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University, Changsha, China, 2National Clinical Research Center for Geriatric Disorders, Xiangya
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Desmoid tumor (DT) is a rare neoplasm characterized by the proliferation of

myofibroblastic cells that infiltrates and invades adjacent tissues. Due to its locally

aggressive and recurrent nature, DT often causes local symptoms and can be

challenging to manage clinically. Therefore, identifying biomarkers that can

predict the progression of DT and guide treatment decisions is critical. This

review summarizes several biomarkers that have been implicated in active

surveillance (AS) and the prediction of postoperative recurrence and attempts

to elucidate their underlying mechanisms. Some of these novel markers could

provide prognostic value for clinicians, and ultimately help facilitate optimal and

accurate therapeutic decisions for DT.
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1 Introduction

Desmoid tumor (DT), also known as aggressive fibromatosis (AF), is a rare and locally

invasive soft tissue tumor, which occurs in approximately 3-5 individuals per million per

year (1). It is estimated that 85% of DT cases are sporadic, while 3.5-32% of cases are related

to familial adenomatous polyposis (FAP) or Gardner’s variant (2).

DT is characterized with monoclonal myofibroblast proliferation, which originates

from musculoaponeurotic structures and may occur in the abdominal, chest walls,

mesenteric root and extremities (3). Previous trauma history, genetic factors and

pregnancy are all closely related to the etiology of DT (3).

Despite 20-30% of spontaneous regression or resolution in DT, the high recurrence rate

(25-77%) of DT poses a long-term treatment dilemma (3, 4). DT patients face substantial

challenges due to the unpredictable course and the uncertainty of treatment effect. While

surgical resection was once the preferred treatment, it is now considered invasive, complex,

and prone to recurrence. Even with negative resection margins, the recurrence rate was as

high as 39.3% (5). Surgical resection with a safety margin is recommended only when

tumor is large and causing significant symptoms. Currently, active surveillance (AS) is

recommended based on results from numerous clinical trials and observational studies (3).
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AS and surgical treatments did not differ significantly in RFS over

three years (6). If patients with DT have minimal or no symptoms,

2-3 monthly clinical and radiographic observation is recommended.

Nevertheless, the unpredictable natural history of DT and lack of

monitoring biomarkers make clinical decisions difficult during AS.

Therefore, it is essential to discover stable biomarkers that can be

used to predict progression and guide treatment direction. In the

current review, we summarized a series of novel biomarkers with

the aim of providing options for monitoring the clinical progression

and recurrence of DT.
2 Pathway

2.1 Wnt pathway

Wnt pathway is an evolutionarily conserved signaling pathway

that plays a key role in organ development and the function of

various tissues (7). When the Wnt is inactivated, the complex

consisting of GSK-3b, APC, CK1a and Axin performs sequential
Frontiers in Oncology 02
phosphorylation reactions at b-catenin. The phosphorylation of the

b-catenin results in the ubiquitination and subsequent degradation

by b-TrCP and its proteasome, which in turn increases the b-
catenin steady-state level (8, 9). While binding with activated Wnt,

Dvl and LRP5/6 phosphorylate and inactivate GSK-3b, preventing
b-catenin from being phosphorylated and degraded. These

processes cause b-catenin to accumulate in the nucleus, which

binds with TCF/LEF to activate downstream target genes

includingMYC, COX, Cyclin D, PDGF, VEGF, etc. (8, 9) (Figure 1).

The activated Wnt pathway is closely associated with

tumorigenesis (10–12). Numerous studies have shown that the Wnt

signaling components, including b-catenin and APC, are essential in

DT. Approximately 85-90% of sporadic DT accompanies with the

mutation of CTNNB1, and most of the remaining cases are related to

APC mutations (3). COX, VEGF and Cyclins are shown as

representative downstream signaling molecules, contributing to the

progression of DT. They are implicated in several pathophysiological

mechanisms, including cell proliferation, invasion, angiogenesis and

apoptosis (13). Thus, the molecules involved in the Wnt pathway may

provide valuable prognostic targets for DT.
FIGURE 1

The cross-talk between Wnt/b-catenin and Notch signaling pathway. The canonical Wnt signaling pathway suppresses b-catenin ubiquitination to
stabilize b-catenin expression, allowing it to contact TCF/LEF to upregulate pro-tumor factors. Notch signaling results in the progression disease
progression through NICD in a non-canonical Notch pathway. Created with Biorender.com.
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2.2 Notch pathway

