Frontiers in Oncology 04
of lesions. Significant differences could be found in age, sex, smoking and

alcohol history (all p <0.05). Considering CT features, IA was typically

larger than preinvasive-MIA (15.5 mm vs. 10 mm, p < 0.001). Tumor

density differed between the IA and preinvasive-MIA group (p < 0.001).

Most IA manifested as part-solid nodules (25/30, 83.3%; Figure 3).

Regarding quantitative parameters, there was significant difference in

Zeff at AP and VP (p = 0.008, p = 0.003, respectively). NIC was larger in

IA than in preinvasive-MIA at VP (p = 0.04). However, no significant

difference was found in slope (k) values between the groups.

Afterwards, the clinical-DECT model was established by LR

algorithm (Table 2), including sex, age, smoking, alcohol history,

tumor size, density, Zeff, and NIC, with an AUC of 0.929 (sensitivity

of 90.5% and specificity of 69.8%) in the training cohort and an AUC of

0.719 (sensitivity of 55.6% and specificity of 73.7%) in the test cohort

(Figure 4A). Table 3 illustrated the distribution of selected clinical and

DECT characteristics in the training and test set.
Radiomics model building and validation

According to Pearson’s correlation analysis results, 332 delta-

radiomics features were selected to build the delta-radiomics model.

Then, 138 features were preserved from 50kev images by ICC and PCC.

Based on the mean-RFs mentioned above, 276 features were derived

combined with the features of 150kev images. According to LASSO

penalized logistic regression analysis, seven features (three first order and

four second order parameters, including GLCM and GLRLM features)

revealed a significant correlation between radiomics and

adenocarcinoma invasiveness (Figures 5A, B). Then, these radiomics

features were taken into the LR model to establish a radiomics model.

Table 4 illustrated the features included in the radiomics model and their

coefficients. The radiomics model performed well in the training (AUC:
FIGURE 2

Radiomics workflow.
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0.957, sensitivity: 95.2%, and specificity: 79.1%) and test cohorts

(AUC:0.865; sensitivity:88.9%, and specificity: 73.7%) (Figure 4B).

The rad-score of each lesion was computed according to the

following formula:

Rad-Score  =  -1:54 + 1:99*delta_wavelet:LLH_firstorder_Median

    + 0:64*mean_wavelet:LHL_glrlm_LongRunEmphasis

    + 0:94*mean_wavelet:HLL_glrlm_LongRunHighGrayLevelEmphasis

    + 1:42*mean_wavelet:LLL_firstorder_RobustMeanAbsoluteDeviation

    -1:65*mean_log:sigma:6:0:mm:3D_firstorder_10Percentile

   -0:87*mean_log:sigma:6:0:mm:3D_firstorder_InterquartileRange

    + 0:10*mean_log:sigma:6:0:mm:3D_glcm_ClusterShade

Figure S1 displayed the rad scores significantly higher in IA

than in preinvasive-MIA (p <0.001) in the training and test cohorts.
Performance comparison between
different models

In comparison with the clinical-DECT model, the radiomics

model exhibited improved predictive ability in both the training
Frontiers in Oncology 05
and test cohorts (AUC, 0.957 vs 0.929, p = 0.341; 0.865 vs 0.719, p =

0.09, respectively). Table 5 summarized the findings of confounder

matrix analysis. The radiomics model exhibited better accuracy,

sensitivity, and specificity than the clinical-DECT model in the

training and test cohorts.
Clinical use

DCA assessed the clinical utility of the two predictive models

(Figure S2). Compared to the treat-all and treat-none models, both the

clinical-DECT and radiomics models provided a net benefit to patients,

with the radiomics model showing superior benefits. Figure S3 showed

waterfall plots of the rad-score for the test and training sets, indicating

that the model can effectively distinguish IA from preinvasive-MIA.
Discussion

The aim of the study was to investigate the predictive value of

DECT-based radiomics for identifying the invasiveness of GGNs.
TABLE 1 Comparison of clinical characteristics and DECT parameters of GGNs between preinvasive-MIA and IA.

