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Prognosis and therapeutic
benefits prediction based on NK
cell marker genes through
single-cell RNA-seq with
integrated bulk RNA-seq analysis
for hepatocellular carcinoma

Yao Yang1, Shaopin She1, Liying Ren1, Bigeng Zhao2,
Dongbo Chen1* and Hongsong Chen1*

1Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for
Liver Diseases, Peking University People's Hospital, Beijing, China, 2Laboratory of Hepatobiliary and
Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
Tumor-infiltrating immune cells greatly participate in regulating tumorigenesis

and metastasis of hepatocellular carcinoma (HCC). Natural killer cell, as an

important role of innate immunity, plays an indispensable role in antitumor

immunity and regulate tumor development. In this study, we firstly identified

251 NK cell marker genes of HCC based on single-cell RNA sequencing data.

Subsequently, an NK cell marker genes-related prognostic signature (NKPS) was

developed in the cancer genome atlas (TCGA) cohort for risk stratification and

prognosis prediction. The predictive value of the NKPS in prognosis was well

validated in different clinical subgroups and three external datasets (ICGC-LIHC

cohort, GSE14520 cohort and Guilin cohort). Moreover, multivariate analysis

revealed the independent prognostic value of NKPS for OS in HCC. Further

functional analysis indicated the NKPS was associated with basic cellular

processes, that may contribute to the development and progression of HCC.

Thereafter, immune characteristics as well as the therapeutic benefits in NKPS

risk score-defined subgroups were analyzed. Patients with low-risk score

exhibited immune-active status, manifested as higher immune scores, more

infiltration of CD8+ T cells and macrophage M1, and higher T-cell receptor (TCR)

richness and diversity. Remarkably, the NKPS was negatively correlated with

immunotherapy response-related signatures. In addition, the low-risk group

exhibited significantly improved therapeutic benefits, either from

immunotherapy or traditional chemotherapy and target therapy. Overall, the

NKPS showed an excellent predictive value for prognosis and therapeutic

responses for HCC, which might also provide novel insights into better HCC

management strategies.
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Introduction

Hepatocellular carcinoma (HCC), which comprises 75%-85% of

primary liver cancer cases, is one of the most common primary

malignant tumors with a fairly high incidence and poor prognosis (1,

2). Due to the occult onset, high degree of malignancy and fast

progression of HCC, it is often diagnosed at an intermediate to

advanced stage, at which point there is no chance for radical

treatment (3). Besides, although great improvements have been

achieved in the treatment strategy for HCC in recent years, HCC is

prone to relapse and drug resistance, and ultimately leads to poor

prognosis and high mortality. Therefore, developing a comprehensive

and effective management strategy for HCC is urgently needed.

Several traditional clinical characteristics, such as TNM stage

and AFP, have been widely proved to be associated with the

prognosis of HCC patients, but they may not be sensitive and

accurate enough to predict the prognosis of HCC let alone get

involved in medical treatment decisions. The Barcelona clinic liver

cancer (BCLC) system is one of the most widely and frequently used

staging systems of HCC (4), but limited by the lack of information

at the molecular level, the BCLC system performs inadequately in

predicting long-term outcomes. Therefore, developing a model to

effectively predict prognosis and therapeutic effects is crucial.

In recent decades, there is growing evidence indicating that

immune cells in the tumor environment (TME) can exert either

anti- or pro-tumor effects (5). Therefore, deeper insights into the roles

of tumor-associated immune cells are important for exploring

reasonable therapeutic strategies and improving the prognosis for

HCC. As pivotal components of innate immunity, natural killer (NK)

cells possess excellent cytolytic abilities independent of antigen

stimulation, thus they constitute the first line of defense against

tumors. NK cells can suppress tumor development directly by

lysing tumor cells and indirectly by influencing the activities of

other immune cells in the TME (6). Remarkably, increasing

evidence indicated that tumor-infiltrating NK cells were less

cytotoxic, because they expressed lower levels of granzyme B and

CD57 and less IFN-g (7, 8). On the other hand, the interaction of NK

cells with tumor cells and stroma cells as well as cytokines in TME

could lead to NK cell dysfunction. For example, immune checkpoints

expressed on tumor cells and TGFb1 secreted by tumor stromal cells

could drive NK cell malfunction and may thus lead to increased

tumor progression including invasion and metastasis (9–11). In

addition, regulatory T cells and myeloid-derived suppressor cells

can inhibit the activation and function of NK cells (12). Although

the importance of NK cells in tumor control has been widely stressed,

the contribution of tissue‐resident NK cells in HCC is not well

understood. Thus, further investigation of the roles of NK cells in

anti-tumor immunity at the molecular level is important for exploring

reasonable therapeutic strategies and reducing HCC mortality.

Single-cell RNA-sequencing (scRNA-seq) technology has

helped unravel molecular characteristics and biological processes

of HCC (13, 14). Recent advancement in scRNA-seq technologies

has enabled an in-depth and comprehensive exploration of

expressional and functional states of various immune cells in

TME. With the aid of scRNA-seq technologies, we identified a

variety of NK cell marker genes and constructed a molecular
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signature to predict the long-term prognosis and therapeutic

benefits of HCC patients. Subsequently, the performance of the

signature was validated on various databases, and its related

biological functions were explored.
Methods

Data collection

The Transcriptomic expression data and the corresponding clinical

and survival information of HCC were collected from three different

platforms, 365 HCC patients from the TCGA data portal (https://

portal.gdc.cancer.gov/), 230 HCC patients from the ICGC data portal

(https://dcc.icgc.org/projects/LIRI-JP), and 221 HCC patients from the

Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/

geo/) (GSE14520). In addition, transcriptomic expression and clinical

data from 67 HCC patients who received sorafenib and 147 HCC

patients who were treated by TACE were downloaded from the

GSE109211 dataset and GSE104580 dataset respectively. The

transcriptomic expression and immunotherapy effect information of

patients with melanoma treated with PD-1 inhibitor were obtained

fromGSE91061. The scRNA-Seq data for HCCwere obtained from the

China National Gene Bank Nucleotide Sequence Archive (CNSA:

CNP0000650; https://db.cngb.org/cnsa).