A series of studies have shown that the Notch signaling pathway

participated in cancer development by regulating cell proliferation,

apoptosis, and differentiation (14–16). A canonical Notch signaling

consists of Notch 1–4, DLL-1/3/4, JAG1/2 and CBF-1. Initiated by

either ADAM10 or ADAM17, Ligand-activated Notch receptors

undergo multiple proteolytic cleavages, forming the transmembrane

fragment Notch. The proteolytic product transforms into the NICD

after a second proteolytic cleavage, which is controlled by g-secretase.
NICDs enter the nucleus and interact directly with the CSL complex,

regulating the expression of downstream genes, such as HEY and

HES (14, 17).

The Notch-related molecules, including HES and ADAM, can

be used as clinical markers for the diagnosis of DT. These molecules

have been used to further distinguish DT from hypertrophic

scars (18, 19). As for the treatment of advanced and progressive

DT, preliminary data from the clinical trial showed 71% of

advanced DT patients partially responded to oral g-secretase
inhibitors (GSI) PF-03084014 (20). Additionally, several clinical

trials(NCT01981551, NCT00878189) observed positive results

from advanced and recurrent DT treated with GSI (21–23).

These results indicated that some key elements in the Notch

pathway might contribute to the progression and recurrence of

DT (24).

Previous studies have shown that the crosstalk between the Notch

signaling pathway and the Wnt signaling pathway facilitated tumor

progression (24, 25) (Figure 1). Peignon G et al. elucidated that Notch

activation was an early event in Wnt-induced intestinal

tumorigenesis, and maintained throughout downstream from the

Wnt/b-catenin cascade (26). In patients with FAP, Notch signaling

was activated by b-catenin-mediated upregulation of JAG1

(27). Among the complex Wnt and Notch crosstalk, many

abnormally expressed specific molecules may be potential

significant biomarkers.
2.3 Other potential pathways

In addition to the Wnt pathway and the Notch signaling

pathway, other pathways have been shown to be involved in DT

initiation and progression. The PI3K/Akt pathway has been

considered as a therapeutic target for DT, as the tyrosine-kinase

receptors (e.g., VEGFR and PDGFR) are detected in DT (28). Some

tyrosine kinase inhibitors, including imatinib, sunitinib and

sorafenib, are currently being tested in different phases of clinical

trials for DT (29, 30). Expression of estrogen receptor-b (ERb) in
DT samples suggests the specific functions of estrogen signaling,

dictating distinct therapeutic options for DT (31–33). However, the

individual response to anti-estrogen agents varies and evidence

from prospective studies is limited. Besides the above, recent studies

have indicated that several signaling pathways, including TGF-b
signaling pathway, JAK/STAT signaling pathway and Hedgehog

signaling pathway, might also be involved in the transformation and

progression of DT (34–36).
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3 Biomarkers in AS

3.1 Tumor tissue

3.1.1 CTNNB1 S45F mutation
CTNNB1mutations are common in DT patients. It is estimated

that two types of CTNNB1 mutations, T41 and S45F, account for

35% and 55% of DT patients respectively. Other types of mutations

are relatively infrequent, including S45P, D32G, T41A, S45C,

T42_K49delinsQ and H36del (4, 37, 38). Accumulating evidence

indicates that the S45F mutation is associated with poor prognosis

in DT patients (39–42) (Table 1). Several studies reveal that S45F

mutation is more likely to occur in the extremities, and the

prognosis of these cases is worse than other sites (37, 43). A

recent prospective study has shown that S45F mutation is

associated with tumor progression (HR = 6.24 [95% CI 1.92–

20.30]) and suggests the onset of active treatment (AT) during

the AS (44). Compared with tumor diameter, gender, recurrence

cases and other clinical factors, S45F mutation is significantly

related to 3-year RFS (45). It has been reported that CTNNB1

mutation types was associated with tumor progression and

aggressive treatment with adjuvant radiotherapy was administered

accordingly. Follow-up showed no recurrence over 38 months,

highlighting the value of CTNNB1 mutation type for guiding

treatment strategies in DT (46). These findings suggested that

S45F might be the most significant prognostic factor during the

monitoring period. Further prospective studies with large sample

sizes will give more solid evidence to guide clinical usage, especially

for predicting recurrence and active surveillance.