Variable Preinvasive-MIA (n=62) IA (n=30) P value

Age (years) 50.4 ± 13.3 59.4 ± 8.6 <0.001*

Sex 0.009*

Male 9 (14.5%) 12 (40%)

Female 53 (85.5%) 18 (60%)

Smoking history 0.005*

No 60 (96.8%) 23 (76.7%)

Yes 2 (3.2%) 7 (23.3%)

Alcohol history 0.037*

No 61 (98.4%) 26 (86.7%)

Yes 1 (1.6%) 4 (13.3%)

Density <0.001*

pGGN 35 (56.5%) 5 (16.7%)

Part-solid nodule 27 (43.5%) 25 (83.3%)

Maximum diameter (mm) 10 (8,13) 15.5 (13,21.5) <0.001*

AP

Zeff 8.72 (8.16,9.02) 8.5 (8.14,9.0) 0.008*

Spectrum curve slope 1.42 (0.9,1.82) 1.61 (1.07,2.17) 0.339

NIC 0.14 (0.08,0.21) 0.14 (0.11,0.22) 0.281

VP

Zeff 8.51 (8.21,8.93) 8.27 (7.89,8.46) 0.003*

Spectrum curve slope 1.3 ± 0.6 1.5 ± 0.8 0.136

NIC 0.28 (0.19,0.36) 0.33 (0.25,0.44) 0.04*
fron
*P< 0.05 based on comparisons between the two groups. Data are median (IQR) or n/N (%). MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinomas; pGGN, pure-ground
opacity nodule; AP, artery phase; VP, venous phase; Zeff, effective atomic number; NIC, normalized iodine concentration.
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TABLE 2 Features included in clinical-DECT model and their coefficients.

Estimate Std.Error Z value Pr (>|z|)

(Intercept) 19 17.6 1.08 0.28

Age 0.056 0.054 1.02 0.31

Sex 1.82 1.23 1.48 0.14

Smoking history 15.06 2399.55 0.01 0.99

Alcohol history -13.35 2399.55 -0.01 1

Tumor size 0.32 0.14 2.35 0.02

Density 0.33 1.15 0.29 0.78

AP_ Zeff -0.24 0.6 -0.4 0.69

VP_ Zeff -3.5 2.28 -1.54 0.12

VP_ NIC -1.59 8.27 -0.19 0.85
F
rontiers in Oncology
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AP, artery phase; VP, venous phase; Zeff, effective atomic number; NIC, normalized iodine concentration.
B

C D

A

FIGURE 3

(A, B): Invasive adenocarcinoma (IA) in a 44-year-old man with a part-solid nodule (A). Photomicrograph (H&E staining, ×100) confirmed IA (B).
(C, D): Minimal invasive adenocarcinoma (MIA) in a 66-year-old woman with a part-solid nodule (C). Photomicrograph (H&E staining, ×100)
confirmed MIA (D).
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https://doi.org/10.3389/fonc.2023.1208758
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2023.1208758
BA

FIGURE 4

Receiver operating characteristic curves of the clinical-DECT model (A) and the radiomics model (B) in the training and test sets.
TABLE 3 Comparison of selected clinical characteristics and DECT parameters of GGNs between preinvasive-MIA and IA in the training and test cohorts.

Train cohort Test cohort

Variable Preinvasive-MIA (n=43) IA (n=21) P value Preinvasive-MIA (n=19) IA (n=9) P value

Age (years) 53.3 ± 12.9 59.6 ± 9.2 0.051 43.8 ± 12.2 58.9 ± 7.4 0.002*

Sex 0.02* 1

Male 5 (11.6%) 10 (47.6%) 4 (21.1%) 2 (22.2%)

Female 38 (88.4%) 11 (52.4%) 15 (78.9%) 7 (77.8%)

Smoking history 0.003* 0.574

No 43 (100%) 16 (76.2%) 17 (89.5%) 7 (77.8%)

Yes 0 (0%) 5 (23.8%) 2 (10.5%) 2 (22.2%)

Alcohol history 0.032 1

No 43 (100%) 18 (85.7%) 18 (94.7%) 8 (88.9%)

