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A radiomics nomogram based
on contrast-enhanced CT
for preoperative prediction
of Lymphovascular invasion
in esophageal squamous
cell carcinoma

Yating Wang, Genji Bai , Wei Huang, Hui Zhang and Wei Chen*

Department of Radiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University,
Huaian, Jiangsu, China
Background and purpose: To develop a radiomics nomogram based on

contrast-enhanced computed tomography (CECT) for preoperative prediction

of lymphovascular invasion (LVI) status of esophageal squamous cell

carcinoma (ESCC).

Materials and methods: The clinical and imaging data of 258 patients with ESCC

who underwent surgical resection and were confirmed by pathology from June

2017 to December 2021 were retrospectively analyzed.The clinical imaging

features and radiomic features were extracted from arterial-phase CECT. The

least absolute shrinkage and selection operator (LASSO) regression model was

used for radiomics feature selection and signature construction. Multivariate

logistic regression analysis was used to develop a radiomics nomogram

prediction model. The receiver operating characteristic (ROC) curve and

decision curve analysis (DCA) were used to evaluate the performance and

clinical effectiveness of the model in preoperative prediction of LVI status.

Results:We constructed a radiomics signature based on eight radiomics features

after dimensionality reduction. In the training cohort, the area under the curve

(AUC) of radiomics signature was 0.805 (95% CI: 0.740-0.860), and in the

validation cohort it was 0.836 (95% CI: 0.735-0.911). There were four

predictive factors that made up the individualized nomogram prediction

model: radiomic signatures, TNRs, tumor lengths, and tumor thicknesses.The

accuracy of the nomogram for LVI prediction in the training and validation

cohorts was 0.790 and 0.768, respectively, the specificity was 0.800 and 0.618,

and the sensitivity was 0.786 and 0.917, respectively. The Delong test results

showed that the AUC value of the nomogrammodel was significantly higher than

that of the clinical model and radiomics model in the training and validation

cohort(P<0.05). DCA results showed that the radiomics nomogram model had

higher overall benefits than the clinical model and the radiomics model.
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Conclusions: This study proposes a radiomics nomogram based on CECT

radiomics signature and clinical image features, which is helpful for

preoperative individualized prediction of LVI status in ESCC.
KEYWORDS

computed tomography, decision curve analysis, esophageal squamous cell carcinoma,
lymphovascular invasion, nomogram
1 Introduction

Esophageal cancer is one of the most common malignant

tumors, with high morbidity and mortality rate (1). The most

common types of esophageal cancer are squamous cell carcinoma

(ESCC) and adenocarcinoma (EA), and ESCC is the most common

pathological type of esophageal cancer in China. The overall

survival (OS) of patients with esophageal cancer remains poor

despite significant improvements in diagnosis and treatment in

recent years, with a 5-year survival rate of 15%-20% (2). Although

great progress has been made in chemoradiotherapy for ESCC in

recent years, esophagectomy is still the most effective treatment.

However, more than half of patients undergoing radical

esophagectomy develop local recurrence or distant metastasis

within three years (3).In order to develop individualized

treatments for ESCC, it is essential to search for biological

markers that can predict the patient’s prognosis.

Tumor Node Metastasis (TNM) stage was freauently used to

predict the prognosis of ESCC patients in clinical (4). However,

about 10% to 20% of ESCC patients have understaging after surgery,

and its biological behavior is often more invasive than clinical

staging (5). Similar to other tumors, esophageal cancer will form

abundant tumor neovascularization during the occurrence and

development. It is through the circulatory system that tumor cells

will be transported to other parts of the body when they break

through the neovascularization and enter the blood or lymphatic

circulation.Therefore, vascular and lymphatic metastasis are the
er tomography; LVI,,

cell carcinoma; TNR,

n curve analysis; AUC,

; OS, Overall survival;

phy; HE, Hematoxylin-

ological node stage; cT

stage based on CECT;

ommunication system;

I, Region of interest;

, clinical AJCC stage

ancer; ICCs, Inter-class

minimal redundancy;

r; OR, odds ratio; CI,

perating characteristic;

ositive predictive value;

alysis.