To account for the strong tendency of S45F mutation toward

the progression, the function of CK1a in the Wnt/b-catenin
pathway may be relevant. b-catenin ubiquitination begins with

the phosphorylation in position 45 amino acid residue by CK1a.
With the mutation of this specific residue, the ubiquitination

process can not completely begin, leading to the imbalance of b-
catenin (40). A study showed that the CBNNT1 S45F mutant allelic

replication promoted the overexpression of b-catenin in DT.

Correspondingly, the downstream factors, including COX, MYC,

VEGF, and PDGF, show increased expression patterns, which are

involved in tumor progression (41, 47).

In addition to affecting its own expression, the S45F mutation

also works by influencing the immune response in the tumor

microenvironment (TME). Colombo et al. observed that the two

genetic lines (S45F/T41) exhibited different enrichment in immune-

related genes (40). Inflammatory-defense-humoral immune

response and antigen-binding related genes were enriched in

T41F mutation cases, which corresponded with a high proportion

of T cells at the tumor margin by immunohistochemical analysis.

Instead, the mutation of S45F was found to be capable of

increasing Treg cells and diminishing effector T-cell numbers,

thereby promoting tumor progression by immune evasion (48).

The discrepancy between S45F and other mutations may be

due to the differences in the TME. However, the effect of TME

on DT has not been clearly elaborated and deserves more

exploration (Figure 2).
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TABLE 1 Biomarkers of progression in desmoid tumor.

Biomarker Source Change Biological effect Related clinical research

Author Main outcome Significance

Biomarkers in Active Surveillance

CTNNB1 Tumor S45F
Mutation

• b-catenin induced transcriptional expression of
pro-tumor factors (41, 47)
• Immune evasion (40, 48, 54)

Hamada et al
(39)

CR, PR, SD(n)
S45F(+) 0/20 S45F(-) 20/20
PD
S45F(+) 4/13 S45F(-) 9/13

p = 0.017

Sakai et al
(45)

HR (Multivariate)
1.96

p = 0.048

Schut et al
(44)

HR (Multivariate)
6.24

P<0.05

Kaspere et al
(108)

PAR6mo

S45F 85%
WT 43%

p = 0.05

Lazar et al
(43)

HR (Multivariate)

S45F 3.50 p=0.0036

S45P 1.13 p=0.8064

T41A 1.11 p=0.8499

Crago et al
(37)

HR (Multivariate)
1.59

p = 0.41

Colombo
et al (49)

No significant association P=0.06

CfDNA Blood CTNNB1
Mutation
Increased

• Tumor microenvironment (54) Macagno
et al (54)

Plasmatic cfDNA
concentration (copies/mL):
P:1439 (CI 95%:900–1958)
NP: 528.7 (CI:95%: 166.7–875)

p=0.00026

miR-143-3p Blood Increased • Tumor cell proliferation Yamano et al.
(57)

Significant association P=0.001

Biomarkers in Prediction of Postoperative Recurrence

CTNNB1 Tumor Mutation • b-catenin induced transcriptional expression of
pro-tumor factors (41, 47)
• Autophagy and inhibited apoptosis (66)

Domont et al.
(61)

5-year RFS
Mutation 49%
WT 73%

P=0.02

S45F
Mutation

Colombo
et al (40)

5-year RFS
S45F 45%,
Other mutation 66%
WT 91%
HR (Multivariate)
2.59

p = 0.001
p=0.05

Mullen et al
(109)

5-year RFS
S45F 59.8%,
T41A 54.9%
WT 73.6%

p=0.434

Cyclin A Tumor Increased • Tumor cell proliferation (70) Santti et al
(70)

HR (Univariate)
1.9

p=0.02

Cyclin D Tumor Increased • Tumor cell proliferation (47, 73) Santti et al
(32)

Correlation with Ki67
r=0.40

p = 0.001

HR(Univariate)
Varied according to the used
cutoff

p>0.1

Cox Tumor Increased • Angiogenesis Signoroni
et al (110)

IHC: n (%)
8/8 (100)

–

(Continued)
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Although many studies support the association between

CTNNB1 and the poor prognosis of DT, the relationship between

CTNNB1mutation status and the clinicopathological characteristics

of DT remains controversial. A follow-up prospective study

detected that despite a trend toward the switch to AT, there is no

significant association between RFS and the S45F mutation (49).

