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Purpose: To establish and validate a machine learning based radiomics model for

detection of perineural invasion (PNI) in gastric cancer (GC).

Methods: This retrospective study included a total of 955 patients with GC

selected from two centers; they were separated into training (n=603), internal

testing (n=259), and external testing (n=93) sets. Radiomic features were derived

from three phases of contrast-enhanced computed tomography (CECT) scan

images. Seven machine learning (ML) algorithms including least absolute

shrinkage and selection operator (LASSO), naïve Bayes (NB), k-nearest

neighbor (KNN), decision tree (DT), logistic regression (LR), random forest (RF),

eXtreme gradient boosting (XGBoost) and support vector machine (SVM) were

trained for development of optimal radiomics signature. A combined model was

constructed by aggregating the radiomic signatures and important

clinicopathological characteristics. The predictive ability of the radiomic model

was then assessed with receiver operating characteristic (ROC) and calibration

curve analyses in all three sets.

Results: The PNI rates for the training, internal testing, and external testing sets

were 22.1, 22.8, and 36.6%, respectively. LASSO algorithm was selected for

signature establishment. The radiomics signature, consisting of 8 robust

features, revealed good discrimination accuracy for the PNI in all three sets

(training set: AUC = 0.86; internal testing set: AUC = 0.82; external testing set:

AUC = 0.78). The risk of PNI was significantly associated with higher radiomics

scores. A combined model that integrated radiomics and T stage demonstrated
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enhanced accuracy and excellent calibration in all three sets (training set: AUC =

0.89; internal testing set: AUC = 0.84; external testing set: AUC = 0.82).

Conclusion: The suggested radiomics model exhibited satisfactory prediction

performance for the PNI in GC.
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Introduction

Perineural invasion (PNI) is a common mechanism of malignant

nerve invasion. Although the exact mechanisms of metastasis remain

unclear, nerves are regarded as an independent route of metastasis, in

addition to the vascular and lymphatic pathways. PNI is an important

risk factor for more aggressive tumor characteristics and worse

outcomes in various tumors, such as gastric cancer (GC) (1–4).

Moreover, accumulating evidence has demonstrated that PNI may

predict treatment response in patients with GC (3, 5). Therefore,

accurate detection of PNI is vital for personalized therapeutic

strategies. Currently, the PNI status can only be confirmed

postoperatively. Although biopsy may help determine the PNI

status preoperatively, biopsy samples cannot reflect the whole

landscape of the tumor, which leads to a risk of false negatives.

Conventional radiological approaches, including magnetic resonance

imaging and computed tomography (CT), fail to identify PNI status

(6, 7). Thus, effective methods to determine the PNI status in GC

patients preoperatively are urgently needed.

Radiomics techniques offer new insights into image data processing

and can translate images into mineable data, allowing the detection of

microscopic characteristics and heterogeneity of tumors that are

indistinguishable by naked eye from conventional CT images (8).

Accumulating evidence has shown the application potential of

radiomics in multiple fields, including differential diagnosis,

predicting metastasis and treatment efficacy (9–11). Moreover, the

radiomics approach can be used as a noninvasive imaging biomarker to

evaluate the characteristics of tumor microenvironment.

The predictive value of radiomics-based techniques for PNI has

been widely studied in various types of cancer (12–15). However,

radiomic studies focusing on PNI in GC are limited, and the sample

sizes are relatively small (16). Therefore, the purpose of this study

was to determine the value of the radiomics approach and

clinicopathological factors for the prediction of PNI status based

on a larger cohort of patients with GC.
Materials and methods

Patient enrollment

Between July 2015 to June 2017, 862 consecutive GC patients

were enrolled from in center 1, who were dividing them into the
02
training (n=603) and internal testing groups (n=259) at a ratio of

7:3 randomly. Ninety-three patients were enrolled in center 2 as an

external testing set. The inclusion criteria (1): received radical

gastrectomy and D2 lymphadenectomy (2); pathologically

confirmed GC (3); underwent abdominal contrast-enhanced

computed tomography (CECT) scans two weeks before surgery

(4); PNI status available; and (5) imaging quality met the following

criteria: a) sufficiently distended gastric cavity and b) images devoid

of significant artifacts. The exclusion criteria (1): lack of complete

clinical records (2), received any treatment at the time leading up to

the CT scan, and (3) suffered from other malignant diseases. Test

results for cancer antigen (CA)72-4, CA199, carcinoembryonic

antigen (CEA), and CA24-2 were also obtained. The threshold

value of CA19-9, CA242, CA72-4, and CEA were 37 U/mL, 20 U/

mL, 6.9 U/mL, and 5.0 mg/mL, respectively (17). Pathologic staging

was assigned to each patient in accordance with the 8th edition of

the AJCC staging manual. Figure 1 shows the process of

patient recruitment.

