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Background: Colorectal cancer (CRC) is one of the most prevalent malignancies

and the third most lethal cancer globally. The most reported histological subtype

of CRC is colon adenocarcinoma (COAD). The zinc transport pathway is critically

involved in various tumors, and its anti-tumor effect may be through improving

immune function. However, the Zn transport pathway in COAD has not been

reported.

Methods: The determination of Zn transport-related genes in COADwas carried

out through single-cell analysis of the GSE 161277 obtained from the GEO

dataset. Subsequently, a weighted co-expression network analysis of the TCGA

cohort was performed. Then, the prognostic model was conducted utilizing

univariate Cox regression and least absolute shrinkage and selection operator

(LASSO) Cox regression analysis. Functional enrichment, immune

microenvironment, and survival analyses were also carried out. Consensus

clustering analysis was utilized to verify the validity of the prognostic model

and explore the immune microenvironment. Ultimately, cell experiments,

including CCK-8,transwell and scratch assays, were performed to identify the

function of LRRC59 in COAD.

Results: According to the Zn transport-related prognostic model, the individuals

with COAD in TCGA and GEO databases were classified into high- and low-risk

groups. The group with low risk had a comparatively more favorable prognosis.

Two groups had significant variations in the immune infiltration, MHC, and the

expression of genes related to the immune checkpoint. The cell experiments

indicated that the proliferation, migration, and invasion of the HCT-116, DLD-1,
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and RKO cell lines were considerably increased after LRRC59 knockdown. It

proved that LRRC59 was indeed a protective factor for COAD.

Conclusion: A prognostic model for COAD was developed using zinc transport-

related genes. This model can efficiently assess the immune microenvironment

and prognosis of individuals with COAD. Subsequently, the function of LRRC59 in

COAD was validated via cell experiments, highlighting its potential as a

biomarker.
KEYWORDS

colon adenocarcinoma (COAD), Zn transport, colorectal cancer (CRC), prognostic,
Immune infiltration, immune microenvironment Colon adenocarcinoma (COAD),
immune microenvironment
Introduction

Colorectal cancer (CRC) is one of the most prevalent

malignancies. It was reported in 2022 as the third most lethal

type of cancer worldwide (1). By 2035, more than 2.5 million people

would be suffering from the disease, with over 1.1 million predicted

deaths (2, 3). With the development of surgical methods and drug

therapy, novel treatment schemes for CRC have become

increasingly mature (4). However, the long-term survival rate of

advanced CRC continues to be poor (5). Approximately 20% of

CRC patients are diagnosed at advanced stages with metastases due

to the lack of early typical clinical symptoms and up to 50% of

patients with initially localized disease are likely to develop

metastases (3, 6). This is one of the main reasons for the low

survival rates in patients with advanced CRC, while difficulties in

early detection, delays in referral for treatment, and cultural beliefs

and financial constraints are other causes (7–9). Metastasis of CRC

predominantly occurs in the regional lymph nodes, lungs, liver, and

peritoneum (3). Although the prognosis of patients with metastatic

CRC has gotten better due to the introduction of liver and lung

metastasis surgery and novel anti-tumor drugs, in most cases, there

is sti l l no cure (10). Molecular targeted therapy and

immunotherapy, such as anti-VEGF monoclonal antibodies and

immune checkpoint inhibitors, are being investigated for their value

in CRC (11–13). However, certain CRC patients showed no

improvement in overall survival after specific treatment, which

could be associated with the low mutation load and the

production of immunosuppressive factors (14, 15). As a result,

researching new biomarkers and comprehending their role in the

tumor microenvironment is critical in guiding treatment for CRC.

Colon adenocarcinoma (COAD) is the most prevalent histological

subtype of CRC, comprising over 90% of cases (16).

Zinc is an essential trace element within the human body that is

vital for the maintenance of protein structure, enzyme activity, and

gene regulation (17, 18). Zn transport-related proteins are involved
02
in maintaining zinc homeostasis (19). The two most vital

transporter families are ZIP (SLC39A) family, which promotes

zinc influx into the cytoplasm, and ZnT (SLC30A) family, which

promotes zinc efflux from the cytoplasm (20, 21). Zinc

dyshomeostasis due to the dysfunction of Zn transport-related

proteins has been shown to contribute to an elevated risk of

developing several cancers, including prostate, breast, and

pancreatic cancers (22–25). Zinc metabolism is closely related to

anti-tumor, and its main mechanisms include DNA damage, DNA

repair, oxidative stress, and immune function (26, 27). It is generally

considered that its antioxidant and pro-apoptotic properties

primarily manifest the protective effect of zinc on the occurrence

of cancer by reducing oxidative stress and improving immune

function (28, 29). In specific cancers, zinc deficiency can also lead

to the loss of immature B cells and reduce antibody production (30).

It is worth noting that several clinical studies have used plasma or

serum to assess systemic zinc status as a biomarker of cancer

patients and have found changes in zinc levels in serum and

malignant tissues (31–33). The role of zinc transport-related

proteins in breast cancer, prostate cancer, and pancreatic cancer

has been extensively explored (22, 34–37), but little has been

reported in CRC. Therefore, exploring the function of zinc

transport-related proteins in CRC is of considerable significance.

