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Background: Personalized targeted therapies have transformed management of

several solid tumors. Timely and accurate detection of clinically relevant genetic

variants in tumor is central to the implementation of molecular targeted

therapies. To facilitate precise molecular testing in solid tumors, targeted next-

generation sequencing (NGS) assays have emerged as a valuable tool. In this

study, we provide an overview of the technical validation, diagnostic yields, and

spectrum of variants observed in 3,164 solid tumor samples that were tested as

part of the standard clinical diagnostic assessment in an academic healthcare

institution over a period of 2 years.

Methods: The Ion Ampliseq™Cancer Hotspot Panel v2 assay (ThermoFisher) that

targets ~2,800 COSMIC mutations from 50 oncogenes and tumor suppressor

genes was validated, and a total of 3,164 tumor DNA samples were tested in 2

years. A total of 500 tumor samples were tested by the comprehensive panel

containing all the 50 genes. Other samples, including 1,375 lung cancer, 692

colon cancer, 462 melanoma, and 135 brain cancer, were tested by tumor-

specific targeted subpanels including a few clinically actionable genes.

Results: Of 3,164 patient samples, 2,016 (63.7%) tested positive for at least one

clinically relevant variant. Of 500 samples tested by a comprehensive panel, 290

had a clinically relevant variant with TP53, KRAS, and PIK3CA being the most

frequently mutated genes. The diagnostic yields in major tumor types were as

follows: breast (58.4%), colorectal (77.6%), lung (60.4%), pancreatic (84.6%),

endometrial (72.4%), ovary (57.1%), and thyroid (73.9%). Tumor-specific

targeted subpanels also demonstrated high diagnostic yields: lung (69%), colon

(61.2%), melanoma (69.7%), and brain (20.7%). Co-occurrence of mutations in

more than one gene was frequently observed.
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Conclusions: The findings of our study demonstrate the feasibility of integrating

an NGS-based gene panel screen as part of a standard diagnostic protocol for

solid tumor assessment. High diagnostic rates enable significant clinical impact

including improved diagnosis, prognosis, and clinical management in patients

with solid tumors.
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Introduction

Molecular profiling of tumors has now become a routine and

integral part of diagnosis, prognosis, and treatment planning for

patients with advanced malignant cancers. The traditional

molecular testing approach for targeted therapy decision-making

involved testing a single hotspot mutation in a single patient at a

time. However, recent sequencing technologies, i.e., next-generation

sequencing (NGS), enabled simultaneous analysis of multiple genes

in a single test across a large number of samples, while reducing the

cost and turnaround time (TAT). Current oncology practice for

patients with advanced stage tumors, e.g., non-small cell lung

cancer (NSCLC) , me lanoma , and co lorec ta l (CRC)

adenocarcinoma, may involve treatment with molecularly targeted

drugs or enrollment in clinical trials (1–3). The current guidelines

for NSCLC recommend frontline comprehensive testing of all

known actionable driver biomarkers including EGFR, ALK,

ROS1, BRAF, KRAS, NTRK, MET, RET, HER2 [ERBB2], and

PD-L1 with higher relevance in advanced disease stages, to

choose the most appropriate targeted therapy for a patient (4, 5).

PD-L1 expression status is evaluated in NSCLC tumors for

eligibility of immune checkpoint inhibitors therapy (PD-1/PD-L1

inhibitors) (5). A comprehensive testing approach ensures a timely

personalized treatment in NSCLC with maximum therapeutic

efficacy and better patient outcomes. Targeted therapeutic

approaches have successfully prolonged overall survival for CRC

patients. RAS mutation status in metastatic colorectal cancer

patients is central to the success of anti-EGFR targeted therapies.

BRAF inhibitors and combination therapies have shown promising

results in BRAF V600 mutated CRC patients. Most recent National

Comprehensive Cancer Network (NCCN) guidelines recommend

to evaluate metastatic CRC patients for RAS, mismatch repair,

BRAF, HER2, VEGF, and PD-1/PD-L1 status to choose the

appropriate initial and subsequent therapy (6). Melanoma

development could be influenced by driver mutations such as

BRAF, H/N/K-RAS, and C-KIT. Molecular testing for activating

BRAF variants has become standard of care as recommended by

NCCN and the European Society for Medical Oncology (ESMO) for

stage III or IV melanoma, to evaluate the eligibility and efficacy of

BRAF/MEK inhibitors targeting the BRAF-MEK-ERK pathway (7).

KIT mutat ions in melanoma corre la te wi th spec ific

clinicopathological features and are candidates for KIT targeted
02
therapies but has limited evidence of efficacy (8). Integration of

these molecular markers in therapeutic decision-making highlights

the utility of upfront molecular testing for the management of

several tumor types.