02
main modes of recurrence of esophageal cancer. Lymphovascular

invasion (LVI) and lymph node metastasis are important factors

affecting the prognosis of ESCC patients (6, 7). Clinically, there are

often cases of negative lymph node metastasis but positive LVI,

which suggests that LVI may be one of the pre-process or important

steps of lymph node metastasis. LVI is one of the steps of tumor

invasion and metastasis in esophageal cancer (8, 9). As a prognostic

factor, its appearance indicates poor prognosis of patients, and has

attracted more and more attention in recent years (10–12). In

patients with LVI, the risk of recurrence is high, they need

preoperative adjuvant treatment and intensive monitoring. For

this reason, early identification of patients with high recurrence

risk, especially those with early recurrence, is crucial for developing

an individualized treatment plan for ESCC (13).

Currently, pathological examinations remain the gold standard

for diagnosing esophageal cancer, and the evaluation of clinical

stage before treatment mainly depends on the results of imaging

examination. Accurate clinical staging determines the precise

treatment of esophageal cancer (14, 15). The main imaging

methods for the evaluation of esophageal cancer is based on

computed tomography (CT), as a non-invasive imaging method,

CT examination is used for the clinical TNM staging of esophageal

cancer. Compared with plain CT, contrast enhanced CT(CECT)

can not only reflect the morphological characteristics of the tumor,

but also reflect the hemodynamic information of the tumor (16).

Several studies have suggested that preoperative CT can be used to

predict lymphovascular invasion of gastric and rectal cancer (14,

17–19). However, due to the low soft tissue resolution of CT, it is

difficult to display the stratification of esophagus and the depth of

invasion of tumor tissue, especially the early small lesions. For

tumor heterogeneity, routine CT examination cannot provide more

valuable information for clinical practice.

In recent years, radiomics has developed rapidly in tumor research

(20). The research of radiomics in esophageal cancer includes the

prediction of tumor staging, pathological characteristics, efficacy

evaluation and prognosis (21, 22). Unlike traditional imaging, the

application of imaging histological features can not only improve the

accuracy of diagnosis, but also provide information that traditional

imaging cannot provide. Therefore, radiomics has a very broad

application prospect in the evaluation of esophageal cancer, and it is

crucial for determining and adjusting a patient’s individualized

treatment plan. It has been shown that radiomic features can be

used to predict tumor grade, staging, treatment response, and survival

for gastrointestinal cancer patients (23–25). In terms of predicting
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tumor LVI, radiomics has been successfully used to predict the LVI

status of malignant tumors such as such as lung adenocarcinoma (26),

gastric cancer (15), and rectal cancer (27). It has been shown by Li

et al. that the radiomics model based on CECT can be used to predict

LVI in ESCC (28). However, the value of radiomics in preoperative

prediction of LVI status of esophageal cancer still needs to be further

studied in large samples. Therefore, our study aimed to develop a

nomogram model based on radiomic features that would predict LVI

status in patients with ESCC before surgery, which could provide

more information of incremental value for individualized treatment.
2 Materials and methods

2.1 Patient eligibility

326 esophageal cancer patients with radical esophagectomy and

confirmed by postoperative pathology between June 2017 and

December 2021 were analyzed retrospectively in our hospital.

Inclusion criteria: (a) patients with radical resection of tumor and

were confirmed as ESCC by postoperative pathology; (b) complete

clinical datas; (c) Chest enhanced CT scan was performed within 7 days

before surgery; (d) intact in paraffin, feasible pathological sections for

hematoxylin-eosin (HE) staining and immunohistochemical (IHC)

analysis; Exclusion criteria: (a) absence of complete pathological data

or unclear LVI status; (b) preoperative local or systemic anti-tumor

therapy; (c) poor image quality or obvious artifacts affect image

evaluation (d) no identifiable lesion on CT images. According to the

inclusion and exclusion criteria, 258 patients were included in the

study.A training cohort(n=181) and a validation cohort(n=77) at a

ratio of 7:3 were divided randomly.
2.2 Pathological evaluation

Two experienced pathologists used the 8th edition of the AJCC

staging system to stage and classify the degree of differentiation

(29), and determine the LVI status of the patients. The LVI was

identified as tumor cell emboli within the space of the endothelial

lining on HE-stained sections.
2.3 CT Image acquisition and analysis

A dual-source CT scanner (Siemens Somatom Definition,

Munich, Germany) was used to scan the patients, and during a

single breath-hold with the patient lying supine, the entire

esophagus region is scanned. A 120kVp; 130mAS imaging

acquisition system was used. Rotation time was 0.5 seconds.