This research acquired the data of individuals with COAD from

the TCGA database and the GSE17538 dataset from the GEO

databases. Through univariate Cox regression analysis and least

absolute shrinkage and selection operator (LASSO) Cox regression

analysis, a prognosis-predictive model of COAD patients according

to Zn transport-related genes was developed. The individuals with

COAD were classified into high- and low-risk groups as per their

respective risk scores. Overall survival (OS) of individuals with

COAD in both the training and external validation sets was

remarkably elevated in the group with low risk than in the group

with high risk. Additionally, this study explored the mutation

profile and tumor immune microenvironment in both groups,
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and the correlation between both groups and MHC marker genes

and immune checkpoints was analyzed. Lastly, the study verified

the specific role of LRRC59 in the gene model through cellular

functional experiments, including Cell Counting Kit-8 (CCK8)

proliferation assay and Transwell invasion assay, demonstrating

that LRRC59 has a potential to serve as a prognostic biomarker and

a potential target that can help in the treatment of COAD. The

findings of this research can be useful in diagnosing and

treating COAD.
Materials and methods

Data acquisition and processing

RNAseq data and the clinical data of 514 individuals

with COAD were retrieved from the TCGA (https://

portal.gdc.cancer.gov/) as a training set. Clinical data for patients

whose follow-up duration and recorded date of death were

incomplete were excluded. The COAD dataset GSE17538 was

downloaded from the GEO database as the external validation set.

Patients without survival data were excluded from the cohort, and

all the data were converted to log2 for the following analyses.
The acquisition of genes linked
to Zn transport

The genecards database (https://www.genecards.org/) was

searched for 565 genes associated with Zn transport in

December 2022.
Downloading and processing of single-cell
sequencing data

The single-cell sequencing dataset GSE161277 was retrieved

from the GEO database containing four samples. Subsequently, data

quality control was conducted. The cells with >50 genes among

which<5% mitochondrial genes were retained. The number of

highly variable genes was set at 1500. The integration of these

four samples was performed using SCT correction. Next, the tSNE

technique was applied to decrease the dimensionality of data, with

the “DIMS” parameter set to 20. Cell clustering was conducted

utilizing the “KNN” technique with a resolution of 1.0. Afterward,

the R package “singleR” was employed to annotate the cells by

different markers on the cellular surface. Lastly, the percentage of

genes linked to Zn transport in all cells was acquired by importing

Zn transport genes utilizing the “PercentageFeatureSet” function.
Single-sample gene set enrichment
analysis (ssGSEA)

To characterize the immune microenvironment of patients with

COAD, based on the expression matrix of two risk groups, the
Frontiers in Oncology 03
ssGSEA analysis is employed to establish enrichment scores that

indicate the level of enrichment of gene sets in each sample. In the

current research, the scores associated with Zn transport in each

sample of individuals with COAD were acquired by ssGSEA

analysis using the R package “GSVA”.
Weighted co-expression network
analysis (WGCNA)

WGCNA is a systematical biology approach that characterizes

patterns of gene correlation across various samples. This technique

can be utilized to detect gene sets with high covariance and to select

biological markers or therapeutic targets on the basis of the

interconnectedness of the gene set and its link to phenotype. In

the current research, the genes were sequenced from largest to

smallest according to the median absolute deviation, and the top

5000 genes were selected for WGCNA utilizing the R package

“WGCNA”. Then, the R package “pickSoftThreshold” was used to

filter the power parameters in the range of 1 to 20 and select an

appropriate soft threshold of 13. WGCNA was utilized to search for

gene modules linked to Zn transport scores in COAD and obtain a

list of effective genes related to Zn transport for subsequent analysis.
Development of Zn transport-related
prognosis-predictive model

Firstly, univariate Cox regression analysis was utilized to find

the genes with the prognosis-predictive value that were related to

Zn transport. Then, using the R package “glmnet”, LASSO Cox

regression analysis aided in the selection of the genes related to Zn

transport and develop a prognostic gene model. Finally, a

multivariate Cox regression analysis was conducted to find

independent predictive factors. The penalty parameter (l) was

quantified based on the minimum criteria, and 16 Zn transport-

related genes were obtained along with their specific coefficients.

The equation used to calculate the risk score is stated as:

Risk socre  =  o
n

i=1
(Expressioni � Coefficienti)
Validation of the
prognosis-predictive model

The TCGA dataset was selected as the training set and the

GSE17583 cohort in GEO was selected as the external validation set.

Risk scores were computed for each sample in the training as well as

the external validation sets using the risk score formula of the

model. Individuals were classified into high- and low-risk groups as

per their median risk score.

Then, with R package “survival” and “survminer”, Kaplan-Meier

survival analysis was applied to draw Kaplan-Meier curves. Time-

dependent ROC analysis was performed with the aid of the R package

“timeROC,”, which generated ROC curves for OS over 1, 3, and 5 years.
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.genecards.org/
https://doi.org/10.3389/fonc.2023.1207499
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1207499
Correlation analysis of immune infiltration
and genetic variations

The calculation outcomes for seven immune infiltration

evaluation algorithms were downloaded from the TIMER2.0

database for all individuals in the TCGA database. Additionally,

information on individuals with COAD was extracted. Then, the

variations in immune cell infiltration between both risk groups were

explored, and the heat map was applied to show the immune cells at

various infiltration levels. The correlation box plot between two

groups and marker genes of MHC was visualized utilizing the R

package “ggplot2”. A total of 24 MHC molecules includes HLA-A,

HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB,

HLA-DPA1, HLA-DPB1, HLA-DPB2, HLA-DQA1, HLA-DQA2,

HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB5,

HLA-DRB6, HLA-E, HLA-F, HLA-G, HLA-H, HLA-J, HLA-L.

Meanwhile, the genes linked to 35 immune checkpoints that

were differentially expressed between both risk groups were

illustrated as a box plot. Furthermore, the inter-group mutations

in both risk groups were examined with the aid of the R package

“maftools”, and we revealed the 15 genes with the most mutations.