Genetic information can also inform the diagnostic and

prognostic aspects of the disease in individual patients. NRAS

mutations found in 25% of melanoma cases have been associated

with lower median overall survival and high aggressiveness with

lack of efficient targeted therapies and also emerging resistance to

existing treatments options (9). PIK3CA gene mutations are known

as a good prognostic factor for breast carcinoma (10), and a poor

prognostic marker for colorectal tumors (11). Also, association of

TP53 mutations with unfavorable outcomes in many solid tumors

including lung cancer (12) is not uncommon. IDH1/IDH2

mutations are associated with a favorable prognosis in patients

with glioma and may confer a survival benefit for patients treated

with radiation or alkylating chemotherapy [13, NCCN.org]. Loss of

PTEN has been associated with favorable outcomes in endometrial

cancers (14, 15).

Molecular profiling of tumors often provides diagnostic

information like RB1 mutations in retinoblastoma and RET in

thyroid tumors. Other examples include diagnostic utility of

CTNNB1 mutations in pediatric desmid tumors (16) and IDH1/2

mutations in brain tumor subtypes (17). Recently, integration of

molecular information for stratification and molecular subtyping of

female genital tumors highlight the utility of molecular markers for

tumor diagnosis and classification (18).

Implementation of standardized genomic screening protocols

as part of routine clinical diagnostic workup and our expanding

knowledge of genetic associations provide a growing impact on

cancer patient management. Broad molecular profiling has now

become essential for nearly all patients with metastatic solid tumors.

Molecular profiling methodologies, guidelines, and practice

standards are also subjected to continuous revision and updates

as new technologies and markers become available. One of the

major challenges other than continuous evolution of this field is the

choice of disease-specific panels vs. more comprehensive panels as

cost, TAT, and better utilization of resources in community settings

play a huge role in making such decisions (19). Identification of

patients who can significantly benefit from this powerful test,

availability of timely results, and interpretation of findings have

been a constant challenge in community settings.
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Cancer Care Ontario (CCO) is an agency that formulates cancer

diagnosis/treatment services-related guidelines for local healthcare

professional to deliver best patient care in the province of Ontario

Canada (https://www.cancercareontario.ca/). In Ontario, a

province-wide standardized approach to molecular diagnostics

has been adopted in recent years with initial implementation at

London Health Science Centre (LHSC), which serves molecular

testing on tumor samples of patients referred from Southwest

Ontario, and all molecular tests were ordered based on an

indication-based ordering system. In this study, we analyzed

genetic test results from the first 3,164 tumor samples tested

using a frontline NGS panel test at LHSC and evaluated the

diagnostic utility of this panel in a clinical setting.
Methods

Targeted NGS panel

Patients/tumor samples
All tests were ordered based on an indication-based ordering

system. Referring laboratories or local clinicians utilized a

standardized form that had listed indications for CCO-approved

testing (https://lhsc.omni-assistant.net/lab/Document/Handlers/

Fi leStreamer.ashx?Df_Guid=61d249dd-e8c9-4bcb-9f36-

c4a6246c6602&MostRecentDocument=true). All cases were then

reviewed by a local pathologist and the approved molecular testing

was ordered based on the diagnosis. The review included

assessment of the pathology report and immunohistochemical

t e s t i ng was pe r f o rmed . In some ca s e s , add i t i ona l

immunohistochemistry testing is performed by the local

pathologist to confirm the diagnosis before initiating the

indicated tested. Requests for testing outside of the approved

CCO pathways were typically rejected or re-directed to other

pathways. A total of 3,164 solid tumor samples were subjected to

NGS-based targeted genetic test from July 2017 to May 2020 at the
Frontiers in Oncology 03
Molecular Genetics Laboratory of LHSC. Genes included in the full

comprehensive panel and each targeted subpanel as per CCO

guidelines are listed in Table 1. A total of 500 tumor samples

were tested by the full comprehensive hotspot panel across a

number of tumor types. A total of 1,375 NSCLC tumor samples

were tested by the targeted lung subpanel, 692 metastatic colorectal

tumor samples were tested for the colon subpanel, and 462

metastatic melanoma samples were subjected to targeted

melanoma subpanel testing. Brain targeted subpanel testing was

done for 135 glioma samples. Subpanels were tested for specific

tumor types based on local funding and regulations. For example,

patients with non-squamous NSCLC had reflexive testing regardless

of stage, while the colorectal subpanel was run for patients with

advanced disease.
Nucleic acid isolation

Unstained FFPE slides were reviewed and marked by a

molecular pathologist to indicate the affected tumor area and

cellularity for subsequent procedures. Total amount of tumor

tissue used for DNA extraction was 0.25 cm2 or less in some

cases. Tumor tissue was scraped into a 0.2-ml PCR tube. DNA

purification was performed using Ion AmpliSeq™ Direct FFPE

DNAKit (ThermoFisher Scientific) according to the manufacturer’s

protocol. Deparaffinization of slides was not required and only done

in cases where there was little to no tissue visible on slides. In these

cases, deparaffinization was done using 100% xylene followed by

100% ethanol. DNA was quantitated using the Invitrogen Qubit 3.0

Fluorometer and Invitrogen Qubit dsDNA HS Assay Kit.
NGS library construction and sequencing

Libraries were prepared with 20 ng of genomic DNA and

constructed by automated library preparation using the Ion Chef™
TABLE 1 Genes included in the targeted panels.