Forty-eight patients diagnosed as primary HCC at the Affiliated

Hospital of Guilin Medical University (Guilin, People’s Republic of

China) between May 2002 and September 2010 were retrospectively

included in this study (Guilin cohort). The Guilin cohort patients

were diagnosed with HCC based on serological tests, radiological

imaging, and pathological evaluations. Clinicopathologic

information and tumor tissue of these 48 patients were collected.
Processing single-sell RNA-seq data

Data for scRNA-seq analysis of 12 primary HCC samples were

collected for this study. Cell filtering, classification, and

visualization of the scRNA-seq data were analyzed by the R

package “Seurat”. The top 2000 variable genes were used for

further principal component analysis (PCA), and the T-

distributed stochastic neighbor embedding (t-SNE) analysis was

carried out. The “FindAllMarkers” function was applied to find

marker genes for each cell cluster. Marker genes were selected as

those with adjusted p values less than 0.01, average log2FC larger

than 1. Cell clusters were annotated by the package “SingleR” and

then checked manually.
Establishment and validation of NK cell
marker genes-related prognostic signature
and nomogram construction

Univariate Cox regression analysis was used to identify NK cell

marker genes associated with overall survival (OS) in HCC patients

from the TCGA cohort. Significant OS-related genes were selected
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(P<0.01) to further perform variable selection using Least absolute

shrinkage and selection operator (LASSO)-penalized Cox

regression analysis. The significant predictors were selected using

1 standard error (1-SE) of the minimum criteria. Then, multivariate

survival analysis was performed by stepwise Cox proportional

hazards regression model to determine the most useful prognostic

genes and then NK cell marker genes-related prognostic signature

(NKPS) was constructed. The NKPS risk score of each patient was

equal to the sum of the products of each gene’s normalized

expression level and its corresponding regression coefficients.

HCC patients were classified into high- or low-risk group

according to the median value of risk score. The Kaplan–Meier

algorithm was used to compare the OS or progression-free survival

(PFS) between the two groups. Time-dependent receiver operating

characteristic (ROC) curve was used to evaluate the accuracy of the

prognostic model by the R package “survivalROC”. Subsequently,

we performed subgroup analyses to validate the effectiveness of our

prognostic signature in different clinical and pathological

subgroups. Then, ICGC, GSE14520 and Guilin cohorts were

applied for the external validations of the prognostic signature. In

addition, univariate and multivariate cox regression analyses were

performed to explore the correlation between the signature, clinical

characteristics and OS. Finally, clinical characteristic parameters

and the NKPS were adopted to establish a nomogram by the R

package “rms”, to quantitatively investigate the probability of 1-, 3-,

and 5-year OS of HCC patients. Subsequently, calibration curves

were used to assess the consistency between predicted and actual

survival outcome, and decision curve was used to assess the clinical

net benefit of the nomogram.
Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were performed by the

“clusterProfiler” package in R.
Gene sets variation analysis

The gene set of immune processes was downloaded from the

GSEA website (https://www.gsea-msigdb.org/gsea/msigdb/

index.jsp). The Gene sets variation analysis (GSVA) was

performed using the “GSVA” package in R. The functional

enrichment score of each HCC sample was calculated and the

enrichment result was visualized by the “pheatmap” package. The

correlation between NKPS risk score and immune processes was

determined by Pearson correlation analysis.
Evaluation of immune
infiltration and tumor immune
microenvironment landscape

Infiltration of immune cells in the HCC sample was examined

using the CIBERSORT algorithm with LM22 immune subsets
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(https://cibersort.stanford.edu/) (15). The “estimate” R package was

used to calculate the immune cell infiltration level (immune score),

stromal content (stromal score), comprehensive environmental score

(ESTIMATE score) and tumor purity. Tumor transcriptome-based

estimates of leukocyte fraction, lymphocyte infiltration signature,

TGF-beta response, T cell receptor (TCR) richness and Shannon

index, and tumor proliferation were obtained from the Pan-Cancer

Atlas study of Thorsson et al. (16).
Somatic mutation data processing

Somatic mutation data of HCC patients in the TCGA cohort

was downloaded. The R package “maftools” was used to analyze,

summarize, and visualize the somatic mutation data of patients in

the TCGA cohort. Tumor mutational burden (TMB), a measure of

the number of somatic mutations identified per megabase of DNA

sequenced, and mutant allele tumor heterogeneity (MATH) score, a

tumor-specific score based on the variation in variant allele

frequency of all mutations in the tumor were calculated for every

patient in the cohort. In addition, the differently mutated genes

between the low-risk and high-risk groups were screened.
Prediction of immunotherapeutic response
and other therapeutic benefits of HCC
patients based on NKPS