The tumor mutation load (TMB) of each sample was calculated by

using the TMB function in the R package “maftools”.
Establishment of a
prognosis-predictive nomogram

A prognostic nomogram based on clinical features and risk

scores was constructed by employing the R package “rms” and

“survival”, which is uesd to predict the 1-, 3-, and 5-year OS of

individuals with COAD. Then, the discrimination, calibration, and

clinical effectiveness of the nomogram were illustrated through the

calibration curve.
Clinical correlation analysis

A heat map was displayed to investigate the variations in clinical

features of COAD patients between both risk groups. Correlation

analysis was conducted using the Chi-square test based on some

significant clinical features.
Consensus clustering

To determine distinct subtypes related to Zn transport,

consensus clustering was conducted using k-means clustering.

The R package “ConsensusClusterPlus” clustering algorithm was

utilized to calculate the appropriate number of stable COAD

clusters. We run 1000 iterations to ensure the accuracy and
Frontiers in Oncology 04
reliability of the final clustering, which was further verified by

Kaplan-Meier analysis. A heat map was drawn to explore the

expression of 16 genes linked to Zn transport after cluster

analysis. Finally, the R package “GSEA” was employed to examine

the immune infiltration levels between different clusters and drew a

box plot for visualization. Sankey plots depicting the association

between individuals in both risk groups and individuals with

consensus clusters were generated using the R package “ggalluvial”.
Functional enrichment analysis as per the
gene model

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses were performed

utilizing the “clusterProfiler” package to investigate the specific

function of the gene model and involved pathways. The analysis was

based on 16 Zn transport-related genes, and the criteria used were |

log2FC| > 1 and FDR< 0.05. Both plots were drawn with the aid of

the R package “ggplot2”. Gene Set Enrichment Analysis (GSEA)

was carried out to examine significant variations in the enrichment

of the MSigDB cluster (c2.cp.kegg.symbols.gmt) gene set between

both risk groups.
Cell culture and transfection

The COAD cell lines, HCT-116,DLD-1, and RKO were supplied

by the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China). HCT-116 and DLD-1 cell lines were placed in Roswell Park

Memorial Institute 1640 Medium (RPMI 1640) (Gibco, Grand

Island,NY) with the addition of 10% Fetal Bovine Serum(FBS;

Sigma). RKO cell line was cultured in Minimum Essential

Medium (MEM) (Gibco Grand Island,NY). HCT-116, DLD-1,

and RKO cells were then transfected with the previously prepared

LRRC59 small interfering RNAs for 24 hours utilizing the

Lipofectamine2000 (Thermo Fisher Scientific, USA) following the

provided guidelines. The LRRC59 siRNA was procured from

RiboBio (Guangzhou,China).
Cell viability

Cell viability was examined with the aid of the cell counting kit-

8 (CCK-8) (Dojindo, Kumamoto, Japan). After seeding 4000 HCT-

116, DLD-1, and RKO cells into 96-well plates and allowing them to

adhere, siRNA (si-NC, si-LRRC59-1, si-LRRC59-2) transfection

was performed. Following 24 hours, the cells were cultured with

CCK-8 reagent at 37°C for 2 hours. The cell viability of HCT-116,

DLD-1, and RKO cells was evaluated on days 1, 2, 3, and 4.

Absorbance was measured at 450 nm utilizing a microplate
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reader. All statistical analyses were performed using the SPSS 17.0

software package (IBM, Chicago, IL) and were presented as the

means ± SEM of three independent experiments. *P<0.05,

**P<0.01, ***P<0.001.
Quantitative real−time polymerase chain
reaction (qRT-PCR)

qRT-PCR was conducted to assess the gene knockdown

potential of the siRNAs. The 22-paired COAD tissues were

collected from patients who underwent surgical resection for

COAD at the Second Affiliated Hospital of Wenzhou Medical

University (Wenzhou, China). The total RNAs was extracted

using TRIzol Reagent and was reverse-transcribed with ReverTra

Ace®qPCR RT Master Mix with gDNA Remover (TOYOBO,

Japan). The qPCR reactions were conducted using Hieff® Qpcr

SYBR Green Master Mix (Yeasen Biotechnology (Shanghai)) in a

20μl reaction volume. Each reaction contained 10μl of 2×SYBR

Green RT-PCR Master Mix, 0.4μl of each 10 μM forward and

reverse primer, 1μl of cDNA sample, and nuclease-free water to

make up the final volume to 20μl. The amplification process

consisted of an initial denaturation step at 95°C for 5 minutes,

followed by 40 cycles of denaturation at 95°C for 10 seconds and

annealing at 60°C for 30 seconds. The relative expression of the

gene was determined using the 2^-DCt method. The primers, the

sequences of which are given in Supplementary Table S1, were

provided by Sangon Biotech Co.,Ltd (Shanghai, China). All data

were presented as the means ± SEM of three independent

experiments. *P<0.05, **P<0.01, ***P<0.001.
Immunohistochemical Staining of LRRC59

The protein expression level of LRRC59 (0.2725 mg/ml,

HPA030829, Atlas Antibodies) in COAD and adjacent normal

tissues was validated through immunohistochemical staining. The

data was sourced from the Human Protein Atlas (HPA, https://

www.proteinatlas.org/) database.
Migration and invasion assays

To evaluate the migration and invasion of HCT-116, DLD-1,

and RKO cells that had been transfected, twenty-four-well

Transwell chambers with 8-um pore-size membranes were

utilized. The transfected cell lines were administered into the

upper chamber in serum-free medium. Thereafter, the medium

containing 10% FBS was added to the lower chamber as a

chemoattractant. The upper chamber was coated with or without

Matrigel (BD Pharmingen, San Jose, CA) to assess the migration

and invasion capacity, respectively. After incubating for 48 hours,

the cells above the Matrigel layer were removed. The cells on the

inserts were fixed using ice-cold methanol, stained with crystal

violet, and counted under a microscope (Leica, UK) using four

randomly selected fields per well. All data were presented as the
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means ± SEM of three independent experiments. *P<0.05,