Targeted
panel

Genes included Patient inclusion
criteria

Number
of
patients
tested

Number
of patients
positive
for Tier I/II
Variant

Comprehensive ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR,
ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAS,
GNAQ, HNF1A, HRAS, IDH1, JAK2, JAK3, IDH2, KDR, KIT, KRAS, MET, MLH1,
MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET,
SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL

Patients with advanced
solid tumors; candidates for
systemic therapy; ECOG
performance status equal to
0 or 1 and adequate organ
functions.

500 290 (58%)

Lung subpanel ALK, BRAF, EGFR, ERBB2, KRAS, NRAS, PIK3CA, TP53 Non-small cell lung
carcinoma

1,375 952 (69%)

Melanoma
subpanel

BRAF, KIT, NRAS Metastatic melanomas 462 322 (69.7%)

Colon
subpanel

BRAF, KRAS, NRAS Metastatic colorectal
cancers

692 424 (61.2%)

Brain subpanel IDH1, IDH2, BRAF Glioma 135 28 (20.7%)
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System and Ion Ampliseq™ Cancer Hotspot Panel v2

(Life Technologies). This panel included hotspot regions,

including ~2,800 COSMIC mutations of 50 oncogenes and tumor

suppressor genes with known implications in diagnosis, prognosis,

and therapeutic decision-making. Regions covered and average

coverage for this targeted panel are described in Table S1. DNA

libraries of eight samples were combined into one library, which was

then diluted to a concentration of 30 pmol/L. The diluted pooled

DNA library was used for template preparation and chip loading on

the Ion Chef system using Ion 520 chips, followed by sequencing on

either the Ion PGM™ System or Ion S5™ Sequencer (ThermoFisher

Scientific). Parameters used for assessing run quality included key

signal >30, ISP loading >30%, and usable reads >30%. Parameters

used for assessing sample quality included mean depth of coverage

>1,000× and uniformity >90%. In some cases, samples were assessed

at >500× mean coverage with adjusted cutoffs for variant reporting

(VAF 15% with 500× coverage).
Sequencing analysis and
variant interpretation

Val ida t ion of ana lys i s p ipe l ine conforms to the

recommendations from the Association for Molecular Pathology

and the College of American Pathologists (20). We are using the

Torrent Suite Software on the Torrent Server for automated

sequencing data alignment and analysis. This process uses the

Torrent Mapping Alignment Program (TMAP), which is

specifically optimized for Ion Torrent data. Base calling,

alignments, and run quality control were performed using the Ion

Torrent Suite™ Software v5.8.0. Variant calling was performed by

Torrent Suite™ Variant Caller plugin using standard settings. BAM

and VCF files for variants were imported into Geneticist Assistant

version 1.4.2 (SoftGenetics) for sample quality control assessment

(minimum base coverage and mean amplicon coverage) and for

databasing. As part of our analytical pipeline, we evaluate quality

control by average read depth (>1,000×) and uniformity (>90%).

Average coverage values for each region is listed in Supplementary

Table 1. Beyond the quality review of each region, variant quality is

also evaluated with adapted guidelines proposed by Petrackova et al.

(21). Genetic variants with 5% or greater variant frequency and

minimum coverage of 250 were analyzed. Variant assessments were

done by genome analysts (primary review) and a clinical molecular

geneticist or a molecular pathologist (secondary review). Variants

were classified into four tiers (Tier I to Tier IV) based on the

consensus guidelines set by the Association for Molecular

Pathology, the American Society of Clinical Oncology, and the

College of American Pathologists (22). Variants classified as Tier I

and II were of strong clinical significance, Tier III variants were with

unknown clinical significance due to lack of significant evidence,

and Tier IV variants were benign or likely benign. Sequence pileups

for reportable variants were manually assessed to ensure no

miscalls. Variants classified as Tier I/II (described as clinically

relevant variant) were reported to the oncologist/physician for

each sample.
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Assay validation

NGS assay validation was performed using a retrospective set of

tumor samples previously tested by other methods like allele-

specific PCR with fluorescent hydrolysis probe detection

(Enterogen) and sanger sequencing in our laboratory, and the

limit of detection (LOD) was assessed by testing serially diluted

DNA samples positive for known variants (Supplementary File 1).
Results

NGS assay validation and limit of detection

The NGS assay was clinically tested and validated by using a

commercially available reference standard from Horizon

Diagnostics (HDx Perkin Elmar), with known variant allele

frequencies and a cohort of 39 retrospective tumor DNA

samples selected from the laboratory archive, which were

previously tested by other validated methods in our laboratory

including allele-specific PCR with fluorescent hydrolysis probe

detection (Enterogen) and sanger sequencing. These include

27 positive samples, each carrying at least one Tier I/II variant

and 12 negative samples with no Tier I/II variants (Table S1). All

the positive control samples were concordant by the NGS assay

and no Tier I/II variants were detected in the negative controls.