Colliding width was 64mm, pitch was 1.5:1. The field of view

(FOV) was 350mm x 350mm; matrix was 512x512; 5mm layer

thickness;5mm layer spacing. An enhanced CT scan was performed

at 25-30 seconds following the injection of 1.5ml/kg of iohexol or
Frontiers in Oncology 03
ioverol contrast medium(Henrui Medicine, Lianyungang, China)

into the ulnar vein at 2.5-3.0 ml/s with a high-pressure syringe.

The preoperative CT images were retrospectively analyzed and

evaluated by picture archiving and communication system (PACS),

and the optimal window width and window position were adjusted for

the CT images of each patient. Image analysis was performed blinded by

two experienced radiologists (8 and 15 years of CT reading experience,

respectively),with no knowledge of clinical, pathological, and LVI status

data. The CT images of each patient were read independently by an

radiologist 1 (8 years) and reconfirmed by another senior radiologist 2

(15 years), and agreed upon in case of disagreement. Thickness of the

normally dilated esophageal wall is about 3mm, while the patient with

esophageal cancer shows local thickening or mass-like significant

strengthening of esophageal wall, and the local thickening of the

esophageal wall ≥5mm is abnormal thickening (30).

CT image features are as follows: (a) tumor location (b) tumor

size: The tumor length and thickness were measured using CECT; (c)

tumor-to-normal wall enhancement ratio (TNR): The ratio of the

mean CT value of the tumor to the normal esophageal wall is

calculated;(d) According to Griffin et al., clinical T staging refers to

their criteria for evaluating cancer patients (30). Depending on the

number of metastatic lymph nodes in different regions, the clinical N

stage is determined, Moreover, the assessment of metastatic lymph

nodes is based on the shortest diameter plus the node axis ratio of the

enlarged lymph nodes (31, 32). The clinical AJCC stage(cAJCC stage)

were according to the eighth edition of the AJCC staging system (29).
2.4 Tumor segmentation

The CT images of all patients were uploaded to the open-source

software “ITK-SNAP” (www.itksnap.org). The region of interest (ROI)

was manually delineated by two radiologists with more than five years

of experience along the tumor edge to achieve tumor segmentation.

Because tumors are heterogeneous, the three-dimensional (3D) ROI

should encompass the entire lesion. After delineation is complete,

modify the ROI with reference to the MPR image.
2.5 Radiomics feature extraction

The image preprocessing and radiomic feature extraction were

performed by PyRadiomics 2.1.2 software package. 1316 radiomics

features were extracted with 18 first-order features, 554 texture

features and 744 wavelet features. All characteristic parameters are

standardized by Z-score according to the training set data. For the

purpose of exploring radiomics features’ intra-observer stability,

radiologist 1 repeated the independent segmentation and feature

extraction of 30 randomly selected patients within 1 week; to

explore the inter-observer stability of radiomics features,

radiologist 2 performed ROI independent segmentation and

feature extraction on 30 randomly selected patients. The

reproducibility of feature extraction was assessed using intra- and

inter-class correlation coefficients (ICCs).
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2.6 Radiomics feature selection and
model construction

This study aggregates multiple algorithms for dimensionality

reduction of high-dimensional data:(1)Feature parameters that are

highly stable (ICCs> 0.90) in both intra- and inter-observer

consistency tests were selected for analysis.(2) The top 20

radiomics feature parameters ranked by feature score or

importance in the combined maximal relevance and minimal

redundancy (MRMR). (3) Further screening of the feature

parameters was performed using the least absolute shrinkage and

selection operator (LASSO),an optimal weight parameter was

selected by 10-fold cross-validation, and a linear combination

formula was computed to generate the radiomics signature.The

radiomics workflow is presented in Figure 1.
2.7 Statistical analysis

R software version 3.6.3 (Auckland, New Zealand) and SPSS

version 22.0 for Windows (Chicago, USA) was performed to

statistical analysis. In clinical and pathological analysis,

continuous variables are reported as means + standard deviations

and categorical variables as counts (%).The chi-square test was used

for categorical variables. The continuous variables were analyzed by

independent sample t test if they conformed to normal distribution,

otherwise Mann-Whitney U test were used. The receiver operating
Frontiers in Oncology 04
characteristic (ROC) curve was analyzed for each model. Then, the