This study was approved by the ethical review board of our

institution, and the requirement of obtaining informed consent

was waived.
CT image acquisition protocol

Abdominal CECT was performed using GE Discovery CT750

HD or Siemens Somatom Definition Drive scanner. Prior to the

examination, patients were given oral doses of water to distend the

stomach. CT scans were performed with standard setting: tube

voltage of 120 kVp, auto tube current, and matrix of 512 × 512. The

images were reconstructed with a section thickness of 1.25- or 1.5-

mm. The arterial phase (AP), portal phase (PP), and delay phase

(DP) images were obtained after delays of 20-30, 60 and 120

seconds, respectively.
Lesion segmentation and
feature extraction

Three phases of the abdominal CECT scans were analyzed. CT

images were resampled into 1.0× 1.0 × 1.0 mm3 resolution using

linear interpolation. To standardize the intensity range across

scanners, Z-score normalization was utilized. Manually
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segmentation of the volume of interest (VOI) was performed with

the agreement of two radiologists (with 7–10 years of abdominal CT

imaging experience) by using 3D Slicer software (5.0.3).

PyRadiomics package 2.2.0 was used for the feature extraction,

extracting 1316 features from original and filtered images. Details of

the radiomic features and pre-processing procedure are described at

supplementary methods and https://pyradiomics.readthedocs.io/

en/latest/.
Radiomics signature establishment

To guarantee the robust and avoid overfitting of the chosen features,

we used a multi-step dimensionality reduction method for feature

screening. Firstly, intra- and inter-observer accessions were evaluated

with intra- and inter-class correlation coefficients (ICCs). From the

training set, 100 patients were chosen randomly, and two readers

independently performed the VOI segmentation. When the values of

ICCs exceed 0.85, the features were considered stable. Two weeks later,

Reader 1 performed the segmentation again. When the values of ICCs

exceed 0.85, the features were considered stable. Secondly, Spearman’s

rank correlation coefficient was used to calculate the correlation between

features, and one of the features with correlation coefficient greater than

0.9 between any two features is retained. Moreover, to decrease the

redundancy of features to the greatest extent, the correlation between

radiomics features and clinicopathological parameters were also

analyzed. Only features with correlation coefficient less than 0.5 were

retained. Thirdly, by using the Mann–Whitney U test, features that

showed substantial variation between PNI+ and PNI- groups were

selected. Finally, the retained features were inputted into least absolute

shrinkage and selection operator (LASSO) for the determination of the

features with best predictive ability.

After Lasso feature screening, six more machine learning (ML)

algorithms including k-nearest neighbor (KNN), random forest

(RF), support vector machine (SVM), decision tree (DT), eXtreme

gradient boosting (XGBoost) and naïve Bayes (NB) were also
Frontiers in Oncology 03
applied for model training. We adopt 5-fold cross verification to

obtain the final signature. Area under the receiver operating

characteristic curve (AUC) was calculated to evaluate the

diagnostic efficacy of the algorithms. The classifier with best AUC

was chosen for radiomics signature establishment. Radiomics scores

(R-scores) were calculated using the radiomics signature formula

for each patient. To examine the importance of the selected features

in the radiomics signature, the Shapley Additive explanations

(SHAP) method was applied with best classifiers. The SHAP

method is an approach for interpreting predictions of ML models

and an extension of Shapley values, indicating the average marginal

contribution of each feature over all combinations of features (18).

To eliminate the side effect of class imbalance on the model

construction, the synthetic minority oversampling technique

(SMOTE) was applied (19). The ML analysis was performed on

the SMOTE-training set. In order to validation the performance of

the radiomics signature in a real clinical environment, SMOTE was

not performed in the test cohorts.
Model establishment and evaluation

Multivariable logistic regression analysis was employed to select

independent PNI risk factors. A combined model was constructed

with radiomics signature and important clinicopathological

parameters and represented as a nomogram. Figure 2 shows the

workflow of radiomics analysis.
Statistical analysis

The chi-squared or Fisher’s exact test was used to compare

categorical variable differences; while for continuous variables, the

Mann–Whitney test was utilized. The degree to which different

observers accurately reproduced lesion segmentation was determined

by using the Dice similarity coefficient (DSC). A receiver operating
FIGURE 1

Recruitment pathways for patients.
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characteristic (ROC) curve was applied to determine the radiomic

signature discrimination power. The best cutoff threshold of the R-

score was found to classify patients into low- and high-risk PNI groups

using Maximized Youden index. Nomogram calibration was

determined using the Hosmer–Lemeshow test. Decision curve analysis

(DCA) wasmapped out to assess the clinical utility of predictive models.