Therefore, the sensitivity and specificity of this assay for the

previously assessed variants were determined to be 100%. Repeat

sequencing runs were performed to assess the reproducibility and

were estimated to be 100%. By testing serial dilutions of tumor

DNA samples with Tier I/II variants (BRAF V600E, KRAS G12C,

and EGFR exon 19 deletion p.L747_E749del), the LOD for

accurate and reproducible variant calling was determined to be

5% of variant allele frequency.
Lung subpanel assessment

A total of 1,375 NSCLC samples were tested by the lung NGS

subpanel, namely, 790 female samples (mean age: 69.6 years; range:

24.8 to 91.8) and 585 male samples (mean age: 69.7 years; range: 36

to 93.8 years) and 952 (69%) tested positive for reportable (Tier I or

II) variants. Tier I/II variants identified are listed in Supplementary

Table 2. The detection rates in male and female samples were 65.1%

and 72.2%, respectively. Variant detection rates in specific age

groups are listed in Table 2. KRAS was found to be the most

commonly mutated gene (41.1%), followed by TP53 (24.2%) and

EGFR (11.2%) (Figure 1A). A total of 731 samples had one variant,

205 had two variants, and 16 had three variants. Co-occurring

variants are shown in Figure 1B. Out of 154 samples with an EGFR

variant, 69 (42%) were exon 19 deletions, 42 (26%) were exon 21

L858R, 17 (10%) were exon 20 insertions, 11 (7%) were exon 18

G719S, 6 (4%) were exon 21 L861Q, 7 (4%) were T790M/L858R, 2

(1%) were T790M/Exon 19 del, and 9 (6%) were rare EGFR variants

(Figure 1C). An interesting point noted is the high frequency of
frontiersin.org
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KRAS G12C mutations (15.2%; 209/1,375) in our study cohort,

which was higher than the frequency of EGFR mutations (11.2%).
Colon subpanel assessment

Out of 692 colorectal cancer samples (mean age:65.4 years; 404

male samples and 288 female samples) tested by the colon subpanel,

424 (61.2%) had a Tier I/II variant and 6 had variants in two genes

(Supplementary Table 3). A total of 322 (46.5%) had a KRAS

variant, 82 (11.8%) had a BRAF variant, and 26 (3.7%) had a NRAS

variant (Table 3; Figure 2A). The most common KRAS variants

were in codon 12 followed by codons 13, 146, and 61. Rare clinically

relevant variants were detected in six patients. The most frequent

BRAF variant was Val600Glu (V600E), which occurred in 72

samples; 10.4% of all patients had colon cancer.
Melanoma subpanel

Out of 462 melanoma samples, 322 (69.7%) were positive for Tier

I/II variant and 8 patients had variants in two genes (5 patients with

BRAF and NRAS; 3 patients with BRAF and KIT). The highest

frequency of variants was observed in the BRAF (42.2%) gene

followed by NRAS (23.4%) and KIT (2.33%). The most common

BRAF gene variants were in codon Val600 and NRAS codon 61

(Table 4; Figure 2B). All sample details and variants are listed in

Supplementary File 4.
Brain subpanel

Out of 135 brain tumor samples tested, 28 (20.7%) had one

clinically relevant variant, 11 (8.1%) had a BRAF Val600Glu variant,

14 (10.3%) had an IDH1 Arg132 variant, and 3 (2.2%) had an IDH2

Arg172 variant (Supplementary File 5).
Frontiers in Oncology 05
Comprehensive panel

A total of 500 tumor samples from patients presenting with

various cancer types were tested by a comprehensive panel with

50 genes. Two hundred ninety samples (58%) were tested positive

for at least one clinically relevant Tier I/II variant. Among these

samples, 82 (16.4%) had two variants and 30 (6%) had three or

more variants (Supplementary File 6). Overall, TP53 (23%),

KRAS (18.4%), and PIK3CA (9.4%) were among the most

frequently mutated genes, followed by APC, BRAF, PEN, RET,

NRAS, IDH1, SMAD4, AKT1, and CDKN2A with a detection

rate ranging from 1.4% to 3.8% (Figure 3; Supplementary File 6).

Other less frequently mutated genes were FBXW7, PDGFRA,

RB1, ATM, ERBB2, KIT, GNAS, HRAS, FGFR2, Flt3, MET,

NOTCH1, STK11, VHL, and SMARCB1 with ≤1% detection

rate (Table 5). Oncoprint plots (Figure 4) shows overview of

alterations in each sample with in common tumor types analyzed

in this study.

Breast: Out of 77 breast tumor samples, 45 (58.4%) had a Tier I/

II variant with a high frequency of variants observed in PIK3CA

(32.4%) and TP53 (22%) genes. Variants in more than one gene

were detected in 13 patients and 7 of these patients had variants in

both TP53 and PIK3CA gene (Figure 4).

Colorectal: Out of 67 colorectal tumor samples, 52 (77.6%)

tested positive and the most frequently mutated genes included

KRAS (38.8%), TP53 (29.8%), and APC (25.35) followed by NRAS

(11.9%) and PIK3CA (5.9%). Co-occurrence of variants in more

than one gene was common in colorectal cancer samples as 32

patients tested positive for variant in more than one gene. The most

common co-occurrence of variants was observed in KRAS, APC,

and TP53 genes (Figure 4).