Crago et al. found that “Wild types” defined by Sanger sequencing

actually had CTNNB1, APC and other rare mutations(chromosome

6 loss and BMI1 mutation) using next generation sequencing (37).

Colombo et al. first detected two different large deletions of about

190 bp involving exon 3 of CTNNB1 in two DT cases through

separate analysis of unmapped reads and subsequent validation

using PCR, which are difficult to be detected by conventional

whole-exome sequencing (WES) analysis (50). These findings

emphasize the challenges in detecting these deletions and a high
Frontiers in Oncology 05
level of tumor heterogeneity not previously described in DT.

Because of these properties, larger samples and more precise

sequencing methods are needed to confirm the clinical value of

the CTNNB1 mutation.
3.2 Peripheral blood

3.2.1 Cell free DNA
CfDNA is a fragment of DNA released from tumor cells during

necrosis or apoptosis. The cfDNA levels in the peripheral blood of

most tumor patients are significantly higher than normal

individuals (51). It has been demonstrated that cfDNA can be

used to diagnose pancreatic cancer, colorectal cancer and other

cancers (52, 53). Macagno et al. determined plasmatic cfDNA
TABLE 1 Continued

Biomarker Source Change Biological effect Related clinical research

Author Main outcome Significance

PDGF Tumor Increased • Angiogenesis Signoroni
et al (110)

IHC n(%)
8/8 (100)

–

ERb Tumor Increased • Tumor cell growth, differentiation and
reproduction (87–89)

Santti et al
(32)

HR (Univariate)
2.6

p = 0.02

PARP-1 Tumor Increased • Apoptosis (94, 111) Bräutigam
et al (94)

Survival cutoff DCt = 15.487 p=0.03

CTC Blood Increased • Unclear in DT Braun et al
(103)

ICC: n (%)
16/16 (100%)

–

CfDNA Cell Free DNA, Cox Cyclooxygenase, PDGF Platelet derived growth factor, ERb Estrogen receptor beta, CTC circulating tumor cell, PARP-1 Poly (ADP-Ribose) Polymerase 1, CR
complete response, PR partial response, SD stable disease, PFS progression free survival, HR Hazard Rate, PAR6mo progression arrest rate after 6 months.
FIGURE 2

Biological effects for S45F mutation of CTNNB1. S45F mutation is involved in the progression and recurrence of DT, including autophagy, immune
escape, proliferation, angiogenesis an inhibited apoptosis, etc. Created with Biorender.com.
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https://www.biorender.com
https://doi.org/10.3389/fonc.2023.1206800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1206800
concentration and mutation from DT patients’ blood using a

targeted Digital-droplet PCR (54). A significant correlation was

found between the concentration of cfDNA and tumor progression

(54). CfDNA level greater than 900 DNA copies/m provided 100%

sensitivity and 76.5% specificity as the poor prognostic factor.

When the cfDNA level was greater than 1375 DNA copies/m, the

sensitivity was 57.14% and the specificity was 100%. Using these

two thresholds(900 DNA copies/m and 1375 DNA copies/m),

cfDNA could accurately predict the prognosis of DT in 65% of

cases (54). However, it is noteworthy that there were inconsistent

correlations between CTNNB1 status in cfDNA and prognosis. This

could be attributed to the fact that cfDNA is derived from the TME

and the adjacent tissues rather than tumor cells. Based on the local

invasive characterization, surrounding cells and inflammatory cells

in the TME released wild-type cfDNA into the blood. CfDNA is

more indicative of the invasion intensity of DT rather than tumor

size (54). The finding indicates that cfDNA analysis may be

clinically useful for DT patients, especially those who are under

AS management.