area under the curve (AUC), the accuracy, the sensitivity, the

specificity, the positive predictive value(PPV), and the negative

predictive value(NPV) were calculated. Comparing prediction

models using AUC values was done using the Delong test. The

goodness of fit of the model was determined by drawing calibration

curves. In order to calculate the clinical effectiveness, a decision

curve analysis (DCA) was performed.The statistical significance

levels were all two-sided, and the p-value <0.05 was considered to

indicate statistical significance.
3 Results

3.1 Patient characteristics

Table 1 shows the characteristics of patients in the training and

validation cohorts. 181 patients were collected in the training cohort

and 77 patients in the validation cohort. In the training cohort, no

significant differences were found in age, gender and tumor location

between LVI(-) and LVI(+) (p>0.05). However, significant differences

were found in length, thickness, TNR, cT stage, cN stage, and cAJCC

stage between LVI(-) and LVI(+) (p<0.05). In the validation cohort,

no significant differences were found in age, gender, tumor location,

TNR and cN stage between LVI(-) and LVI(+) (p>0.05). While

significant differences were found in length, thickness, cT stage, and

cAJCC stage between LVI(-) and LVI(+) (p<0.05).
FIGURE 1

Workflow for image preprocessing,image segmentation, radiomics feature extraction, feature reduction, and model building and validation for this study.
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3.2 Feature selection and radiomics
signature construction

1316 features were extracted from segmented pretreatment CT

images based on 258 patients with ESCC. 978 features were

preserved for further analysis, after the reproducibility test by

using an ICCs> 0.90. To help further reduce the number of

features while retaining the most relevant and informative ones,

we chose the top 20 features based on their MRMR score. By

selecting the top 20 features with high MRMR scores, we ensure that

these features are both relevant and non-redundant, and thus less

likely to be removed by Lasso. This approach can lead to a more

efficient and accurate model with improved interpretability. Then,
Frontiers in Oncology 05
we removed features with Pearson correlation coefficients greater

than 0.90 to eliminate highly correlated features, while retaining

sufficient features for LASSO model selection. The LASSO was used

to further reduce the dimension (Figure 2). Lasso dimensionality

reduction is a technique that shrinks the coefficients of less

important features to zero, effectively removing them from the

model. After the determined number of features, the feature subset

with the strongest predictive power was selected and the

corresponding coefficients were evaluated. Finally, we screened

out 8 important radiomics features and constructed radiomics

signature (Figure 3). Rad-score was calculated by summing the

selected features weighted by their coefficients. AUC of the

radiomics signature performance was 0.805 in the training cohort
TABLE 1 Characteristics of Patients in the Training and Validation Cohorts.

Characteristic Training
cohort
(n=181)

Validation
cohort
(n=77)

P value Training cohort
(n=181)

P value Validation cohort
(N=77)

P
value

LVI(-)
(n=125)

LVI(+)
(n=56)

LVI(-)
(n=53)

LVI(+)
(n=24)

Age 66.29 ± 7.35 66.44 ± 6.83 0.875 66.62 ±
6.83

65.54 ±
8.41

0.1336 66.73 ±
5.35

65.79 ±
9.42

0.650

Gender 0.923 0.847 0.566

Male 121(66.9%) 51(66.2%) 83(45.86%) 38(20.99%) 34(44.16%) 17(22.08%)

Female 60(33.1) 26(33.8%) 42(23.20%) 18(9.94%) 19(24.68%) 7(9.09%)

location 0.436 0.871 0.584

Up 29(16.0) 10(13.0%) 20(11.05%) 9(4.97%) 8(10.39%) 2(2.60%)

Medium 76(42.0) 28(36.4%) 54(29.83%) 22(12.15%) 20(25.97%) 8 (10.39%)

Low 76(42.0) 39(50.6%) 51(28.18%) 25(13.81%) 25(32.47%) 14(18.18%)