To assess the possible ability of risk score for prediction of

immunotherapy response, firstly, the relationship between the risk

score and immune checkpoint genes such as PD-L1, CTLA-4,

LAG3, CD47 and TIM3 was explored. Zhu et al. reported that the

atezolizumab + bevacizumab response signature (ABRS), which was

derived from the genome-wide differential expression gene and

GSEA analyses based on HCC patients who received atezolizumab

+ bevacizumab treatment in GO30140 and IMbrave150 studies, and

T-effector signature (Teff) were highly associated with the clinical

benefit of HCC patients to immune checkpoint inhibitors (ICIs)

immunotherapy (17). Moreover, IFNG response and IFNA

response signatures have been proven to be associated with

response to ICIs. Therefore, we evaluated the correlation of the

risk score with these ICI immunotherapy response-related

signatures. In addition, TIDE score is a novel approach to

evaluating the efficacy of ICIs immunotherapy, and it can be

obtained from the TIDE website (http://tide.dfci.harvard.edu/) (18).

GSE91061 dataset included 109 melanoma cases with

transcriptional expression and the efficacy of immunotherapy.

According to the response to immunotherapy, patients in

GSE91061 cohorts were classified into two subgroups: complete

response (CR)+ partial response (PR), and stable disease (SD)

+progressive disease (PD). We calculated the risk score of each

patient and analyzed its impact on the prognosis and the efficacy of

the PD-1 inhibitor. Furthermore, the predictive value of the NKPS

risk score for chemotherapy benefit and sorafenib efficacy in HCC

patients was evaluated based on GSE104580 and GSE109211

datasets, respectively.
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Real−time quantitative polymerase
chain reaction

Total RNA of human HCC sample was extracted using TRIzol

reagent (Invitrogen, USA) according to the manufacturer’s

instructions and was reverse transcribed into cDNA using Hifair®

III 1st Strand cDNA Synthesis SuperMix for qPCR (YEASEN,

China). The mRNA expression was assessed by real-time

quantitative polymerase chain reaction (RT-qPCR) using Hieff

UNICON ® Universal Blue qPCR SYBR Green Master Mix

(YEASEN, China). The relative mRNA expression levels of target

genes were calculated by the comparative CT method. The primers

used in this experiment are listed in Supplementary Table S1.
Immunohistochemistry

The tissue slides of HCC sample through deparaffinization and

dehydration were incubated with anti-CD8 primary antibody

overnight at 4 °C after epitope retrieval, H2O2 treatment and

non-specific antigens blocking. Slides were next incubated with

secondary antibody, followed by signal detection with DAB staining

kit (Zsbio, China)
Statistical analysis

Data were presented as median (range). Medians were

compared using the Wilcoxon rank-sum test. Chi-squared test or

Fisher’s exact test was used to compare two percentages. The

relationship between the risk score and other continuous variables

was calculated by the Pearson method. Univariate and multivariate

Cox regression analyses were implemented to identify independent

predictors of OS. The OS and PFS between the different groups were

evaluated by Kaplan-Meier analysis. If not specified above, a P value

less than 0.05 was considered statistically significant, and all P

values were two-tailed. All statistical analysis was performed in

R 4.2.0.
Results

Identification of NK cell marker genes
expression profiles

We first obtained single-cell transcriptomic profile data of 12

primary HCC samples, consisted of 10548 single cells from the

CNP0000650 dataset. PCA and t-SNE analysis was conducted to

reduce the dimensionality by using the 2000 variable genes and

identified 21 cell clusters (Figure 1B). According to expressions of

marker genes, 6 major cell types were identified, including T cells, B

cells, NK cells, myeloid cells, hepatocytes, and endothelial cells

(Figure 1A). Heatmap showing the expression of marker genes in

the indicated cell types (Figure 1C). Among the 21 distinct cell

clusters, cells in cluster 5 were defined as NK cells and possess distinct

gene expression profiles, with 251 differently expressed genes from
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other clusters. We identified these 251 genes as HCC-related NK cell

marker genes. The GO enrichment and KEGG pathway analysis

showed that these NK cell marker genes are highly enriched in

immune-related processes (Supplementary Figures S1A, B).
Construction of NK cell genes-related
prognostic signature for the prognostic
prediction of HCC

All 365 HCC patients with OS information in the TCGA

cohorts were included to construct a prognostic model. We first

performed univariate Cox regression analysis to explore NK cell

marker genes related to OS, and 37 NK cell marker genes were

found to be statistically significant (p < 0.01). After taking these 37

genes into the LASSO Cox regression model with minimized

lambda, 12 NK cell marker genes were identified (Supplementary

Figure S2C). To get a more practical model, we used stepwise cox

proportional hazards regression to screen the most powerful

predictive prognostic genes with regression coefficients. Five genes

(LPCAT1, IL18RAP, SRSF2, ADGRG3, ADGRE5) (Supplementary

Figure S2D) were identified to establish the NK cell marker genes-

related prognostic signature (NKPS). The specific risk scores of OS

were calculated as follows: risk score = (0.199* expression level of

LPCAT1) + (-0.937* expression level of IL18RAP) + (0.492*

expression level of SRSF2) + (0.189* expression level of

ADGRG3) + (0.146* expression level of ADGRE5). HCC patients

in the TCGA cohort were classified into low- and high-risk groups

based on the median value of the risk score, and we compared the

clinical and molecular differences between the two groups in the

TCGA cohort (Supplementary Table S2). We found that a higher

risk score was associated with more aggressive malignant

characteristics, such as poorer tumor differentiation and more

advanced tumor TNM stage. The distribution of risk score and

survival status corresponding to the expression of each gene were

displayed in Figure 2A. The Kaplan–Meier curve showed that

patients in the high-risk group had significantly poorer OS than

those in the low-risk group (p < 0.001) (Figure 2B). The areas under

the curve (AUCs) of the time-dependent ROC curves for OS at 1, 3

and 5 years were 0.793, 0.802 and 0.723, respectively (Figure 2C).