**P<0.01, ***P<0.001.
Scratch would healing assays

To investigate the correlation between prognostic genes and

tumor cell migration, we conducted scratch wound healing assays in

both transfected and untransfected COAD cell lines (HCT-116,

DLD-1, and RKO cells). Once the COAD cells reached 90-100%

confluency in a 6-well culture plate, HCT-116 and DLD-1 cells were

incubated in serum-free RPMI1640 (Gibco,Grand Island,NY) for 24

hours. On the other hand, RKO cells were cultured in MEM (Gibco,

Grand Island,NY) for the same duration. After serum starvation, a

straight line was created by scraping a row of COAD cells in each

well using a sterile plastic straw. The cells were then washed twice

with serum-free medium to eliminate any cellular debris. The

scratch wounds were observed immediately (0 hours) and after 24

hours. Microscopic images were captured using an microscope

(Olympus, Tokyo, Japan). To determine the extent of cell

migration, the wound closure area was quantified by analyzing

the images with Image J software. This experiment was repeated

three times independently.
Results

Single cell sequencing data analysis

The workflow of this research is displayed in Figure 1.

To integrate various samples, the initial step involved analyzing

the COAD-related single-cell sequencing dataset GSE161277, as

depicted in Figure 2A. The research findings indicated that the

integration of the four samples was successful, and there were no

prominent batch effects, making it appropriate for further analyses.

Then, all the included cells were divided into 18 clusters utilizing k-

Nearest Neighbor (KNN) clustering algorithm (Figure 2B,

Supplementary Figure S1). Surface marker genes of distinct cells

were examined, and their expression levels in various clusters were

analyzed. This ultimately resulted in the identification of 5 cell
FIGURE 1

Flowchart of the study process.
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types. It included epithelial cells, T cells, B cells, monocyte, and

endothelial cells (Figures 2C, D).

Meanwhile, The “PercentageFeatureSet” function was

employed to input 565 genes related to Zn transport. This was

done to calculate the percentage of genes linked to Zn transport

in all cells. The cells were segmented into low and high Zn
Frontiers in Oncology 06
transport-related cells according to their median ratio of Zn-

transport-related genes.To make the variation obvious, mid-1

and mid-2 groups were set. The final results were displayed by the

tSNE diagram and Column scale diagram(Figures 2E, F). 4189

genes were identified through variation analysis of the low and

high groups.
B

C D

E F

G H

A

FIGURE 2

Single-cell sequencing analysis of GSE161277. (A) The integration effect of 4 samples. (B) Dimensionality reduction and cluster analysis. The cells
from all 4 samples were clustered into 18 distinct clusters. (C, D) On the basis of surface marker genes of distinct cells, the cells are annotated as
epithelial cells, T cells, B cells, monocytes, and endothelial cells. (E) The specific percentage of Zn transport-related genes in each cell. Cells were
sorted into high-, low-, mid-1-, and mid-2-Zn transport cells. (F) The proportion of high-, low-, mid-1-, and mid-2-Zn transport cells in different
subpopulations. (G, H) WGCNA showed that MEblack, MEgreen, MEsalmon, MEblue, and MEmagenta were closely associated with the score of Zn
transport.
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Weighted co-expression network analysis

WGCNA of 514 samples from the TCGA database acquired

gene modules related to the Zn transport phenotype. By establishing

the soft threshold at 13, setting the minimum number of module

genes to 20, applying a deepSplit value of 2, and merging modules

with a similarity score below 0.3, a total of 8 non-gray modules were

generated (Figure 2G). The following consequences as shown in

Figure 2H demonstrated that MEblack, MEgreen, MEsalmon,

MEblue, and MEmagenta were closely associated with the score

of Zn transport in the non-gray module. Genes from these five

modules were chosen for further analysis.
Development of prognostic model related
to Zn transport

Firstly, 2821 genes were collected by intersecting the

differentially expressed genes retrieved from single-cell sequencing

data and Zn transport-related genes obtained by means of

WGCNA. After matching the intersected genes obtained from

both TCGA and GSE17538, 2583 genes were chosen for

subsequent analyses. Additionally, by means of univariate Cox

regression analysis on the TCGA cohort, 61 genes linked to the

disease were identified (P< 0.05) (Figure 3A). Subsequently, LASSO

Cox regression analysis was performed on 61 selected genes

(Figures 3B, C). As per the optimum l value, a prognostic gene

model related to Zn transport was created utilizing 16 genes

(TMEM165, P4HA1, TERF2IP, ZDHHC3, FKBP4, DHRS7,
Frontiers in Oncology 07
GDE1, CAMTA1, NPDC1, LRRC59, RIN2, CXXC5, SMIM24,

ASAH1, TMED4, and ARL6IP4), whose coefficients are displayed

in Supplementary Table S2. The risk score was derived as follows:

risk score = TMEM165 * -0.4443378 + P4HA1 * 0.503773089 +

TERF2IP * 0.518042362 + ZDHHC3 * -0.702962146 + FKBP4 *

0.388985104 + DHRS7 * 0.526051475 + GDE1 * -0.496992354 +

CAMTA1 * -0.491673477 + NPDC1 * 0.234995414 + LRRC59 *

-0.502129112 + RIN2 * 0.561275588 + CXXC5 * -0.318620492 +

SMIM24 * -0.165828979 + ASAH1 * -0.970779696 + TMED4 *

0.872693271 + ARL6IP4 * 0.196144485.