3.2.1 Circulating microRNA
MiRNAs are small non-coding RNA molecules that participate

in RNA silencing and gene regulation post-transcriptionally, which

are widely present in multiple diseases (55). There is growing

evidence that circulating miRNAs can be used as a stable and

reliable serological biomarker (56). Given the rarity of DT, the

assessments of miRNAs on DT are limited. A recent study has

investigated that the levels of circulating miR-143-3p were screened

out as a candidate biomarker for FAP, compared with healthy

controls (57). Notably, among these FAP patients, the miR-143-3p

expression was strongly upregulated in DT tissues while reduced in

colorectal cancer (CRC) tissues. Moreover, the miR-143-3p

expression in DT tissues is consistent with plasma levels in FAP

patients. In previous studies, miR-143-3p has been identified as

highly expressed in mesenchymal cells (58). Bulk levels are based on

the aggregation of sources, so the plasma miR-143-3p concentration

might be influenced by the production or uptake of DT tissue.

Furthermore, it has been reported that the expression of miR-143-

3p is related to cell proliferation (59, 60). Thus, circulating miR-

143-3p might be a potential diagnostic and prognostic biomarker

for DT, which requires more experiments to confirm, especially in

sporadic DT.
4 Biomarkers in prediction of
postoperative recurrence

4.1 Tumor tissue

4.1.1 CTNNB1 mutation
In addition to its specific role in AS, CTNNB1 also has a predictive

role in the prediction of postoperative recurrence. Domont et al.

performed genetic testing on 155 frozen specimens of DT tissue to

analyze whether the recurrence of DT was related to the mutation of
Frontiers in Oncology 06
CTNNB1. The results showed that regardless of the specific genotype,

CTNNB1 mutated tumors had a worse prognosis than those with

wild-type CTNNB1 (61). Furthermore, S45F mutation was identified

as a significant risk factor for recurrence. A multicenter study found

that the 5-year RFS were 45%, 91% and 66% for patients with the S45F

mutation, WT and other mutations respectively (40). S45F mutation

was an independent prognostic factor for patients with DT, rather

than marginal status, tumor size, or disease site (40). Another

retrospective report also described an association between S45F and

the risk factors of relapse in pediatric patients. All of these evidences

indicated that CTNNB1 mutation might be a predictive biomarker in

postoperative recurrence (42). Although many studies have shown the

relationship between the S45F mutation and relapse, the retrospective

nature of the current studies constitutes an inherent limitation, which

requires prospective studies for validation.

The contribution of the specific mutation on DT local recurrence

is uncertain. S45F mutation completely blocks ubiquitination, leading

to a massive increase in b-catenin, which partly explains the higher

recurrence. In addition, there exists indirect evidence that the

recurrence of DT is related to autophagy and inhibited apoptosis.

Apoptosis and autophagy are two forms of programmed cell death,

promoting or inhibiting tumorigenesis in response to a tumor’s type

and stage (62, 63). Braggio et al. observed that autophagy gene

overexpression promoted resistance to sorafenib in CTNNB1 S45F

mutation in vitro and ex vivo (64). Previous research elucidated that

the overexpression of antiapoptotic genes inhibited apoptosis

induction, leading to resistance to therapeutics (65). The drug

resistance of S45F mutation patients may be associated with their

poor prognosis, in which apoptosis and autophagy may play a role. In

addition, studies have shown that RUNX3, a transcription factor

within the Wnt pathway, might be involved in caspase-3-dependent

apoptosis (66) (Figure 2). All these suggest that apoptosis and

autophagy may work in the process of CTNNB1 mutation affecting

the outcome of DT patients, which deserves more attention.

4.1.2 Cyclins
Cyclin A is essential for the passage of cells through the S and

G2M phases, which is usually accompanied with abnormal

proliferation or tumor growth (67–69). As a downstream product,

Cyclin A contributes to the regulation of cell cycle progression by the

Wnt signaling pathway. Studies have shown that Cyclin A can

influence the prognosis of DT patients. Santti K et al. observed that

Cyclin A expression was significantly associated with decreased RFS

(HR =1.9, P = 0.02) in a study enrolling 76 DT patients (70).

However, there is fewer data about the association between Cyclin

A and the recurrence of DT, and further investigations are needed to

confirm these findings.

The cyclin D regulates pRB in the G1 phase of the cell cycle.