Moreover, the high-risk group had a significantly poorer PFS than

the low-risk group (p < 0.001) (Figure 2D). The AUCs of the time-

dependent ROC curves for PFS at 1, 3 and 5 years were 0.710, 0.703

and 0.606, respectively (Figure 2E). These results indicated high

sensitivity and specificity of the NKPS for predicting OS and PFS.
Validation of the NKPS in different clinical
subgroups and external datasets

The prognostic value of NKPS was evaluated in different age,

gender, TNM stage, pathological stage, AFP level, and HBV or HCV

infection subgroups. The survival curve showed that in each

subgroup, the patients with a high NKPS risk had significantly

poorer OS compared to the patients with low NKPS risk

(Supplementary Figures S3A–L).
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To validate the prognostic performance of the NKPS in different

data platforms, the GSE14520 dataset, ICGC dataset and Guilin cohort

were used as external validation datasets. According to the same

formula, the HCC patients in these three cohorts were classified into

low-risk and high-risk groups using a median-risk score. We observed

consistent differences in clinical characteristics between low-risk and

high-risk groups (Supplementary Table S2). Consistent with the results

in the TCGA cohort, the group with a high risk in the GSE14520

cohort showed significantly poorer OS and poor PFS relative to the

group with a low risk (Figures 2F, G). The AUCs for 1-, 3-, and 5-year

OS and 1-, 3-, and 5-year PFS were 0.677, 0.722, 0.658 and 0.664; 0.652,

0.603 respectively (Supplementary Figures S4A, B). Similarly, in the

ICGC cohort, the high-risk group presented worse OS than those of the

low-risk subgroup (p < 0.001) (Figure 2H). The AUC at 1-, 3- and 5-

years were 0.762, 0.723, 0.715, respectively (Supplementary Figure

S4C). Moreover, in accordance with the results in the public dataset,

a higher survival rate was observed in low-risk group in our Guilin

cohort (p=0.037) (Figure 2I).
Independent prognostic value of NKPS

To portray a detailed prognostic value of the NKPS, we

performed univariate and multivariate Cox regression analysis in

TCGA, ICGC, GSE14520, and Guilin cohorts, respectively. In

univariate Cox regression analyses, the risk score was significantly

associated with OS in all four HCC cohorts. Moreover, after
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correction for other confounding factors by multivariate Cox

regression, the NKPS was still significantly related to OS in all

four HCC cohorts (TCGA cohort: HR = 2.57, 95% CI = (1.99, 3.33),

p<0.001; ICGC cohort: HR = 2.06, 95% CI = (1.34,3.15), p = 0.001;

GSE14520 cohort: HR = 2.06, 95% CI = (1.25, 3.40), p<0.001; Guilin

cohort: HR = 1.87 95% CI = (1.20, 2.80), p=0.003), which indicated

that NKPS could independently predict the prognosis in each

cohort (Table 1).
NKPS-related biological functions

To explore the potential mechanism of how NKPS predicts

HCC prognosis, we investigated the biological function of NKPS.

Firstly, genes highly related to NKPS were identified in the TCGA

cohort with Pearson correlation coefficient >0.5 and p<0.001, and

1064 positively-correlated genes were identified. The top 100

positively correlated genes were plotted in a heatmap (Figure 3A).

Next, GO analysis and KEGG analysis were conducted. GO analysis

revealed that these genes were mostly correlated to basic cellular

processes, including chromosome segregation, nuclear division,

DNA replication, mRNA processing, translation and cell

proliferation (the top5 GO enrichment results in each category

were shown in Figure 3B). KEGG pathways analysis also reflected

high enrichment of pathways involved in the cell proliferation,

including cell cycle and DNA replication (the top10 KEGG

enrichment results were shown in Figure 3C).
A B

C

FIGURE 1

Single-cell RNA sequencing (scRNA-seq) analysis of HCC patients. (A) t-SNE visualization of the 10548 cells from 12 primary HCC tumor tissue in the
CNP0000650 dataset. (B) t-SNE clustering of scRNA-seq colored by cell types. (C) Heatmap showing the expression of marker genes in each cluster.
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Association between the NKPS and
immune cell infiltration in the tumor
microenvironment

Since anti-tumor immunity is highly modulated by the

proliferation and activation of immune cells, we explored the

association between the NKPS and immune cell infiltration in the

tumor microenvironment in HCC patients. We characterized and

analyzed the infiltrating level of different immune cells in low- and

high-risk HCC patient groups based on NKPS. CIBERSORT-based

analysis revealed that low-risk patients have significantly higher

CD8+ T cell, T cell CD4 memory resting, T cells gamma delta, and

significantly lower M0 macrophage, eosinophils and neutrophils

compared to the high-risk group (Figure 4A). Composition of

tumor-infiltrating immune cells in two groups was presented in

Figure 4B. Moreover, via ESTIMATE algorithm, we observed that

the high-risk group had higher tumor purity than the low-risk

group (Figure 4F), while the low-risk group exhibited higher

stromal score, immune score and ESTIMATE score (Figures 4C–E).