Yes 0 (0%) 3 (14.3%) 1 (5.3%) 1 (11.1)

Density 0.007* 0.039*

pGGN 24 (55.8%) 4 (19%) 11 (57.9%) 1 (11.1%)

Part-solid nodule 19 (44.2%) 17 (81%) 8 (42.1%) 8 (88.9%)

Maximum diameter (mm) 11.4 (9,14) 15 (12.5,19.5) <0.001* 10 (8,12) 18 (14.5,26.5) <0.001*

AP_ Zeff 8.74 (8.08,9.17) 8.54 (8.14,9.0) 0.04* 8.65 (8.31,8.89) 8.24 (8.02,8.56) 0.066

VP_ Zeff 8.54 (8.22,8.97) 8.12 (7.88,8.39) 0.006* 8.47 ± 0.36 8.32 ± 0.29 0.281

VP_ NIC 0.25 (0.15,0.34) 0.31 (0.22,0.40) 0.281 0.28 ± 0.14 0.37 ± 0.1 0.104
F
rontiers in Oncology
 07
 fron
*P< 0.05 based on comparisons between the two groups. Data are median (IQR) or n/N (%). MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinomas; pGGN, pure-ground
opacity nodule; AP, artery phase; VP, venous phase; Zeff, effective atomic number; NIC, normalized iodine concentration.
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We evaluated the main radiographic features, measured

quantitative parameters, and extracted radiomics features from

VMI (50kev and 150kev images). Our findings confirmed that the

DECT-based radiomics model was superior to the clinical-DECT

model in distinguishing IA from preinvasive-MIA, providing a

simple and reliable prediction method for accurately determining

tumor invasiveness before surgery.

As expected, our study found that IA tended to be larger and

part-solid nodules on CT images, similar to the findings of previous

studies (9, 32). For quantitative parameters from DECT in our

study, Zeff and NIC were considered significant differentiators of IA

from preinvasive-MIA. Zeff represents the composite atom, which

can be used to identify material composition (12). Li et al. (33)

found that tumors with a predominant pattern of solid/

micropapillary had lower Zeff than those with a predominant

pattern of lepidic/acinar/papillary. Consistent with the previous

study, the Zeff of IA was smaller than that of preinvasive-MIA in

our research. This finding may be because preinvasive-MIA tends to

have lepidic growth patterns, whereas IA can have the more

aggressive adenocarcinoma subtype (solid and micropapillary

patterns) (34). The result confirmed the value of Zeff in
Frontiers in Oncology 08
differentiating IA from preinvasive-MIA. In contrast to the

finding of Zhang et al. (35), the NIC in IA was higher than in

preinvasive-MIA in our study, suggesting that IA had more

underlying microvascular and tumor angiogenesis. The

observation can be explained as we included the part-solid

nodules, and carefully avoided vessels when outlining the ROIs.

In addition, we observed no statistical difference in slope(k) at both

VP and AP, consistent with Zhang et al. (35). It indicated that

different histological subtypes of adenocarcinomas manifested as

GGNs had similar changes in iodine concentration.

Radiomics analysis could use the information from VMI

datasets to expand new horizons for noninvasively assessing

tumor signatures. One study (36) found that the radiomics model

based on 70keV images showed good performance in predicting

head and neck squamous carcinoma differentiation. Another study

(37) demonstrated that radiomics derived from VMIs have high

diagnostic efficiencies for differentiating low- and high-grade renal

cell carcinoma. In our study, the radiomics model based on 50 keV

and 150 kev images could help predict tumor invasiveness with an

accuracy of 78.6% in the test set. Among the features included in the

radiomics model, the firstorder_Median (media gray level intensity
TABLE 4 Features included in radiomics model and their coefficients.