During G1 phase, the pRB binds to transcription factors like E2F to

regulate cell growth (71, 72). Researches show that cyclin D1

overexpression and CTNNB1 mutation are correlated in DT (p =

0.029; p = 0.034, respectively) (73, 74). However, recent studies

revealed that excessive Cyclin D could not predict a high risk of

recurrence and local progression (32, 70). A possible explanation

for this contradiction is that the progression is caused by inhibited
frontiersin.org
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apoptosis rather than cell proliferation driven by Cyclin D. Upon

recurrence of the tumor, increased expression of the anti-apoptotic

protein Bcl-2, Bcl-XL, Survivin and transcription factor NF-kB was

observed, but no cell proliferation occurred (75, 76). Therefore, the

function of Cyclin D in DT remains to be determined. More

comprehensive studies are required to evaluate and confirm the

prognostic value of Cyclin D and investigate apoptosis in DT.

4.1.3 COX2 and PDGFb
As a downstream target of the Wnt pathway, COX2 is a key

enzyme responsible for prostaglandin synthesis. It plays a significant

role in CRC progression with angiogenesis and invasion by

modulating the PDGF (77, 78). In DT, COX2 immunoreactivity is

significantly higher than in hypertrophic scars and normal fibrous

tissue (18). Mignemi et al. found that the COX2 expression correlated

with PDGFb expression and increased its activity (18). PDGFb
expression was observed in all DT samples (27/27) with a

significant immunoreactivity compared to normal tissues (28).

Matano et al. investigated that the recurrent DT had higher

microvessel density compared with normal samples, indicating that

angiogenesis was an essential component in tumor recurrence (79).

These two molecules might be underlying biomarkers for the

prediction of recurrence by participating in angiogenesis.

4.1.4 Estrogen signaling related molecules
The estrogen-driven pathway participates in various

physiological functions by regulating gene expression, which

serves as the basis for many therapeutic interventions (80). Many

studies have demonstrated an involvement of the estrogen receptor

in the progression of the tumor, making it a common prognostic

factor and an attractive therapeutic target (81–83). Most estrogen-

related studies on DT are based on clinical observations. Females

are more likely to develop DT, particularly during the fertile period.

Epidemiological and clinical studies indicated that ERb is an

effective biomarker for predicting outcomes. Several studies

demonstrated that DT overexpressed mainly ERb instead of ERa,
with an estimated expression rate of 54.5–90% (84–86). Santti et al.

analyzed 83 consecutive DT samples immunohistochemically for

ERb, Cyclin D, and Ki67. A significant correlation was found

between ERb expression and the high risk of recurrence (HR=2.6)

(32). Furthermore, several studies elucidated that targeted therapy

on ERb prolonged the RFS and reached complete response (CR) in

6-14 months (87, 88). In a meta-analysis of 168 DT patients, the

complete and partial response rate was 51%, with the anti-ERb
therapy or combination with the NSAID therapy (31). Another

clinical trial observed only one patient (134 patients who completed

treatment at least 1 year) experienced a relapse after 10 years (89).

These results indicate that ERb has a close relationship with the

recurrence of DT, but the underlying mechanism remains unclear.

Potential downstream targets may provide clinical value.

4.1.5 Poly ADP-ribose polymerase 1
PARP-1 is an enzyme belonging to the PARP family, and it

accounts for more than 90% of the enzyme activity in its family.

PARP-1 is essential for repairing DNA damage, including single-
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strand breaks and double-strand breaks. PARP-1 binds broken DNA

to its N-terminal zinc finger structure, thereby producing poly ADP-

ribose chains involved in DNA repair (90, 91). PARP-1 function in

DT may be promising, as PARP-1 inhibitors have been used as

chemo/radiosensitizers in Ewing sarcoma (92, 93). Bräutigam et al.

investigated the mRNA levels of PARP-1, ERb, progesterone receptor
(PR) and androgen receptor (AR) in DT samples, and found only

PARP-1 was related to early relapse (94). Although PARP-1 may

promote DT recurrence, the detailed mechanism is unknown.

Previous research elucidated that cells disassembled and underwent

apoptosis, as PARP-1 was cleaved (95). PARP-1 requires NAD+ as a

substrate for DNA repair, which means overexpressing PARP-1

might consume available NAD+ and create a metabolic

vulnerability that can be targeted (96). The related metabolomics

profiles for DT showed that 1-methylnicotinamide, involved in NAD

metabolism, was highly expressed in the S45F tumor cell line (97),

which indicated PARP-1 might have an impact on DT progression

through oxidative metabolism. More experiments are needed to

confirm these assumptions.