Since the killing of tumor cells by CD8+ T cells is the principal

mechanism of immune protection against tumors, and the

difference in CD8+ T cells infiltration between the high-risk and
Frontiers in Oncology 06
low-risk group in our study was most striking, we detected the

infiltration level of CD8+ T cells in tumor tissues by RT-PCR and

immunohistochemistry. In accordance with the immune infiltration

analysis, proportions of CD8+ T cells infiltrated in low-risk tumors

were significantly higher than those in high-risk group (p = 0.043)

(Figure 4G). Representative immunohistochemistry staining

pictures of high- and low-risk tumors were showed in Figure 4H.
Distinct immune response and
inflammatory profiles in tumors among
NKPS subgroups

We then further explored the correlation between NKPS with

immune function. Immune-associated pathway enrichment score

of each sample in the TCGA cohort was calculated by GSVA. We

found that NKPS was significantly negatively associated with

enrichment scores of immune-associated pathways, including

activation of different immune cells involved in immune

response, cytokine production involved in immune response, and

various immune cells mediated immune response to tumor cell

(Figure 5A). Moreover, to get a further understanding of NKPS-
D

A B

E

F G IH

C

FIGURE 2

Construction and validation of NK cell marker genes-related prognostic signature (NKPS). (A) The distribution of risk scores and survival status, and
the expression of the identified 5 NK cell marker genes in low- and high-risk groups. (B) Kaplan-Meier curve analysis of overall survival of HCC in
low- and high-risk groups in TCGA cohort. (C) Time-dependent ROC analysis of the NKPS for predicting the risk of death at 1, 3, and 5 years in
TCGA cohort. (D) Kaplan-Meier curve analysis of progression-free survival of HCC in low- and high-risk groups in TCGA cohort. (E) Time-dependent
ROC analysis of the NKPS for predicting the risk of disease progression at 1, 3, and 5 years in TCGA cohort. (F) Kaplan-Meier curve analysis of overall
survival of HCC in low- and high-risk groups in GSE14520 cohort. (G) Kaplan-Meier curve analysis of progression-free survival of HCC in low- and
high-risk groups in GSE14520 cohort. (H) Kaplan-Meier curve analysis of overall survival of HCC in low- and high-risk groups in ICGC cohort. (I)
Kaplan-Meier curve analysis of overall survival of HCC in low- and high-risk groups in Guilin cohort.
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TABLE 1 Univariate and multivariate Cox regression analyses of variables related to OS in the TCGA, ICGC, GSE14520 and Guilin cohorts.
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(0.75,1.85)

0.49

<0.001

<0.001
2.06
(1.25,3.40)

0.005
2.16
(1.40,3.34)

<0.001
1.87
(1.20,2.80)

0.003
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TCGA cohort ICGC cohort G

Characteristics
Univariable
analysis

Multivariable
analysis

Univariable
analysis

Multivariable
analysis

Univariab
analysi

HR (95%
CI) p HR (95%

CI) p HR (95%
CI) p HR (95%

CI) p HR (95%
CI)

Age
1.01
(1.00,1.03)

0.07
1.00
(0.97,1.03)

0.81
0.99
(0.97,1.01)

Gender

female 1 (ref) 1 (ref) 1 (ref) 1 (ref)

male
0.81
(0.57,1.16)

0.26
0.50
(0.27,0.95)

0.03
0.28
(0.13,0.59)

0.001
1.7
(0.82,3.52)

TNM stage

I/II 1 (ref) 1 (ref) 1 (ref) 1 (ref) 1 (ref)

III/IV
2.54
(1.79,3.61)

<0.001
2.06
(1.44,2.94)

<0.001
2.47 (1.34,
4.57)

0.004
2.60
(1.27,5.30)

0.009
3.52 (2.24,
5.51)

Grade

1/2 1 (ref) 1 (ref)

3/4
1.12
(0.78,1.61)

0.54
2.61 (1.37,
4.99)

0.004
2.12
(1.09,4.13)

0.026

AFP

low 1 (ref) 1 (ref)

high
1.03
(0.64,1.64)

0.92
1.69 (1.06,
2.50)

BCLC stage

0/A 1 (ref)

B/C
3.54
(2.27,5.54)

Risk score
2.72
(2.12,3.49)

<0.001
2.57
(1.99,3.33)

<0.001
2.28
(1.55,3.32)

<0.001
2.06
(1.34,3.15)

0.001
2.41
(1.54,3.78)

HR, hazard ratio; CI, confidence interval; AFP, alpha-fetoprotein; TNM, tumor node metastasis; BCLC, Barcelona clinical liver cancer.
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related inflammatory and immune activities, we collected seven

inflammatory and immune-related gene signatures, including HCK,

IgG, LCK, MHC-I, MHC-II, STAT1 and interferon. Figure 5B

showed that NKPS was negatively correlated with these seven

inflammatory and immune-related gene signatures. Regarding

cancer immunity scores provided by Thorsson et al. for the

TCGA cohort (16), the low risk group had higher scores of

leukocyte fraction, lymphocyte infiltration signature, macrophage

regulation, T cell receptor (TCR) Richness and TCR Shannon index,

while the lower score of TGF-beta response and lower level of

proliferation compared to high-risk score (Figures 5C–H).
Different somatic alteration landscapes
between the high− and low−risk groups