Estimate Std. Error z value Pr (>|z|)

(Intercept) -1.54 0.71 -2.15 0.03

delta_wavelet.LLH_firstorder_Median 1.99 3.14 0.63 0.52

mean_wavelet.LHL_glrlm_LongRunEmphasis 0.64 0.77 0.83 0.40

mean_wavelet.HLL_glrlm_LongRunHighGrayLevelEmphasis 0.94 0.69 1.36 0.17

mean_wavelet.LLL_firstorder_RobustMeanAbsoluteDeviation 1.42 0.76 1.86 0.06

mean_log.sigma.6.0.mm.3D_firstorder_10Percentile -1.65 1.04 -1.57 0.11

mean_log.sigma.6.0.mm.3D_firstorder_InterquartileRange -0.87 0.79 -1.10 0.27

mean_log.sigma.6.0.mm.3D_glcm_ClusterShade 0.10 0.50 0.20 0.84
fro
BA

FIGURE 5

Radiomics feature selection using least absolute shrinkage and selection operator (LASSO) logistic regression. LASSO logistic regression of radiomics
features (A) and the AUC versus the regularization parameter lambda (B).
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within the tumor) was closely associated with LUAD invasiveness

with the highest estimate coefficient (1.99). We assumed that the

difference in heterogeneity between the preinvasive-MIA and IA

may be associated with their different density. Our results suggested

that 50kev images combined with 150kev images can provide

helpful information for predicting tumor invasiveness.

Several studies (38, 39) have analyzed radiomics for predicting

the invasiveness of GGNs in LUAD. Zhang et al. (38) enrolled 65

patients with pGGNs and found that the radiomics model

performed well in identifying invasive lung lesions with an AUC

of 0.82. Weng et al. (39) enrolled 119 patients with part-solid

nodules and found that the radiomics model had superior

predictive performance compared to the radiographic model

(AUC, 0.81 vs. 0.76). Previous studies mainly explored

radiographic features and radiomics based on traditional CT. The

current study, for the first time, used DECT-based radiomics to

establish a predictive model (AUC, 0.96 and 0.87 in the training and

test set, respectively) of LUAD invasiveness manifesting as GGNs.

In addition to the different imaging techniques, the difference

among the three studies might also be attributable to inclusion

and grouping standards of the patients. Weng et al. included part-

solid nodules, while Zhang et al. analyzed pure GGNs. In addition,

Zhang et al. divided the nodules into preinvasive lesions (AAH and

AIS) and invasive lesions (MIA and IA), whereas Weng et al.

classified nodules into MIA and IA. Thus, larger samples and

better designs are required in future studies to validate the

present results. Despite the differences among various studies,

these results still indicate that models from DECT can well
Frontiers in Oncology 09
estimate the invasiveness of LUAD. Furthermore, our radiomics

model did not significantly outperform the clinical-DECT model in

predictive ability. This may be because some of the imaging features

we evaluated were probably contained in the radiomics features.
Study limitations

There were several limitations to this study. First, this was a

single-center retrospective study and the sample size was relatively

small, which may constrain the generalizability of our findings.

Second, we only included the CT features that have been reported

and validated. The results may not reflect the complete CT

morphological features of tumors. Third, the main purpose of the

study was to identify tumor invasiveness of GGNs, and the density

of nodules was not further subdivided. Finally, as the patients were

examined from 2021 to 2022 with a limited follow-up time, the

influence of IA and preinvasive-MIA on patient outcomes was

not assessed.
Conclusions

In summary, the DECT-based radiomics model showed

satisfactory predict ive performance in preoperatively

differentiating IA and preinvasive-MIA. Further prospective

multicenter studies are necessary to assess the utility of the model

for clinical application.
TABLE 5 Confounder matrix for the training and test sets in the two models.

Predicted results Actual results Accuracy (%) Sensitivity (%) Specificity (%)

Preinvasive-MIA IA

Clinical-DECT model

Training data set 76.6 90.5 69.8

Preinvasive-MIA 30 2

IA 13 19

Testing data set 67.9 55.6 73.7

Preinvasive-MIA 14 4

IA 5 5

Radiomics model

Training data set 84.4 95.2 79.1

Preinvasive-MIA 34 1

IA 9 20

Testing data set 78.6 88.9 73.7

Preinvasive-MIA 14 1

IA 5 8
Rows correspond to the prediction of the logistic algorithm, and columns to known outcomes. MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinomas.
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Decision curves for the two models.
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