Non-small cell lung cancer: Forty-eight NSCLC tumor samples

tested by the comprehensive panel also showed high frequency of

variants in KRAS (31.2%) and TP53 (18.7%) genes, which was in

line with the targeted lung subpanel.

Pancreatic: Approximately 33 of 39 pancreatic tumor samples

had a clinically relevant variant with KRAS (71.7%), TP53 (35.8%),

and CDKN2A (10.2%) observed as the most common genes with a

variant. A total of 13 pancreatic tumor samples had co-occurring

variants in KRAS and TP53 genes (Figure 4).

Endometrial: Out of 29 endometrial cancer samples, 21 (72.4%)

tested positive and 34.4% had variants in TP53 gene, and 13.7% in

PTEN and PIK3CA gene each.

Ovarian: Out of 28 ovarian cancer samples, 16 (57.1%) tested

positive and 25% had variants in TP53 gene.

Thyroid tumor: Out of 23 thyroid tumor samples, 17 (73.9%)

had genetic variants. BRAF gene was the most commonly

mutated, in 39% of patients, followed by RET gene in 17.3%

of patients.

Rare tumors: Some of the less frequent advanced tumors tested

by the comprehensive panel in our study cohort include renal,

esophagus, bladder, cervix, oral, gastric, sarcoma, melanoma, and

prostate. The frequencies of variants in genes observed in these

tumors are listed in Table 5.
TABLE 2 Characteristics of NSCLC patients tested by the lung hotspot panel.

Characteristic No. of
patients

No. of patients with at least one
Tier I/II Variant

Total patients 1,375 952 (69%)

Sex

Male
Female

585
790

381 (65.1%)
571 (72.2%)

Age group

21–40
41–50
51–60
61–70
71–80
>80

8
30
178
464
507
188

7 (88%)
20 (67%)
126 (71%)
341 (73%)
346 (68%)
112 (60%)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1208244
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bhai et al. 10.3389/fonc.2023.1208244
Discussion

Molecular profiling of solid tumors is rapidly becoming the

standard of care for a widening range of oncology indications with

strong implications in diagnosis, prognostic outcomes, and clinical

and treatment management decisions. NGS-based targeted hotspot

panel assays provide a cost-effective platform for rapid and accurate

molecular characterization of solid tumors in a clinical laboratory

setting. We first validated a targeted NGS cancer hotspot panel

assay and then implemented it to identify genomic aberrations in

patient tumor samples. In the present study, we have analyzed the

frequency and nature of variants in 3,164 solid tumor samples from

patients with advanced cancer received in our laboratory for genetic

testing using this assay. This study provides real-world evidence for

the utility of hotspot genotyping and small targeted tumor-specific

panel sequencing.
Frontiers in Oncology 06
Diagnostic yields of target subpanels vs.
comprehensive panels

Target subpanels are designed to test specific genes and/or

variants with known clinical utility for the tumor type. These

genes are recommended by clinical guidelines and have a direct

impact on patient management. Target panels have the advantage

of streamlining data analysis and interpretation, expediting the

results, and decreasing the rate of variants of unknown clinical

significance. In our setting, NGS panel analysis resulted in high

diagnostic yields across various clinical indications including lung

(69%), colon (61.2%), melanoma (69.7%), and brain (20.7%),

highlighting the utility of targeted subpanels in the clinical

setting. In contrast, comprehensive panels have the ability to

identify genes known to be targetable in other cancer and other

genes with therapeutic or prognostic potential and/or diagnostic
A

B C

FIGURE 1

Details of variants identified by the targeted lung subpanel (N = 1,375). (A) Frequency of variants in genes identified in NSCLC tumors tested by the
lung subpanel; (B) co-occurring mutations in NSCLC samples; (C) frequency of EGFR gene variants.
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markers that may be incorporated in the clinical practice as more

evidence become available. For example, comparison of data from

colorectal tumor showed a significant diagnostic yield in genes such

as TP53 and APC that are currently not part of the targeted panel.

Overall, the diagnostic yield of the comprehensive panel was 58%,

ranging from 77.6% in colorectal cancer to 2% in oral

cancer (Table 5).
Frequency of variants in targeted panels

Genetic mutations observed in NSCLC may vary among

patients with different racial and demographic background and

other clinical and pathological aspects (23, 24). However, we do not

have the exact ethnicity information available for patients included

in our study but overall frequency of variants in NSCLC observed in

our study is in accordance with other reported studies from the

Western population. For example, EGFR variants seen in 11% of
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our samples are reported in literature at nearly 15% among North

Americans, in contrast to nearly 50% in Asians (23). The most

common EGFR mutations are either exon 19 deletions or exon 21

L858R found at 42% and 26%, respectively, in our dataset, which is

comparable but slightly lower than what has been reported in

literature: exon 19 deletions at 42.8% and exon 21 L858R

substitutions at 29.8% reported in a metanalysis of studies from

many regions including North America (23). In our population, the

frequency of less common EGFR mutations, exon 20 insertions

(10%), G719X (7%), and L861Q (4%), are all higher than

expected (25).