To explore the somatic alteration landscape between the low-

and high-risk groups, we analyzed somatic mutation data of

HCC patients in the TCGA cohort. Although there was no

significant difference in TMB between the low- and high-risk

groups (Figure 6C), the high-risk group presented a significantly

higher MATH score (Figure 6D), which indicated a higher inter-

tumor heterogeneity. The top 20 variant mutations in the low-

and high-risk groups were displayed in Figures 6A, B, and the

forest plot showed the mostly differentially mutated genes

between the two groups (Figure 6E). The TP53 gene mutation

differed most significantly between the two groups (mutation

rate of the high-risk group vs the low group: 47% vs 14%, OR,

5.234, p<0.001).
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Prediction of immunotherapy response and
other therapeutic efficacy based on NKPS

We investigated the relationship between NKPS risk score and

five immune checkpoint molecules (PD-L1, CTLA4, LAG3, TIM3

and CD47). The risk score showed a positive relationship with the

expression of TIM3 and CD47 (Figure 7A). Next, we examined the

correlation between the risk score and several signatures that are

closely related to the response to ICIs in HCC patients. As shown in

Figure 7A, the NKPS were significantly inversely related to ABRS,

Teff, IFNA response and IFNG response (all p<0.001). In addition,

TIDE algorithm was applied to predict the likelihood of

immunotherapy response of each HCC patient in the TCGA

cohort. The results showed that the low-risk group possessed

significantly higher TIDE and exclusion scores and lower

dysfunction scores compared to the low-risk group (Figures 7B–

D). Above results suggested that HCC patients in the low-risk group

are more likely to be responsive to ICI therapy. Due to a lack of

suitable publicly available transcriptional data about HCC patients

who underwent ICI treatment, we collected the GSE91061 dataset,

which included 109 anti-PD-1 treated malignant melanoma

samples, to validate the potential predictive value of NKPS. The

results showed more ICI responders (CR/PR: complete response/

partial response) were enriched in the low‐risk subgroup (35.8% vs

7.7%, p<0.001) (Figure 7E).

Sorafenib and TACE are the two commonly used therapeutic

modalities for HCC patients, and we also evaluated the predictive

value of NKPS in HCC patients who received sorafenib and TACE

therapy. Bar plot (Figure 7F) showed a significantly higher response
A B

C

FIGURE 3

NKPS related biological functions. (A) Heatmap showed the top 100 genes that had the most significant correlations with NKPS. (Pearson R> 0.5, P <
0.001). (B) Representative GO terms of the correlated genes. (C) Representative KEGG enrichment results of the correlated genes.
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rate of sorafenib in the low-risk group than in the high-risk group

(44.1% vs 18.2%, p=0.022). Similarly, more individuals in the low-

risk group presented a response to TACE than that in the high-risk

group (77.0% vs 32.9%, p<0.001) (Figure 7G).
Construction of a nomogram based on
the NKPS

NKPS was proven to be a significantly independent prognostic

factor through Cox regression analysis with multiple clinical features

(Table 1). To quantitatively evaluate the survival probability of HCC

individuals in the clinical setting, we combined it with other

clinicopathological traits to construct a nomogram (Figure 8A).

The C-index of 0.73 indicated the good performance of

nomogram. Furthermore, the calibration curve shown good
Frontiers in Oncology 09
agreement between predicted and the actual probability at

different survival time points, including 1-, 3-, and 5-year OS

(Figure 8B). The decision curve showed that the nomogram had

the best predictive performance (Figure 8C)
Discussion

NK cells, which make up roughly 50% of the hepatic lymphocyte

pool (19), play an indispensable role in tumor surveillance and control.

Studies have shown that intrahepatic NK cells possess higher cytotoxic

activity against tumor cells than peripheral blood NK cells (20). In

addition, Xue et al. reported that highNK cell levels could predict better

survival for patients with HCC (21). Thus, a more comprehensive

understanding of the role of NK cells in HCC would undoubtedly

contribute to better surveillance and management of HCC.
D
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G H

C

FIGURE 4

The Association between the NKPS and immune cell infiltration in tumor microenvironment. (A) The comparison of immune cells infiltration level of
22 immune cell types between low-risk and high-risk groups. (B) The composition of different immune cells between low- and high-risk groups.
(C–F) comparison of stromal score (C), immune score (D), ESTIMATE score (E) and Tumor purity (F) between low-risk and high-risk groups. (G) The
relative mRNA expression of CD8A in the Guilin cohort. (H) Representative immunostaining pictures of CD8 between low-risk and high-risk groups
in the Guilin cohort.
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In this study, we firstly used scRNA-seq for a comprehensive

view of transcriptional profile of the intrahepatic NK cells.

Subsequently, NKPS, a robust prognostic signature for HCC

based on NK cell marker genes was established and well-

validated. Patients with low-risk NKPS scores in the TCGA

cohort showed better OS and RFS. Besides, similar results were

observed in three independent validation cohorts, ICGC, GSE14520

and Guilin cohorts. Moreover, when performing a subgroup

analysis, the prognostic difference between the low-risk and high-

risk groups was observed in different clinical characteristics.

Multivariate Cox regression analyses in the three cohorts

suggested the independent role of NKPS as a predictive marker of

the long-term prognosis of HCC. These results indicated the

effectiveness and robustness of NKPS in predicting HCC prognosis.