R software (version 3.4.2) was utilized for statistical analyses.
Results

Clinical information

The training set consisted of 133 (22.1%) PNI+ patients, whereas

the internal and external testing sets consisted of 59 (22.8%) and 34

(36.6%) PNI+ patients, respectively. In all three sets, the PNI positivity

rate significantly correlated with higher T and N stages and poor

differentiation status. The PNI+ and PNI- groups exhibited no

significant variances regarding age, sex, tumor site, and serum

biomarkers. Table 1 shows the clinicopathological features of patients.
Segmentation reproducibility

The DSC of the inter-observer segmentation was 0.91,

indicating that the readers had a beneficial agreement.
Radiomics signature establishment

Of the 3948 features extracted from the VOIs in the training set,

2532 features were excluded because their ICCs were less than 0.85.
Frontiers in Oncology 04
Correlation coefficients of the retained 1416 features were calculated

and 368 highly redundancy features were excluded. Then, 78

features that closely correlated with clinicopathological

parameters were also excluded. Correlation matrix of radiomics

features were shown in Figure S1. Between the PNI- and PNI+

groups, 46 of the retained 970 features that differed significantly

were identified and added into LASSO analysis. Eight nonzero

coefficient features including 1 feature from AP, 6 features from PP

and 1 feature from DP were chosen (Figure 3). Subsequently, six MS

algorithms including SVM, RF, DT, KNN, NB and XGBoost were

also used to find the best classifier for establishment of signature. As

shown in Table 2, the AUCs of LASSO, SVM, RF, DT, KNN, NB

and XGBoost models were 0.85, 0.82, 0.65, 0.81, 0.75. 0.79 and 0.77

respectively. Therefore, LASSO algorithm was chosen for the

radiomics signature construction. The R-score for each patient

was computed using the formula shown in Supplementary Data.

The distribution of the R-scores shows in Figure S2.
Evaluation of radiomics signature’s
predictive performance

A significant variation was showed in the R-score between

patients with PNI and without PNI in the SMOTE-training (P <

0.001, Figure 4A), internal testing (P < 0.001, Figure 4B), and

external testing (P < 0.001, Figure 4C) sets. The R-score showed

good performance with an AUC of 0.86 (95% confidence interval

(CI): 0.83–0.90) in the SMOTE-training (Figure 4D), 0.82 (95% CI:

0.77–0.88) in the internal testing (Figure 4E) and 0.78 (95% CI:

0.68–0.83) in the external testing sets (Figure 4F).

To evaluate feature importance and to improve the

explainability of the radiomics signature, the SHAP values of the
FIGURE 2

Flowchart of study design.
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selected feature for each prediction were computed and visualized

in the training set. A positive SHAP value indicated a high

likelihood of a detection of PNI (Figure S3).
Establishment and confirmation
of nomograms

The relationship between PNI, R-score, and clinicopathological

parameters was evaluated using uni- and multivariable logistic

regression analyses. As shown in Table 3, radiomics signature, T

stage, and N stage were independent risk factors for PNI. With the

advancement and application of endoscopic ultrasonography
Frontiers in Oncology 05
(EUS), the accuracy of preoperative T staging has largely

improved using EUS combined with biopsy and conventional CT.

However, accurate staging of lymph node metastasis (LNM) can

only be assessed after surgery. Therefore, we constructed a

combined model incorporating the R-score and T stages. This

model was demonstrated as a nomogram for clinical use (Figure 5).

As shown in Figure 6, the combined model had an AUC of 0.89

(95% CI: 0.87–0.92) in the SMOTE-training set (Figure 6A), 0.84

(95% CI: 0.80–0.90) in the internal testing set (Figure 6B) and 0.82

(95% CI: 0.74–0.91) in the external testing set (Figure 6C). In all

three sets, the nomogram outperformed both the radiomics

signature and T-staging. The calibration curve matched well the

actual and estimated values of the nomogram in all three sets
TABLE 1 Characteristics of the study population.

Variable

un-SMOTE Training Set (n=603) Internal Testing Set (n=259) External Testing Set (n=93)

PNI-(n=470) PNI+(n=133) P PNI-(n=200) PNI+(n=59) P PNI-(n=59) PNI+(n=34) P

Age 0.45 0.44 0.76

< 60 226 (48.1) 59 (44.4) 97 (48.5) 32 (54.5) 28 (47.5) 15 (44.1)

≥ 60 244 (51.9) 74 (55.6) 103 (51.5) 27 (45.8) 31 (52.5) 19 (55.9)

Gender 0.39 0.94 0.52

Male 310 (66.0) 93 (69.9) 138 (69.0) 41 (69.5) 36 (61.0) 23 (67.6)

Female 160 (34.0) 40 (30.1) 62 (31.0) 18 (30.5) 23 (39.0) 11 (32.4)

Tumor Site
Upper
Middle
Lower
Overlap

72 (15.3)
37 (7.9)
203 (43.2)
158 (33.6)