Similarly, KRAS mutation seen at 41.1% in our study is reported

to range from one-fourth to one-third (∼15%–35%) of the NSCLC

patients in the Western population to 4%–8% in Asians (26, 27). In

our dataset, patients had KRAS G12C mutations in 15.2% of

samples. This is higher than our rate of EGFR positivity, and

nearly double the frequency of the common EGFR mutations

(exon 19 deletions and L858R) combined.

BRAF and KRAS mutations have been reported to occur

in ∼10% and 44% of patients with metastatic colorectal cancer,

which is similar to frequency (KRAS: 46%; BRAF: 11.2%; NRAS:

3%) observed in our sample cohort (28). Frequency of variants

identified in melanoma samples as listed in Table 4 is in line with

reported studies (BRAF ∼50%, NRAS ∼25%; KIT ∼4.5%), as

analyzed by Vanni et al. from different reported studies (29, 30).

Glioma samples tested by the brain subpanel had BRAF variants at

8% and IDH1/IDH2 variants at 12.5%. As reported earlier, we noted

a higher incidence of BRAF variants in younger patients (the

median age of patients with a BRAF variant is 31.5 years vs. the

median age of patients without a BRAF variants is 56.6 years) (31).

However, it was noted that the overall frequency of variants across

different tumor types identified by our targeted subpanels is

comparable to reported literature but detailed analysis about the

frequency of specific variant types based on precise tumor histology

and clinical and demographic details is beyond the scope of this

study as this information was not available in our laboratory-

based database.
TABLE 3 Gene variants in colorectal cancer samples.

Characteristic No. of patients

Total patients
Male
Female
Average age
Range
Positive for Tier I/II variant

692
404
288
65.4 years
19.8 to 90.3 years
424 (61.2%)

Variant Type

KRAS 317 (46%)

BRAF 77 (11.2%)

NRAS 25 (3.6%)

BRAF/KRAS 4

KRAS/NRAS 1

NRAS/BRAF 1
Number of patients (% of total patients tested n=692) are written in bold.
A B

FIGURE 2

(A) Frequency of variants identified in tumor samples tested by the colorectal subpanel; (B) frequency of variants identified in tumor samples tested
by the melanoma subpanel.
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Co-occurring variants in
targeted subpanels

Out of 1,375 NSCLC samples tested by the lung subpanel, 69%

(952) tested positive for a variant. Co-occurrence of mutation in

more than one gene was observed in 260/1,375 (19%) patients. Co-

occurring variants in oncogenic drivers and tumor suppressors in

NSCLC tumors contribute towards complex molecular diversity of

these tumors and may impact the efficacy of TKIs. The most

common co-occurring genetic alteration observed in our study

include TP53 (207 samples) with 121 KRAS, 40 EGFR, 25

PIK3CA, 17 BRAF, 3 NRAS, and 1 ERBB2 positive samples.

Concurrent TP53 mutations with KRAS and EGFR are reported

as negative prognostic markers for advanced NSCLC patients who

are candidates for EGFR-TKI or ALK-TKI treatments (32). Dual

mutations in the EGFR gene like T790M/Exon 19 del and T790M/

L858R were observed and are known to alter the response to TKI
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therapy (33). We also observed tumor samples with co-occurring

driver variants in EGFR, KRAS, and BRAF genes (seven patients

with KRAS/EGFR variants; four patients with BRAF/KRAS; one

patient with BRAF/EGFR/KRAS). Typically considered as mutually

exclusive, concurrent driver mutations in EGFR/KRAS/BRAF genes

are rare in literature (34, 35) and their clinical relevance is not well

known but it has been suggested that patients with co-occurring

actionable variants may require tailoring the combination or

sequential treatment strategies (36). Among the samples tested by

the colon subpanel, a high frequency of mutations was noted in

KRAS (46.5%) and BRAF (11.8%) genes, and four patients had

concomitant KRAS and BRAF (nonV600E) variants. BRAF and

KRAS are two key oncogenes that determine response to anti-EGFR

therapies in colorectal cancer patients. BRAF and KRAS variants are

mutually exclusive and co-occurrence is rarely reported (37, 38).

However, clinical outcomes for such patients is not well

characterized but personalized combination therapeutic strategies

have been suggested for such patients (28). Also, the co-occurrence

of NRAS and BRAF, the two most frequently mutated genes in

melanoma, is also rarely reported (2.9%), which is in agreement

with our observations as we found concomitant NRAS/BRAF

variants in 5 (1%) of our melanoma samples (39); however, their

clinical impact is not known.
Comprehensive panel testing

A growing number of genomic aberrations are impacting the

treatment decisions for advanced metastatic tumors. We

implemented a comprehensive NGS assay covering 50 oncogenes

and tumor suppressor genes to identify variants in genes with a

potential clinical impact in a variety of tumor types, including

breast, colorectal, pancreas, endometrial, ovary, lung, and thyroid

tumors. To evaluate the molecular profile, 500 tumor samples were
TABLE 4 Gene variants in melanoma samples.