The NKPS proposed in the present study was composed of 5

NK cell marker genes (LPCAT1, IL18RAP, SRSF2, ADGRG3,

ADGRE5). The IL18RAP gene, encoding an indispensable

subunit of the IL-18R complex, plays an important role in IL18

signaling transduction (22). The prognostic role of IL18RAP has

been reported in various cancers, including HCC, renal cell

carcinoma and esophageal carcinoma (23–25). The proteins

encoded by ADGRE5 and ADGRG3 belong to the family of

adhesion G protein-coupled receptors, which could modulate the

cellular processes closely related to tumor cell biologies, such as cell

adhesion and detachment, migration, polarity, and guidance (26,

27). Studies have shown that the expression of ADGRE5 correlated

with tumor cell invasion and angiogenesis, leading to a poor clinical
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prognosis in several cancers (28, 29). LPCAT1, as a key enzyme

regulating phospholipid metabolism, could modulate cell

membrane fluidity and facilitate tumor cell metastases in HCC

(30). Splicing factor SRSF2 acts as a critical regulator for cell

survival, its mutation or dysregulation of expression has been

reported to drive the process of hepatocarcinogenesis (31, 32).

This study identified five genes as a prognostic molecular

signature, which may also provide an increased understanding of

the molecular mechanisms underlying the pathogenesis of HCC.

We further performed a series of functional analyses to explore

the possible mechanism behind the prognostic power of the NKPS.

GO and KEGG analyses based on the genes closely related to the

NKPS revealed that these related genes were mostly associated with

cellular proliferation, cell cycle and DNA replication. Since NK cell

can directly induce apoptosis in tumor cells or induce ADCC

activity to lyse tumor cells, dysfunction of NK cells can cause

dysregulation of cell cycle and cellular proliferation, resulted in

unrestrained cell growth and tumor development, and then leading

to a poor prognosis. In addition, the genetic landscape analysis

found that high-risk score patients exhibited significantly higher

inter-tumor heterogeneity. Remarkably, the mutation of several

tumor suppressor genes, such as TP53 and RB1, occurred more

frequently in patients with high-risk scores. Previous studies have

shown that mutations of TP53 and RB1 were correlated with

uncontrolled cell cycle progression, and contributed to poor

survival in HCC (33, 34). These results hinted the abnormal

cellular process in patients with high-risk scores and might
D
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FIGURE 5

Distinct immune response and inflammatory profiles in tumors among NKPS subgroups. (A) the heatmap showed the risk score and the enrichment
scores of immune functions of each patient in the TCGA cohort. The bar plot on the right showed the R- value and P- value of the correlation
analysis. (B) Correlation matrix of risk score and seven immune and inflammatory-related metagenes based on TCGA cohort. The number inside the
circle represents the R- value of the correlation analysis. Asterisks indicates significance of the correlation: one asterisk, P<0.05; two asterisks,
P<0.01; three asterisks, P<0.001. (C–H) Boxplots for various immune response-related scores among low-risk and high-risk group in the TCGA
cohort. (C) TCR richness, (D) TCR Shannon, (E) lymphocyte infiltration, (F) leukocyte fraction, (G) TGF-beta response, (H) proliferation.
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explain the more aggressive tumor characteristics and worse

prognosis of high-risk patients

Furthermore, we investigated the relationship between tumor

immune cell infiltration and NKPS. The estimate algorithm

demonstrated the negative correlation between NKPS and immune

infiltration. Patients with high NKPS risk scores possessed lower

immune scores, stromal scores and ESTIMATE scores, whereas

higher tumor purity, as compared to patients with a low NKPS risk

score. Specifically, we also evaluated the relative infiltration of

immune cells in high-risk and low-risk groups. The results showed

that patients with low-risk scores were in an immune-active state,

manifested as high infiltration of CD8+ T cells and macrophages M1.

In contrast, patients with high-risk scores possessed a higher

frequency of macrophage M0, neutrophils and eosinophils, which

have been proved implicated in immunosuppression and tumor

progression (35, 36). These results could explain the predictive

capacity of the NKPS. CIBERSORT-based analysis showed that the

difference of infiltration level of NK cells between NKPS high and low

groups was not obvious, possible reasons include the following, firstly,

all genes used in preliminary screening were NK cell marker genes,

and secondly, we performed lasso-cox regression to determine the

critical genes in HCC patients’ survival and then constructed the

prognostic model, so patients in the NKPS high and low groups

differed mostly by long-term survival. Although the infiltration level

of NK cells between NKPS high and low groups was not so obvious,

immune-associated pathway enrichment analysis showed that
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patients with high NKPS risk score possess less score of NK cell

anti-tumor function, such as low score of NK cell activation involved

in immune response and NK cell mediated response to tumor cell.

Furthermore, GSVA showed that NKPS was negatively

correlated with immune and inflammatory responses. Moreover,

patients in the low-risk group presented higher TCR richness and

diversity, which implied an improved ability of antigen uptake and

presentation. In addition, the host defense immunity activity

(leukocyte fraction, and lymphocyte infiltration) was higher in the

low-risk group compared with the high-risk group. Moreover, we

validated the higher infiltration of CD8+ T cells in the low-risk

group based on our Guilin cohort. These results showed that the

low-risk group was in immune-active status. Meanwhile, these

results revealed that the potential mechanism of the prognostic

ability of NKPS may be related to the immune responses.

The recent advent of immunotherapy, especially immune

checkpoint inhibitors (ICIs), has dramatically transformed the

treatment landscape for advanced HCC, but not all patients could

benefit from immunotherapy. Therefore, exploring a potential

prognostic biomarker to identify patients who would benefit the

most from ICIs is crucial. In this study, the correlation analyses

suggested that the NKPS was significantly negatively correlated with

the ICI immunotherapy response-related signatures, including ABRS,

Teff, IFNA response and IFNG response signature, which means

patients with low-risk scores will benefit more from immunotherapy.