4.1.6 Potential biomarkers through sequencing
Recently, with the continuous development of sequencing

technology, researchers can efficiently distinguish differentially

expressed genes, which allows screening of potential markers to

assess the recurrent risk in DT. Using WES, Kohsaka et al.

identified three genes for prognosis, namely IFI6, CKLF and LGMN

(98). IFI6 was the only statistically significant gene. Salas et al. screened

out FECH, STOML2 and TRIP6 which were able to predict RFS (99).

In addition to coding genes, Cavallini et al. found the dysregulation of

miR-21-3pg and miR-197-3p also associated with CTNNB1mutation

might affect the progression of DT (100). However, these molecules

need to be further validated in animal models and tumor samples.
4.2 Peripheral blood

4.2.1 Circulating tumor cells
As the precursors of tumor dissemination and metastasis,

CTCs are associated with cancer metastasis and poor prognosis

(101). CTCs and circulating tumor microemboli in peripheral

blood have been reported as early indicators for tumor invasion

(102). In contrast, the role of CTCs in mesenchymal neoplasms

is poorly investigated and remains unclear. In a recent study,

CTCs were identified in the peripheral blood of patients with DT

after AT, especially the recurrent cases (103). This outcome

looks contradictory since DT is thought to lack metastasis

potential. This may be inferred from two perspectives. On the

one hand, as this study focused on patients following surgery,

surgical manipulation may affect the CTCs release, called

intraoperative tumor metastasis. Moreover, it is also possible

for CTCs to colonize their tumors of origin, a process called

“tumor self-seeding” (104). CTCs could reinfiltrate and promote

angiogenesis in the primary tumor, which means they can easily

survive in the tumor environment from their primary

organs with fewer adaptations (105). This process could have
frontiersin.org

https://doi.org/10.3389/fonc.2023.1206800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1206800
consequences for tumor growth and progression, which might be

a potential biomarker for DT recurrence. Several studies have

associated CTC count with survival outcomes after metastatic

cancer and high-CTC counts have been reported in conjunction

with poor prognosis (106, 107). In DT, in addition to clinical

application assessment, baseline CTC counts which have

prognostic value remain to be determined experimentally.
5 Perspectives and
concluding remarks

High clinical variability and unclear mechanism of DTmake it a

clinical dilemma. Thus, it is important to find molecules as reliable

predictors of recurrence and progression. The current review

summarizes potential biomarkers in DT progression and

prognosis, focusing on the underlying mechanisms. Among these

biomarkers, CTNNB1 mutations have been demonstrated to have

promising clinical value in assessing relapse and prognosis,

particularly in AS. However, the biological roles of these

molecules will require more comprehensive research in the future.

Increasing sample sizes and standardization are necessary for future

research to determine causality and long-term effects.
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Glossary

ADAM A disintegrin and metalloproteinase

AF Aggressive fibromatosis

APC Adenomatous polyposis coli

AS Active surveillance

CBF-1 C-promoter binding factor 1

CfDNA Cell free DNA

CK1a Casein kinase 1a

CKLF Chemokine like factor-1

C-miRNA Circulating microRNA

COX2 Cyclooxygenase 2

CRC Colorectal cancer

CSL CBF-1, Suppressor of hairless, Lag

CTC Circulating tumor cell

CTNNB1 Catenin beta 1 gene

DLL-1/3/4 Delta-like-1/3/4

DT Desmoid tumor

Dvl Disheveled

ERb Estrogen receptor b

FAP Familial adenomatous polyposis

(Continued)
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FECH Ferrochelatase

GSK-3b Glycogen synthase kinase

HES Hairy enhancer of split

Hey HES-related proteins

IFI6 Interferon alpha inducible protein 6

JAG1/2 Jagged1/2

LEF Lymphoid enhancer factor

LGMN Legumain

LRP5/6 Low-density lipoprotein receptor-related protein 5/6

MMP Matrix metalloproteinases

NICD Notch intracellular domain

PARP-1 Poly ADP-ribose polymerase 1

pRB Phosphorylated retinoblastoma protein

PDGF Platelet-derived growth factor

STOML2 Stomatin like 2

TCF T cell factor

Treg Regulatory T cell

TRIP6 Thyroid receptor-interacting protein 6

VEGF Vascular endothelial growth factor

WES Whole exome sequencing;
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