Length 3.79 ± 1.50 3.82 ± 1.72 0.895 3.45 ± 1.31 4.54 ± 1.63 <0.001 3.42 ± 1.38 4.69 ± 2.09 0.002

Thickness 1.31 ± 0.38 1.30 ± 0.38 0.921 1.20 ± 0.33 1.55 ± 0.36 <0.001 1.17 ± 0.30 1.59 ± 0.36 <0.001

TNR 1.54 ± 0.30 1.49 ± 0.29 0.274 1.49 ± 0.28 1.63 ± 0.33 0.004 1.18 ± 0.28 1.52 ± 0.34 0.036

cT 0.660 <0.001 <0.001

T1 9(5.0%) 5(6.5%) 9(4.97%) 0 5(6.49%) 0

T2 8(48.6%) 40(51.9%) 78(43.09%) 10(5.52%) 37(48.05%) 3(3.90%)

T3 52(28.7%) 23(29.9%) 30(16.57%) 22(12.15%) 10(12.99%) 13(16.88%)

T4 32(17.7%) 9(11.7%) 8(4.42%) 24(13.26%) 1(1.30%) 8(10.39%)

cN 0.871 0.013 <0.001

N0 113(62.4%) 50(64.9%) 87(48.07%) 26(14.36%) 39(50.65%) 11(14.29%)

N1 50(27.6%) 19(24.7%) 26(14.36%) 24(13.26%) 14(18.18%) 5(6.49%)

N2 17(9.4%) 8(10.4%) 12(9.6%) 6(3.31%) 0 8(10.39%)

N3 1(0.6%) 0(0%)

cAJCC 0.426 <0.001 <0.001

I 9(4.9%) 5(6.5%) 9(4.97%) 0 5(6.49%) 0

II 106(58.6%) 52(67.5%) 89(49.17%) 17(9.39%) 44(57.14%) 8(10.39%)

III 34(18.8%) 11(14.3%) 19(10.50%) 15(8.29%) 3(3.90%) 8(10.39%)

IV 32(17.7%) 9(11.7%) 8(4.42%) 24(13.26%) 1(1.30%) 8(10.39%)
fron
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(95% CI: 0.740-0.860), and 0.836 in the validation cohort (95% CI:

0.735-0.911).
3.3 Clinical model development
and validation

An univariate analysis of clinical imaging features revealed that

TNR, tumor length, thickness, and cN stage were significantly

related to LVI.Multivariate analysis showed that TNR, tumor

length and thickness were independent predictors of LVI.

(Table 2). We ultimately used logistic regression to construct a

clinical model, including factors such as TNR, tumor length and

thickness. The results showed that the AUC was 0.803 in the

training cohort and 0.826 in the validation cohort.
Frontiers in Oncology 06
3.4 Radiomics nomogram development
and validation

A nomogram model was developed using multivariate logistic

regression and includes TNR, tumor length, thickness, and

radiomics signature (Figure 4). A good calibration performance of

the nomogram calibration curve was showed in the training and

validation cohorts, and no statistically significant difference was

found between the training and validation cohorts in the Hosmer-

Lemeshow test (P>0.05), indicating no deviation from the fit. The

accuracy of the nomogram for LVI prediction in the training and

validation cohorts was 79.3% and 76.8%, respectively.The sensitivity

was 78.6% and 91.7%, and the specificity was 80.0% and 61.8%,

respectively. The AUC of the nomogram for LVI prediction in the

training and validation cohorts was 0.846(0.785-0.895) and 0.870
FIGURE 2

Texture feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model.
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(0.774-0.936), respectively (Table 3), (Figure 5). The result of the

Delong test showed that in the training set, the Nomogram model

performed better than the Clinical model and the Radiomics model

with significant difference (Z=2.239 and 1.825, p=0.025 and 0.048,

respectively), while there was no significant difference in diagnostic

performance between the Clinical model and the Radiomics model
Frontiers in Oncology 07
(Z=0.052, p=0.958). In the validation set, the Nomogram model

performed better than the Clinical model with significant difference

(Z=1.310, p=0.039), while there was no significant difference in

diagnostic performance between the Nomogram model and the

Radiomics model (Z=1.116, p=0.190). To sum up, Nomogram

model have better diagnostic performance compared with Clinical
FIGURE 3

The most predictive subset of radiomics features for predicting LVI in ESCC.
TABLE 2 Univariate and Multivariate analysis to identify significant factors for LVI.