Moreover, TIDE is a newly discovered immunotherapy predictor and
D
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FIGURE 6

Different somatic alteration landscape between the low- and high-risk groups. (A, B) The Oncoplot was constructed by the top 20 mutation genes
in the low-risk (A) and high-risk (B) subgroups. Each liver tumor from an individual patient in TCGA cohort was represented in each column. (C, D)
The difference of Tumor mutation burden (TMB) (C) and mutant allele tumor heterogeneity (MATH) score (D) in low- and high-risk groups. (E) The
forest plot shows the most significantly differently mutated genes between the low- and high-risk group. ** indicating p<0.01; *** indicating
p<0.001.
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has been proven to have better predictive performance than other

biomarkers or indicators (18). A higher TIDE score represented a

higher potential for immune evasion, which indicated that the

patients were less likely to benefit from ICI therapy. In this study,

the low-risk subgroup had a lower TIDE score than the high-risk

subgroup, implying that NKPS-low patients could benefit more from

ICI therapy than NKPS-high patients. Due to the lack of publicly

available large-scale sequencing data of HCC patients receiving

immunotherapy. Meanwhile, aiming to investigate the wider

applicability of NKPS, melanoma patients receiving anti-PD-1

therapy were enrolled. A significantly higher response rate (CR/PR)

in the low-risk subgroup validated the predictive power of NKPS for

immunotherapeutic effect. Besides, transcatheter arterial
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chemoembolization (TACE) and sorafenib are two of the major

and widely used treatment methods for advanced HCC. In our

results, patients with low risk scores were more likely to respond to

sorafenib or TACE than patients with high risk scores. Taken

together, NKPS could act as a reliable biomarker for predicting

response to immunotherapy or traditional therapies, therefore, it’s

helpful to formulate strategies to better manage HCC patients.

There did exist some limitations in this study. Firstly, the

prognostic signature was constructed based on the data from the

public datasets, additional verification by large-scale clinical trials is

needed. Furthermore, these findings need to be validated and

explored in immunotherapy trials. Secondly, although our study

indicated that NKPS can be used to predict response to
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FIGURE 7

The role of NKPS in predicting immunotherapeutic response and other therapeutic benefits for HCC patients. (A) The correlation between risk score
and inhibitory immune checkpoints and signatures which can predict the response to immunotherapy. The color of the band represented the
Pearson R-value. (B–D) Tumor immune dysfunction and exclusion (TIDE) score (B), T cell exclusion score (C) and T cell dysfunction score (D)
between low-risk and high-risk groups. (E) Treatment response rates of anti-PD-1 immunotherapy in low- and high -risk groups in the GSE91061
cohort. (F) Treatment response rates of sorafenib in low-risk and high-risk groups in the GSE109211 cohort. (G) Treatment response rates of TACE in
low-risk and high-risk groups in the GSE104580 cohort.
A B C

FIGURE 8

(A) Nomogram combining clinical characteristic parameters and NKPS risk score for predicting overall survival for HCC patients. (B) The predicted
calibration curve approached the standard curve at the 1-, 3- and 5-year calibration points. (C) Decision curve of the nomogram.
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immunotherapy of HCC patients, validation in independent cohorts

of HCC patients who were treated with immunotherapy is required.

Lastly, the specific mechanisms underlying the NKPS’s prognostic

power require further experimental verification and discussion.

In conclusion, we constructed and validated a prognostic

signature consisting of five NK cell marker genes for HCC based

on scRNA-seq and bulk RNA-seq analysis. The NKPS possesses an

excellent ability to distinguish the malignant degree of the tumor

and the prognosis of patient. In addition, NKPS could be used as a

powerful tool to predict the therapeutic benefits of HCC and

provide treatment guidance for HCC.
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SUPPLEMENTARY FIGURE 1

Functional enrichment analysis of NK cell marker genes of HCC. (A)
Representative GO terms of the NK cell marker genes. (B) Representative
KEGG enrichment results of the NK cell marker genes.

SUPPLEMENTARY FIGURE 2

Construction of NK cell marker genes-related prognostic signature in TCGA

cohort. (A) LASSO coefficient profiles of the 37 prognostic genes. (B) In LASSO

regression analysis, partial likelihood deviance plot showed cross-validation
for tuning parameter screening. (C) Forest plots showing the results of the

univariate Cox regression analysis between the 12 genes expression
(identified by LASSO regression analysis) and OS in the TCGA cohort. (D)
Step Multivariable Cox proportional hazards regression analysis of the 5
prognostic genes.

SUPPLEMENTARY FIGURE 3

Validation of the prognostic performance of NKPS in different clinical

subgroups. Kaplan–Meier curves of overall survival in male (A), female (B),
young (C), old (D), TNM I/II (E), TNM III/IV (F), early stage (G) and advanced

stage (pathological grade 3/4) (H), AFP ≥200ng/ml (I), AFP<200 (J), HBV (K)
and HCV (L) patients based on risk score in TCGA cohort.

SUPPLEMENTARY FIGURE 4

Time-dependent ROC analysis of the NKPS for predicting the risk of death in

different cohorts. (A) Time-dependent ROC analysis of the NKPS for
predicting the risk of death at 1, 3, and 5 years in GSE14520 cohort. (B)
Time-dependent ROC analysis of the NKPS for predicting the risk of disease
progression at 1, 3, and 5 years in GSE14520 cohort. (C) Time-dependent

ROC analysis of the NKPS for predicting the risk of death at 1, 3, and 5 years in

ICGC cohort. (D) Time-dependent ROC analysis of the NKPS for predicting
the risk of death at 1, 3, and 5 years in Guilin cohort.
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