Characteristic No of patients

Total patients
Male
Female
Average age
Range
Positive for Tier I/II variant

462
288
174
68.1 years
17.4 to 97.2 years
322 (69.7%)

Variant Type

BRAF 195/462 (42.2%)

NRAS 108/462 (23.4%)

KIT 11/462 (2.3%)

BRAF+NRAS 5

BRAF+KIT 3
FIGURE 3

Frequency of variants in genes included in the comprehensive panel (n = 500).
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assessed by this assay and a positive mutation rate of 58% was

observed. Some of the frequently mutated genes identified in these

tumors hold high clinical relevance.

Sequencing studies analyzing somatic driver mutations in

genetically complex tumors like breast cancer have identified

PIK3CA as a frequently mutated gene in breast tumors followed

by TP53 with co-occurrence reported in 10%–15% patients (40,

41). We detected variants in PIK3CA at 33%, TP53 at 22%, and
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co-occurring variants in 9% patients (7/77). Variants in other

clinically relevant genes were less frequent with EGFR and AKT1

variants found in 5% patients. The PI3-kinase inhibitor in

combination with the estrogen receptor (ER) antagonist is

FDA-approved for the treatment of patients with PIK3CA

mutant ER+/HER2− breast cancer and the presence of

PIK3CA/TP53 mutations has evidence of prognostic relevance

(42, 43).
TABLE 5 Frequency of genetic variants in tumor types tested by the comprehensive gene panel.

Tumor type No. of
patients
tested

No. of patients with
Tier I/II variant (%)

Genes with ≥4 patients with a Tier I/II
variant (no. of patients; %)

Genes with ≤3 patients with a
Tier I/II variant

Breast 77 45 (58.4%) PIK3CA (25; 32.4%)
TP53 (17; 22%)
EGFR (4; 5.2%)

CTNNB1, AKT1, EGFR, PDGFRA,
PTEN, ATM, RB1, KRAS, NRAS

Colorectal 67 52 (77.6%) KRAS (26; 38.8%)
TP53 (20; 29.8%)
APC (17; 25.3%)
NRAS (8; 11.9%)
PIK3CA (4; 5.9%)

SMAD4, FBXW7, PTEN, EGFR

NSCLC 48 29 (60.4%) KRAS (15; 31.2%)
TP53 (9; 18.7%)

EGFR, ERBB2, RB1, BRAF, CDKN2A,
IDH1, STK11, KIT

Pancreas 39 33 (84.6%) KRAS (28; 71.7%)
TP53 (14; 35.8%)
CDKN2A (4; 10.2%)

NRAS, EGFR, SMAD4, CTNNB1,
APC, GNAS, RET

Endometrial 29 21 (72.4%) TP53 (10; 34.4%)
PTEN (4; 13.7%)
PIK3CA (4; 13.7%)

PTEN, CTNNB1, KRAS

Ovary 28 16 (57.1%) TP53 (7; 25%) BRAF, KRAS, NRAS, FGFR2, EGFR,
PIK3CA, SMARCB1, KIT

Thyroid 23 17 (73.9%) BRAF (9; 39.1%)
RET (4; 17.3%)

TP53, AKT1, EGFR, FBXW7, ATM,
PTEN, KRAS

Unknown primary 17 10 (58.8%) TP53 (4; 23.5%) MET, BRAF, KRAS, RB1, IDH1, KIT,
PIK3CA, TP53

GE junction 13 6 (46.2%) TP53 (6; 46.1%)

Renal 13 3 (23.1%) PTEN, VHL, TP53

Cholangiocarcinoma 11 4 (36.4%) IDH1, RET, EGFR, CTNNB1, KRAS,
TP53, SMAD4, PIK3CA

Esophagus 11 4 (36.4%) TP53 (4; 36.3%) PIK3CA, CTNNB1

Bladder 10 5 (50%) TP53, KRAS, SMAD4, PIK3CA,
CTNNB1, GNAS

Cervix 10 3 (30%) KRAS, PIK3CA, SMAD4

Oral 10 2 (2%) TP53, NOTCH1; PIK3CA

Gastric 9 4 (44.4%) FBXW7, TP53, GNAS, KRAS, ERBB2

Sarcoma 9 3 (33.3%) IDH1, TP53

Adenoid cystic
carcinoma

8 2 (25%) PTEN, CTNNB1, PDGFRA

Melanoma 7 5 (71.4%) EGFR, TP53, NRAS, RB1, CDKN2A,
BRAF

Parotid 6 3 (50%) ERBB2, FLT3, PIK3CA, HRAS

Prostate 6 1(16.7%) PTEN
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Colorectal tumors had the highest frequency of variants (77.6%)