Univariate P Multivariate P

OR (95% CI) OR (95% Cl)

Age 0.99(0.95-1.02) 0.280 — —

Gender 0.634* — —

Male Reference — —

Female 0.87(0.50-1.53) 0.634 — —

Tumor location 0.663* — —

Up Reference — —

Medium 1.03(0.46-2.33) 0.940 — —

Low 1.31(0.59-2.90) 0.511 — —

Length 1.65(1.35-2.01) <0.001 1.36(1.07-1.72) 0.011

Thickness 23.62(9.35-59.68) <0.001 16.32(5.89-45.17) <0.001

TNR 3.20(1.33-7.66) 0.009 4.87(1.58-15.02) 0.006

cT stage NA NA — —

cNstage 0.001* 0.117

N0 Reference Reference

N1 2.47(1.35-4.51) 0.003 2.20(1.09-4.43) 0.027

N2 4.33(1.82-10.35) 0.001 2.20(0.79-6.15) 0.133

cAJCC NA NA — —
*Overall P value. NA, Not Applicable.
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model. DCA showed that in the training set, the Nomogram model

generated higher net benefits compared to the clinical model and

the imaging omics model within the probability range of 0 to 0.670.

In the test set, the probability range was 0 to 0.462, and the

Nomogram model still generated higher net benefits than the

other models (Figure 6).
4 Discussion

Researchers have found that LVI is an independent predictor of

survival in patients with ESCC (33, 34). According to AJCC/UICC

guidelines, LVI is not yet included as an independent prognostic

indicator for esophageal cancer in the TNM staging system. The

accurate preoperative prediction of LVI status, however, is crucial

for patients to develop aggressive treatment plans tailored to their

individual needs. Clinically, more aggressive treatment is required

for patients suspected of tumor microvascular invasion.The scope

of surgery can be expanded or preoperative adjuvant therapy can be

administered.In the present study, a diagnostic nomogram for

preoperative prediction of LVI were developed and validated in

ESCC patients. The nomogram included four items (radiomics

signature, tumor length, thickness, and TNR). Radiomics and

image features derived from CECT may be used to formulate a
Frontiers in Oncology 08
nomogram to predict ESCC LVI preoperatively. Patients with ESCC

will benefit from this novel approach by providing risk stratification

and decision support.

To construct the radiomics signature, the LASSO method was

used to narrow the regression coefficients to test the association of the

prediction results. As a result of using the univariate association

method for selecting predictors, our approach performs better than

that of using the multivariate association method. Additionally, it

creates a radiomics signature which combines selected features (35).

In this study, important radiomics features were screened out from

978 candidate radiomics features, and 8 radiomics features that could

predict the LVI were finally selected, among which wavelet filter

contributed the most information (n =4). This is followed by squares

(n=1), square roots (n=1), gradients (n=1), and original features

(n=1). These findings suggest that the wavelet filter contains the most

tumor heterogeneity information and is the best available radiomics

feature (one in two), consistent with the results of other CT-based

radiomics studies. The wavelet feature reflects the multi-frequency

information of multiple dimensions of tumor. The square reflects the

square of the image intensity; The square root reflects the square root

of the image intensity; A gradient reflects a change in the gradient of

the voxel in the image. Our study used these four filters to quantify

tumor heterogeneity. Maximum2Ddiameter is of great value in the

original shape feature. Maximum2Ddiameter is of great value in the
FIGURE 4

Developed radiomics nomogram. The radiomics nomogram was developed in the primary cohort, with the rad-score, TNR, length, and thickness
incorporated.
TABLE 3 Diagnostic performance of different prediction models.