Additionally, multivariate Cox regression analysis was

performed according to these 16 genes, and the corresponding

results are illustrated in Figure 3D.
Validation of the
prognosis-predictive model

To assess and validate the performance of the prognosis-

predictive model, the TCGA cohort was utilized as the training

set, whereas the GSE17583 from the GEO database was utilized as

the external validation set. Individuals were classified into low- and

high-risk groups as per their median risk score (Figures 4A, B). Both

in the training and validation sets, individuals with COAD in the

low-risk group exhibited a favorable prognosis than those in the

high-risk group (Figures 4C, D). The heat map was employed to

display the expression of the 16 genes linked to Zn transport in both

risk groups (Figures 4E, F). The Kaplan-Meier survival curves

highlighted a considerably elevated probability of survival of

individuals with COAD in the low-risk group compared to the
B C

D

A

FIGURE 3

Development of Zn transport-related prognosis-predictive model. (A) Univariate Cox regression analysis to identify genes linked to prognosis.
(B, C) A prognosis model was constructed based on 16 genes linked to Zn transport by LASSO regression analysis. (D) Multivariate Cox regression
analysis of 16 Zn transport-related genes.
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individuals in the high-risk group, p = 1.371e-11 in the training set

(Figure 4G) and p = 4.123e-05 in the validation set (Figure 4H).

Additionally, a receiver operating characteristic (ROC) curve

analysis was conducted to evaluate the effectiveness of the

prognosis-predictive model. The results of the training set in

Figure 4I revealed that the area under the curve (AUC) values at

1, 2, and 3 years were 0.809, 0.814, and 0.836. As shown in Figure 4J,

it was found that the respective AUC values at 1, 2, and 3 years were

0.707, 0.661, and 0.695. It is evident that the model had an efficient

prognosis-predictive ability.
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Immune infiltration and genetic
mutation analysis

Further analysis was performed to find the variations in immune

infiltration levels between both risk groups, thus providing insights into

immunotherapy for COAD patients. The findings highlighted that the

individuals in the high-risk group exhibited more infiltration of

macrophages and NK cells, while the individuals in the low-risk

group had more infiltration of CD4 memory-resting T cells and

CD4 memory-activated T cells (Figure 5A). Figure 5B illustrates the
B

C D
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G H

I J

A

FIGURE 4

Association between the risk score and OS of individuals with COAD in the training and external validation set. (A, B) The distribution of risk scores in
the training and validation set. (C, D) The survival status of patients in the training and validation set. (E, F) Heat map of 16 Zn transport-related genes
expression in the training and validation set. (G, H) KM curves in the training and validation set. (I, J) Time-dependent ROC curves of the prognosis-
predictive model to predict 1, 2, and 3 years in the training and validation set.
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relationship between the two groups and marker genes of MHC,

aiming to provide further insights into the significance of Zn

transport-related genes in COAD treatment. It turns out that the

expression levels of HLA-A, HLA-B, HLA-DRA, and HLA-F in the

low-risk group were considerably higher than in the high-risk group.

Next, the variations in the expressions of 35 genes related to immune

checkpoint in both risk groups were explored. As highlighted in

Figure 5C, most of these genes were confirmed to have remarkably

elevated expression levels in the group with low risk, while CD276 was

the only exception. The mutations in the 15 most mutated genes were

analyzed in the two risk groups. It was confirmed that the mutation

incidence of the individuals in the high-risk group was 91.75%, while

that of the individuals in the low-risk group was slightly lower at

83.17%. Notably, the gene with the most significant mutation in both

risk groups was TP53 (Figures 5D, E).

Cell localization of modeling genes

Single-cell sequencing analysis was utilized to investigate the

expression levels of 16 modeling genes in distinct cell types,
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including endothelial cells, monocyte, B cells, T cells, and

epithelial cells. As shown in Figure 6A, ARL6IP4 was primarily

expressed in endothelial cells. TMEM165, P4HA1, RIN2, and

ASAH1 were primarily expressed in monocyte. TERF2IP and

DHRS7 were mainly expressed in T cells. ZDHHC3, FKBP4,

GDE1, CAMTA1, NPDC1, LRRC59, CXXC5, SMIM24, and

TMED4 were mainly expressed in epithelial cells. However, none

of the model genes expressed primarily in B cells (Figure 6B).

Development and validation of the
prognosis-predictive nomogram

To effectively and intuitively predict the prognosis of

individuals with COAD, a prognostic nomogram was established

utilizing the relevant prognostic factors (Figure 7A). The prognostic

nomogram included variables such as gender, age, stage, T stage,

and risk score. The total score was calculated by summing the scores

related to each variable and was utilized to determine the survival

probability of OS over 1, 3, and 5 years. To assess the performance

of the constructed nomogram, 1-, 3-, and 5-year calibration curves
B

C

D E

A

FIGURE 5

Immune infiltration and genetic mutation analysis. (A) Heat map of immune infiltration in both risk groups. (B) The link between both risk groups and
MHC. (C) Differential expression of genes linked to the immune checkpoint in both risk groups. (D, E) Mutation status of both risk groups. *p< 0.05;
**p< 0.01; ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1207499
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1207499
were generated. A strong consistency between the observed and

predicted values was observed (Figures 7B-D). Overall, the

prognostic nomogram demonstrated an ideal predictive capacity

for OS over 1, 3, and 5 years for COAD patients and therefore holds

promise for clinical application.