as compared to other tumors analyzed in our study. In line with

previous studies, colorectal cancer samples had high frequency of

variants in genes including KRAS, TP53, APC, NRAS, PTEN, and

PIK3CA. Other than RAS genes that predict anti-EGFR sensitivity,

PIK3CA mutations have prognostic implication in colorectal

tumors. PIK3ACA mutations are associated with a worse

response to first-line chemotherapy (11) and a phase I clinical

trial has shown evidence for the sensitivity of PIK3CA mutated

colorectal cancer to the PIK3a-selective inhibitor (44). Early trial

data suggest that PI3K inhibitors may be of benefit to solid tumors

harboring PTENmutation (45). There is evidence that co-occurring

variants in APC, PIK3CA, TP53, and KRAS may impact the overall

disease progression and response but it is not yet well studied and

larger trials are needed to fully understand the impact on disease

outcome (46).

Following TP53 (34.4%), PTEN and PIK3CA were the most

commonly mutated genes in endometrial tumors, and these

variants have predictive value in endometrial tumors. PTEN has

been associated with a favorable outcome in endometrial cancer,

and pre-clinical data have shown that inactivating mutations in the

PTEN gene may confer sensitivity to PI3K-AKT inhibitors as well

as PI3K/mTOR inhibitors (14, 45). Since PIK3CA is another

frequently mutated gene in endometrial tumors, PIK3CA-directed

inhibitors may show benefits but its utility is still under

investigation (47). Recurrent TP53 mutations in endometrial

tumors have been associated with higher rates of recurrence in
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grade 1–2, stage I and II endometrioid adenocarcinoma (48, 49).

CTNNB1 gene variants were less frequent at 7% and are associated

with increased risk of recurrence in grade 1–2 early-stage

endometrial endometrioid adenocarcinoma (50).

KRAS gene alterations are the most frequent, observed at a

frequency of 72% in pancreatic tumor samples, with TP53 at 36% as

the second most common followed by CDKN2A. The high

prevalence of KRAS variants in pancreatic tumors suggests the

clinical utility of therapies targeting the RAS signaling pathway, but

studies done in this direction so far have shown little clinical benefit

(51). However, KRAS mutations have been reported to have a

negative impact on prognosis and improve the performance of

classic cytopathology to diagnose pancreatic tumors (52).

Forty-eight NSCLC tumor samples tested by the comprehensive

panel had KRAS (31.2%) and TP53 (18.7%) as the most frequently

mutated, followed by ERBB2, RB1, and EGFR. EGFR mutations

predict response to anti-EGFR therapies in NSCLC tumors, and

TP53 mutations have been reported to have a negative prognostic

effect (6). Oncogenic variants in ERBB2 gene may confer sensitivity

to anti-HER2-directed therapies and trastuzumab deruxtecan is

now FDA-approved for these patients (53–55).

Thyroid cancer is another tumor type with a high mutation

positivity rate of 74% with BRAF at 40% followed by RET at 17.3%.

BRAF positive thyroid tumors have shown sensitivity to RAF and/

or MEK inhibitors (56) and RET variants correlate with aggressive

phenotype and worse outcome (57). Co-occurring variants also

predict survival in thyroid tumors (58, 59).
A B
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G

FIGURE 4

OncoPrint diagram of mutation frequencies of the genes included in the comprehensive panel in common tumor types tested in our study. All
samples (with in each tumor type) are included and genes with ≥1 Tier I/II variant are shown. Each row is one gene (mutation frequencies are shown
as % of total samples tested) and each column is one tumor sample. (A) Breast (n = 77); (B) colorectal (n = 67); (C) endometrial (n = 29); (D) non-
small cell lung cancer (n = 48); (E) ovary (n = 28); (F) pancreas (n = 39); (G) thyroid (n = 23).
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Disease-specific subpanels/comprehensive
panel in the clinical setting

A molecular testing model implemented in Ontario as per CCO

guidelines represents the integration of both comprehensive and

targeted subpanels for tumor samples in the clinical setting. The data

collected here are not sufficient to make any conclusions about the

utility of one over the other, but this model definitely highlights the

feasibility of administering both in a clinical environment with

evidence of high variant detection rates. We have targeted ongoing

studies to establish the utility of subpanel vs. full panel testing and also

to investigate disease-specific clinical scenarios suited best for each type

of testing.
Conclusion

NGS has revolutionized the way cancer is diagnosed and

treated. This study demonstrated the utility of NGS in identifying

actionable genetic alterations in solid tumors, including the

potential for identifying novel therapeutic targets. While the study

had some limitations, such as targeting specific hotspot regions and

lack of additional clinical information, the results showed a high

diagnostic yield of 58% using a comprehensive panel and 20.7%–

69.7% using targeted subpanel testing. The study also highlighted

the efficiency of incorporating both comprehensive and targeted

subpanel testing in a clinical laboratory setting. Additionally, the

study identified co-occurring driver mutations and novel gene

mutations, emphasizing the need for continued research to

expand precision medicine to all tumor types. Overall, this study

provides promising evidence for the utility of NGS testing in clinical

laboratories for diagnosing and treating solid tumors.
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