Model AUC
(95%CI)

Accuracy
(%)

Sensitivity
(%)

Specificity (%) PPV
(%)

NPV
(%)

Training cohort(n=181)

Clinics 0.803(0.738-0.859) 75.5 66.1 84.8 66.1 84.8

Radiomics 0.805(0.740-0.860) 74.9 92.9 56.8 49.1 94.6

Nomogram 0.846(0.785-0.895) 79.3 78.6 80.0 63.8 89.3

Validation cohort(n=77)

Clinics 0.826 (0.723-0.903) 74.3 95.8 52.8 67.0 92.6

Radiomics 0.836 (0.735-0.911) 77.3 62.5 92.1 88.8 71.1

Nomogram 0.870 (0.774-0.936) 76.8 91.7 61.8 70.6 88.2
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selected original shape feature.It is the maximum paired euclidean

distance between the vertices of the mesh on the tumor surface. Gray

Level Size Zone (GLSZM) quantifies gray areas in an image, which

are defined as the number of adjacent voxels with the same gray

intensity. In this study GLSZM significant characteristics is Small

Area Low Gray Level Emphasis (SALGLE) and Large Area Low Gray

Level Emphasis (LALGLE). SALGLE measures the grey value lower

area of the small size of the ratio of joint distribution in the image.

LALGLE measures the proportion of the joint distribution of large

size areas with low gray value in the image. Neighbouring Gray Tone

Difference Matrix(NGTDM)represents the difference between the

gray value in one area and the average gray value in an adjacent

area. A meaningful subcharacteristic of NGTDM is strength, which

reflects the measure of the original element in the image. When the
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intensity of the image changes slowly, but the coarse difference of the

intensity of the gray level is large, the value is higher. Gray Level Run

Length Matrix(GLRLM)quantifies grayscale run, defined as the

length of the number of consecutive pixels with the same grayscale

value. GLRLM features assess the percentage of pixels/voxels within

ROI, which reflects “graininess”. GLRLM meaningful characteristics

is Short Run Low Gray Level Emphasis (SRLGLE), it quantitatively

reflect has lower grey value of shorter run lengths of joint distribution.

Gray Level Dependence Matrix(GLDM)quantifies the dependence of

image gray scale. A significant subfeature of GLDM is dependence

entropy, and the characteristic of heterogeneous enhancement

accurately reflects the grayscale heterogeneity of entropy. Our

results show that among the sub-features: the larger the values of

SALGLE(wavelet), LALGLE(wavelet) and Maximum2Ddiameter
BA

FIGURE 5

ROC curves of the radiomics, clinical and nomogram models for predicting LVI in the training cohort (A) and validation cohort (B).
BA

FIGURE 6

Decision curve analysis (DCA) of the training cohort (A) and validation cohort (B). DCA indicated that using the nomogram model to predict LVI
would be more beneficial than a "treat-all" or "treat-none" regimen.
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(primitive), the greater the tumor heterogeneity and the greater the

risk of LVI in ESCC.; the smaller the values of SRLGLE(wavelet),

strength (wavelet , square root), SALGLE(square) and

DependenceEntropy(gradient), the greater the tumor heterogeneity

and the greater the risk of LVI.Finally, we use these 8 radiomics

features to construct radiomics signature.This signature has high

stability and low redundancy, and retains the features of correlation

and stability with LVI. Based on this radiomics signature, we

established a radiomics prediction model. Radiomics model showed

good diagnostic performance in the training cohort and validation

cohort, with AUCs of 0.806 and 0.836, respectively. Accordingly, the

model predicts with high accuracy and stability, which is consistent

with Li et al’s findings (28). So, the model is expected to provide a

reliable reference for clinical decision-making.

Multivariate analysis revealed that TNR was an independent

predictor of LVI in our clinical model. Similarly to what we found,

Komori et al. found that TNR is associated with vasolymphatic invasion

of tumors (19). It is believed that the VEGF family is actively involved in

neovascularization and lymphangiogenesis of tumors (31) and that a

close association exists between neovascularization in tumors and LVI in

esophageal cancer (36, 37). LVI may therefore be visible in arterial phase

images revealing changes in vascular morphology and hemodynamics

(38). The results of our study could be explained theoretically by this. In

addition, tumor length and thickness are independent predictors of

LVI.The maximum length and thickness of the tumor reflect the extent

and depth of tumor invasion and LVI is linked to these factors. With

increasing tumor invasion, LVI incidence increased. On CECT images,

the identification of tumor areas often depends on the effect of

esophageal wall thickness on the degree of invasion. The CECT shows

certain advantages in measuring tumor length and thickness, and can be

used for preoperative T staging (16). There was an independent

correlation between tumor length and thickness and LVI in our study.