Clinical characteristics in the two
risk groups

The link between clinical features, such as age, gender, stage,

and T stage, and the risk signatures was analyzed to determine their
Frontiers in Oncology 10
distribution in both risk groups. The results were displayed in a heat

map shown in Figure 8A. The results indicated more Stage I and

Stage II patients in the ZTRGPI-low (Zn transport-related gene-

based prognostic index) subgroup than in the ZTRGPI-high

subgroup. Moreover, there were more Stage III and Stage IV

patients in the ZTRGPI-high subgroup than in the ZTRGPI-low

subgroup (Figure 8B). Similarly, this study revealed that the

proportion of individuals with T1 and T3 stages was nearly equal

between the two groups. Additionally, the ZTRGPI-high subgroup

exhibited a greater number of T4 patients and a lower number of T2

patients compared to the ZTRGPI-low subgroup (Figure 8C).
B

A

FIGURE 6

Single-cell sequencing analysis to investigate the cellular localization of 16 modeling genes. (A) The average expression of 16 model genes in 5
different cell types. (B) Specific localization of 16 model genes in 5 distinct cell types.
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Determination of COAD classification
based on 16 Zn transport-related genes

Three clusters were identified utilizing consensus clustering

methods in the TCGA cohort as per the expression of 16 genes

related to Zn transport and patients’ clinical survival information.

In addition, 224 samples were in cluster A, 114 in cluster B, and 86

in cluster C (Figure 9A). The survival analysis outcomes indicated

that individuals with COAD in cluster C had a considerably worse

OS time than those in Cluster B, and individuals in Cluster B had a

remarkably worse OS time than those in cluster A (Figure 9B). A

heatmap was created based on 16 Zn transport-related genes to

investigate the variations across the three clusters. The heatmap

demonstrated the expression profiles and clinical features of the 16

genes, including T stage, stage, gender, and age. The study revealed

that the expression level of the majority of Zn transport-related

genes, except for SMIM24 and ARL6IP4, exhibited a significant

increase in cluster C (Figure 9C). In addition, the differences in

immune infiltration across the three clusters were explored by

means of ssGSEA. The findings highlighted that cluster A was

only remarkably enriched in B cells, cluster B was remarkably

enriched in CD56bright NK cells and NK cells, and cluster C was

considerably enriched in monocyte, plasmacytoid dendritic cells,
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regulatory T cells, and T follicular helper cells (Figure 9D).

According to the Sankey diagram, individuals who belonged to

cluster A and low-risk groups exhibited a more favorable

prognosis (Figure 9E).
Functional enrichment analysis based on
16 Zn transport-related genes

The possible involvement of 16 Zn transport-related genes

among the three clusters was further determined by means of GO

enrichment and KEGG pathway analyses. It is indicated that these

Zn transport-related genes involve phagocytosis, recognition,

complement activation, immunoglobulin complex, external side

of cell membrane, antigen binding, and immunoglobulin receptor

binding in GO enrichment analysis (Figure 10A). Furthermore,

based on the KEGG analysis, it was determined that the findings

were associated with the intestinal immune network for IgA

secretion (Figure 10B). In order to get a detailed view of the

underlying mechanisms of COAD and identify potential

therapeutic targets, GSEA was conducted for making a

comparison between both risk groups. The enriched signaling

pathways identified in the group with high risk were related to
B C D

A

FIGURE 7

Development and validation of the prognosis-predictive nomogram. (A) Prognosis-predictive nomogram to predict OS probability of individuals with
COAD at 1, 3, and 5 years. (B–D) Calibration curves of the nomogram to predict 1-, 3-, and 5-year OS probability in TCGA cohort.
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ECM receptor interaction, hedgehog signaling pathway, focal

adhesion, and Wnt signaling pathways (Figure 10C). The primary

immunodeficiency, cytokine-cytokine receptor interaction, and

intestinal immune network for IgA production signaling pathway

were found to be enriched in the group with low risk (Figure 10D).
Expression association and survival analysis
of LRRC59

By analyzing the differential expression of LRRC59 in tumor

and healthy tissues, it was found that the LRRC59 level was

considerably elevated in tumor tissues (Figure 11A, ***p< 0.001).
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Further survival analysis highlighted that the group with elevated

LRRC59 expression level exhibited a significantly higher survival

rate compared to the group with lowered LRRC59 expression level

(Figure 11B, p< 0.0001), suggesting that LRRC59 was a good

protective factor.
LRRC59 knockdown led to cell vitality of
reduced COAD cell lines In Vitro

qPCR with 22 paired tumors and adjacent tissues was

performed, suggesting that the mRNA expression of LRRC59 was

significantly different from tumors and adjacent tissues
B

C

A

FIGURE 8

Clinical characteristic correlation analysis. (A) Clinical correlation analysis heat map. (B) Stage clinical correlation chart. (C) T-stage clinical correlation
chart. ***p<0.001.
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(Figure 12A). Specific results revealed that all siRNA sequences

caused a remarkable reduction in LRRC59 mRNA expression levels

(***P<0.001). CCK8 assay indicated that cell viability increased

significantly after LRRC59 gene knockdown, and si-LRRC59-1 and

si-LRRC59-2 demonstrated effective knockdown potency,

indicating their suitability for use in further in vitro experiments.