Accordingly, tumor length and thickness can more accurately reflect

tumor invasion than clinical T staging, and thus LVI status can be

better predicted.

Given that our constructed clinical model found that multiple

CECT-based image features were shown to be significantly associated

with LVI status. A nomogram model combining CECT radiomics

features and image features was developed to further improve the

predictive power.According to the results, the AUC in the training

cohort was 0.846,the accuracy was 79.3%, the sensitivity was 78.6%, the

specificity was 80.0%, the positive predictive value was 63.8%, and the

negative predictive value was 89.3%; the AUC in the validation cohort

was 0.870, and the accuracy was 76.8%, the sensitivity is 91.7%, the

specificity is 61.8%, the positive predictive value is 70.6%, and the

negative predictive value is 88.2%. It can be seen that this nomogram

has good predictive performance, and the predicted value of the

nomogram is verified by the calibration curve. There was good

agreement with pathological results. In a previous study, Chen et al.

(15) developed a model for preoperative prediction of LVI status of

gastric cancer based on CECT radiomics features in arterial and venous

phases. As a result of the combined arterial-venous radiomics features
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along with clinical risk factors, the AUC of the combined model was

0.8565 in the training cohort and 0.7929 in the validation cohort,the

diagnostic performance of which was good. Compared to our study, this

combined model performed similarly in diagnostics. Clinically, venous

phase CECT is not routinely used for esophageal cancer, and arterial

phase CECT is more frequently used.In our study, we used arterial phase

CECT images instead of previous studies to create a radiomics model.

Researchers developed a radiomics model to evaluate LVI status in rectal

cancer using multimodal MRI and venous-phase enhanced CT images

(27), and comparing the combinedmodel to other models, it showed the

best diagnostic performance.Incorporating multimodal MR into our

radiomics model may improve predictive accuracy.However, MRI has

not yet been used as a routine preoperative examination for esophageal

cancer, and most ESCC patients undergo routine CECT scans before

surgery. We can make full use of these imaging data to predict the

occurrence of LVI, which is also an economical method. The CECT-

based radiomics nomogram model we developed and validated is

capable of generating individual probabilities for predicting LVI by

integrating readily available preoperative radiomics and image features.

Preoperative individualized prediction of LVI risk using an easy-to-use

scoring system, which is in line with the current trend of

personalized medicine.

Last but not least, a nomogram is necessary to explain an individual’s

need for additional treatment. Performance, identification, and

calibration of risk prediction do not account for the clinical

consequences of this degree of accuracy or miscalibration (39–41).

Thus, we evaluated whether using radiomics nomograms would

improve patient outcomes to demonstrate clinical utility.To achieve

this goal, the present study employed decision curve analysis rather

than a multi-institutional prospective validation of nomograms. Due to

the heterogeneity of clinical data and CT image parameters among

different institutions, the nomogram is largely inconsistent with clinical

practice. Based on threshold probability-based observations of clinical

outcomes, net benefits can be calculated (42). According to decision

curves, using radiomics nomograms to predict LVI in the current study

provided more benefit than treating everyone or not treating anyone if

the threshold probability of patient or physician was 10%.

However, our study has some limitations. First, there may have

been some selection bias in this study because it was retrospective

and included only patients with esophageal cancer who had

undergone surgery. Second, this study is a single-center study that

only included cases from one center and lacked external validation.

There are certain differences in CT equipment parameter settings

and imaging algorithms in different hospitals, which may result in

poor stability of omics characteristics. Therefore, the model still has

certain limitations, and further multi-center validation is needed to

obtain more convincing evidence with a larger sample size. Third,

this study only includes radiomics, and lacks the integration of

multiple omics such as genomics and proteomics, so there are

natural limitations. Finally, the prognostic value of CT radiomics

features in ESCC patients with LVI was not further investigated in

this study, which may be our next research work.
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5 Conclusion

In general, in this study, we established a non-invasive, cost-

effective, and individualized LVI prediction model based on

preoperative CECT images. The model includes radiomics

features and image features, and has good accuracy in

pred ic t ing LVI wi th ESCC. Large-sca le mul t i center

retrospective validation and prospective randomized clinical

trials await further validation.
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