It turns out that LRRC59 is critically involved in the survival of

COAD cells (Figure 12B).
Immunohistochemical staining of LRRC59

To validate the expression level of LRRC59, a prognostic marker

gene, immunohistochemical staining results were obtained from the

HPA database. The findings revealed that the intensity of LRRC59

immunohistochemical staining was higher in tumor cells compared
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to normal tissues, suggesting a significant upregulation of LRRC59

expression in tumor tissues compared to normal colon tissues.
LRRC59 is critically involved in COAD cell
lines migration and invasion in vitro

Subsequently, a Transwell assay was carried out, and the

findings revealed a significant increase in the migration and

invasion of HCT-116, DLD-1, and RKO cells following LRRC59

knockdown. It was found that the proportion of cells migrating

across the pore plate was remarkably elevated after siRNA

knockdown (Figures 12C, D, ***P<0.001). The scratch would

healing experiments yielded comparable outcomes, indicating that

wound healing rates were notably accelerated in cells exhibiting

diminished LRRC59 gene expression (Figures 12E, F).
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FIGURE 9

Determination of COAD classification based on Zn transport-related genes. (A) 424 individuals with COAD were classified into three clusters by the
consensus clustering matrix (K = 3). (B) KM analysis of individuals with COAD in three clusters. (C) Heat map of the expression of 16 genes linked to
Zn transport in classification and the link between clinical features and classification. (D) Box plot for ssGSEA analysis between three clusters.
(E) Sankey diagram for three clusters and the two risk groups. *p< 0.05; **p< 0.01; ***p< 0.001.
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Discussion

Colorectal cancer (CRC) is one of the deadliest malignancies

and the third most prevalent contributor to cancer-related death

globally, with individuals often presenting with metastatic disease

(38). Less than 20 percent of patients diagnosed with metastatic

CRC survive more than five years (39). The significance of

immunotherapy in CRC treatment has been increasingly

recognized by a growing body of research, among which immune

checkpoint inhibition has indicated efficacy in the treatment of

patients with metastatic CRC with mismatch-repair-deficient and

microsatellite instability-high (dMMR-MSI-H) (40–42).
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Nonetheless, the exact mechanism of action of immune

checkpoint inhibitors and other immunotherapies still needs

further investigation. The overlapping metabolic reprogramming

of tumor and immune cells is vital in activating the antitumor

immune response (43, 44). Tumor metabolism is vital for sustaining

signaling pathways in tumor onset and progression. It also has a

wider impact on regulating the antitumor immune response by

modulating the expression of immune molecules (45–47).

The protective effect of zinc transport-related genes on cancer is

mainly manifested as reducing oxidative stress and enhancing

immune system response (26). Zinc metabolism disorder may

lead to zinc deficiency, thus causing thymus atrophy and
B
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A

FIGURE 10

Functional enrichment analysis of 16 genes related to Zn transport. (A, B) The functions and pathways based on 16 genes linked to Zn transport by
the analysis of GO and KEGG. (C, D) GSEA enrichment analysis in the two risk groups.
BA

FIGURE 11

Expression association and survival analysis of LRRC59. (A) The expression level of LRRC59 was remarkably elevated in tumor tissues. (B) Individuals
with COAD having lowered expression levels of LRRC59 had a considerably worse prognosis than individuals with elevated expression levels of
LRRC59.
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lymphocytopenia, which impair cellular and antibody mediated

immune response (30, 48).Several studies have also suggested that

these genes can regulate metabolic fitness and enhance the

antitumor effect through the metabolic reprogramming of

immune cells (49, 50). In recent times, numerous models have
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been created by mining gene expression profiles and clinical

characteristics of COAD, thus facilitating the investigation of the

immune microenvironment of COAD (51, 52). Nevertheless, the

diagnostic and predictive value of zinc transport-related genes in

CRC is still poorly understood and valid evidence of zinc transport-

related genes as targets for immunotherapy in CRC is lacking.

In our study, a prognosis-predictive risk model for individuals

with COAD was constructed based on 16 genes linked to zinc

transport, by means of univariate Cox regression and LASSO Cox

regression analysis. This was achieved by a comprehensive

assessment of COAD data obtained from TCGA and GEO

databases. The calculation of the risk score enabled the

classification of individuals with COAD into high- and low-risk

groups. Considerably longer OS of individuals with COAD in the

low-risk group was observed in both the training and external

validation sets compared to that in the low-risk group. This is

undoubtedly beneficial to the prognosis assessment of patients with

COAD. In addition, the analysis of the immune infiltration level,

immunotherapy response, and tumor mutation load highlighted

variations in the immune microenvironment between both risk

groups, which could potentially be beneficial for immunotherapy.

The utilization of NMF consensus clustering methods enabled the

identification of three clusters of COAD based on 16 zinc transport-

related genes. Among these clusters, cluster A exhibited a better

prognosis as compared to the other two clusters, subsequent studies

can be further classified in Cluster A. Ultimately, our analysis

showed that the expression of LRRC59 in COAD samples was

significantly higher than that in normal samples, and according to

the clinical data, the overall survival of patients in the group with

high expression of LRRC59 was higher. The function of LRRC59

was validated by knocking down its expression. The findings

indicated a significant improvement in the activity, proliferation,

and invasion ability of COAD, suggesting that LRRC59 may serve as

an early prognostic biomarker and a therapeutic target in COAD.

The significance of the zinc transport pathway in tumor

deve lopmen t a s we l l a s the s tudy o f the immune

microenvironment is becoming progressively more evident (22).

An increasing number of evidence suggests that improving zinc

transport metabolism and regulating the zinc transport signaling

pathway may become a new approach for tumor therapy (53–55).

The significance and action pathway of zinc transport in several

types of tumors have been initially elucidated (56, 57). Certain study

revealed that the upregulation of Ras-responsive element binding

protein 1 (RREB1) led to the downregulation of zinc transporter 1

(ZIP1) and influenced zinc reduction in prostate cancer (58).

Another study found that the downregulation of zinc transporter

3 (ZIP3) and RREB1 coincided with zinc loss during the early

progression of pancreatic cancer and may help malignant cells

eliminate the cytotoxic effects of zinc (59). Moreover, there was

evidence demonstrated that the interaction of potassium channel

tetramerization domain-containing 9 (KCTD9) and zinc

transporter 9 (ZnT9) attenuated the expression of the b-catenin
target gene and the inhibition of theWnt signaling pathway. Finally,

CRC cell proliferation and migration were inhibited (60). However,

studies related to COAD and zinc transport are still lacking. Our

study is the first to provide the prognostic biomarkers of zinc
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FIGURE 12

The expression of LRRC59 in patients with colorectal cancer and
LRRC59 suppresses the proliferation, invasion, and migration of
COAD cells. (A, B) The expression pattern of LRRC59 at the
transcriptional and protein levels. (C) q RT-PCR to assess the level of
LRRC59 mRNA 2 days after transfection. Both siRNA sequences
could significantly decrease LRRC59 mRNA expression levels.
(D) CCK8 assay. The cells indicated a considerable reduction in
viability. (E, F) Transwell and Scratch assays. The migration and
invasion ability of COADcells remarkably increased after LRRC59
knockdown. *p< 0.05; **p< 0.01; ***p< 0.001.
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transport-related genes in COAD and to explore the immune

microenvironment. These outcomes hold significant value for

prognosis prediction and treatment of COAD individuals, and

also provide help for further exploration of specific mechanisms

of zinc transport regulation of tumor metabolic reprogramming.

CRC is characterized by high heterogeneity at the genetic and

molecular levels, which can greatly affect the effectiveness of

immunotherapy (42). At present, more and more reports have

explored immune cell infiltration in the CRC microenvironment,

patients with a better prognosis for CRC had a higher proportion of

infiltrating CD8 and CD4 T cells, especially Th1 cells (61–64). This

is consistent with the analysis results in this paper that patients in

the low-risk group had a higher proportion of CD4 memory-resting

T cells and CD4 memory-activated T cells. Different subtypes of

CRC present a heterogeneous immune pattern (65). Most

individuals with CRC have MSS tumors and poor immune cell

infiltration (66). However, a small percentage of individuals with

MSI-type tumors exhibit tumors that are enriched with immune

cells, thereby activating the antitumor immune response (66).

Immunotherapy is now gaining more and more attention in

antitumor progression, with both immune checkpoint targeting

and immunomodulatory monoclonal antibodies (mAbs) being

developed (67, 68). Hence, it is crucial to comprehend the

immune microenvironment of COAD. Based on zinc transport-

related genes, this study indicated considerable variations in levels

of immune cell infiltration between both risk groups, with more

infiltration of macrophages and NK cells in the high-risk group and

more infiltration of CD4 memory-resting T cells and CD4 memory

activated T cells in the low-risk group. What’s more, The low-risk

group was linked to elevated expression levels of immune

checkpoint-related genes. Thus, the benefit of immunotherapy via

immune checkpoint was higher in the low-risk group.

Leucine-rich repeat-containing protein 59 (LRRC59) is a

ribosome-binding protein that also can interact with fibroblast

growth factor (69–71). Research has demonstrated a correlation

between alterations in LRRC59 expression and the metastatic and

invasive potential of breast cancer cell lines (72). Furthermore, It is

reported that a strong correlation between elevated LRRC59

expression levels and the survival rate of individuals with lung

adenocarcinoma (LUAD) and demonstrated that reducing LRRC59

expression could considerably suppress the migration and invasive

capabilities of LUAD cells (73). Nevertheless, the involvement of

LRRC59 in COAD is yet to be studied in further detail. The

investigation revealed, for the first time, that LRRC59 is a crucial

protective factor in the modeled gene list, and subsequent survival

analysis indicated that LRRC59 might serve as an independent

prognostic factor. Finally, cell function experiments demonstrated

that the knockdown of LRRC59 in COAD cell lines substantially

increased cancer cell proliferation and invasion, which was contrary

to previous studies of LRRC59 in LUAD, suggesting that LRRC59

plays a different mechanism of action in LUAD and COAD. These

results further support the notion that LRRC59 has the potential to

serve as a prognosis-predictive biological marker, thus aiding in the

treatment of COAD.

The GSE161277 dataset has initially revealed the heterogeneity

of abnormal epithelial cells and the complexity of the tumor
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microenvironment (74). It is indicated that the GSE161277

dataset has been utilized for single-cell analysis to examine the

immune typing and tumor microenvironment of rectal cancer (75).

This study first classified the COAD cells into two risk groups based

on distinct zinc transport states through single-cell analysis of

GSE161277, which provided a basis for the subsequent research

of zinc transport heterogeneity in COAD and the development of

the prognosis-predictive model. A prognosis-predictive model

based on 16 genes related to zinc transport was developed and

subsequently validated with the GSE17538 dataset. The findings

indicated that the model can better assess the 1, 3, and 5 years OS of

COAD patients. According to the possible relationship between

zinc transport and tumor microenvironment, the heterogeneity of

the COAD microenvironment in both risk groups was explored.

The findings indicated that there were considerable variations in

immune infiltration between the two groups. In subsequent

immune checkpoint correlation analysis, it was observed that

most genes related to immune checkpoints exhibited high levels

of expression in the low-risk group, but CD276 displayed the

opposite pattern. All of these provide references for the study

of COAD immunotherapy and subsequent antitumor

immune mechanism.

According to the current literature, the present research has

highlighted the development of the first prognosis-predictive model

based on genes linked to zinc transport by means of single-cell

cluster analysis. This model serves as a valuable resource for the

investigation of zinc transport in COAD and aids in the

development of treatment strategies for individuals with COAD.

At the same time, this study obtained a new biomarker of COAD

and explored the association between tumor immune

microenvironment and zinc transport.
Conclusion

A prognosis-predictive model for COAD was developed based

on genes related to zinc transport. This model has demonstrated the

ability to effectively assess the prognosis and immune

microenvironment of individuals with COAD. Subsequently, the

function of LRRC59 in COAD was verified via cell experiments,

thus highlighting its potential as a biomarker.
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