11 (8.3)
11 (8.3)
63 (47.4)
48 (36.1)

0.23 25 (12.5)
11 (5.5)
86 (43.0)
78 (39.0)

6 (10.2)
4 (6.8)
25 (42.4)
24 (40.7)

0.95 6 (10.2)
7 (11.9)
26 (44.1)
20 (33.9)

4 (11.8)
5 (14.7)
14 (41.2)
11 (32.4)

0.97

Pathologic T stage <0.01 <0.01 0.03

T1
T2
T3
T4

118 (25.1)
67 (14.3)
17 (3.6)
268 (57.0)

1 (0.8)
3 (2.3)
2 (1.5)

127 (95.5)

68 (34.0)
44 (58.4)
10 (5.0)
78 (39.0)

2 (3.4)
2 (3.4)
1 (1.7)
54 (91.5)

11 (18.6)
9 (15.3)
11 (18.6)
28 (47.5)

1 (2.9)
2 (5.9)
5 (14.7)
26 (76.5)

Pathologic N stage
N0
N1
N2
N3

232 (49.4)
71 (15.1)
70 (14.9)
97 (20.6)

29 (21.8)
23 (17.3)
23 (17.3)
58 (43.6)

<0.01 105 (52.5)
31 (15.5)
21 (10.5)
43 (21.5)

11 (18.6)
4 (6.8)
15 (25.4)
29 (49.2)

<0.01 24 (40.7)
8 (13.6)
9 (15.3)
18 (30.5)

4 (20.6)
3 (8.8)
6 (17.6)
21 (61.8)

<0.01

Differentiation
Well-Moderate
Poor

81 (17.2)
389 (82.8)

7 (5.3)
126 (94.7)

<0.01 50 (25.0)
150 (75.0)

5 (8.5)
54 (91.5)

0.01 21 (35.6)
38 (64.4)

5 (14.7)
29 (85.3)

0.03

CEA
≥ 5.0 mg/mL
< 5.0 mg/mL

81 (17.2)
389 (82.8)

20 (15.0)
113 (85.0)

0.55 26 (13.0)
174 (87.0)

13 (22.0)
46 (78.0)

0.54 – – –

CA19-9
≥ 27 U/mL
< 27 U/mL

80 (17.0)
390 (83.0)

27 (20.3)
106 (79.7)

0.38 27 (13.5)
173 (86.5)

14 (23.7)
45 (76.3)

0.06 – – –

CA242
≥ 20 U/mL
< 20 U/mL

58 (12.3)
412 (87.7)

11 (8.3)
122 (91.7)

0.19 14 (7.0)
186 (93.0)

8 (13.5)
51 (86.4)

0.11 – – –

CA72-4
≥ 6.9 U/mL
< 6.9 U/mL

88 (18.7)
382 (81.3)

17 (12.8)
116 (87.2)

0.11 28 (14.0)
172 (86.0)

12 (20.3)
47 (79.7)

0.24 – – –
frontier
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(SMOTE-training: P = 0.86, Figure 6D; internal testing: P = 0.75,

Figure 6E; and external testing: P = 0.80 Figure 6F). The distribution

of the combined model scores shows in Figure S2. As shown in

Figure S4, the DCA also confirmed that the combined model offers

more benefit than radiomics signature and T stage.
Discussion

This study established and validated a radiomic signature for

predicting PNI in GC from multi-phase CECT images. The

signature demonstrated a strong capacity for identifying PNI in

all three sets. Furthermore, a combined model was constructed by

incorporating the R-score with T stage. The model showed better

discriminatory power than the radiomic signature and

pathological factors.

Based on Japanese gastric cancer treatment guidelines, patients

without LNM should receive endoscopic treatment rather than D2

lymphadenectomy (20). However, the PNI is an upstaging and poor

outcome factor in N0 patients with GC (4). Endoscopic resection

for early-stage GC with PNI may delay the early management of

patients. In line with previous studies, our results revealed that the

PNI rate significantly increased at higher T and N stages, indicating

a stronger invasive ability of tumor cells and a higher risk of
Frontiers in Oncology 06
developing progressive disease. Furthermore, the PNI is predictor

of the benefits of neo/postoperative chemotherapy or radiotherapy

for GC (5). Therefore, precise preoperative evaluation of PNI plays

a crucial role in precision and personalized treatment planning

for GC.

Several studies have demonstrated the value of radiomics

methods for identifying PNI based on different types of imaging

devices. Huang et al. developed radiomics model based on CECT

images which may be useful to detect PNI in colorectal cancer (12).

Zhang et al. extracted radiomics features from T2 and diffusion-

weighted MRI images and proposed a multiparametric clinical-

radiomics model for prediction PNI in colorectal cancer (13). Ma

et al. showed the predictive value of PET-CT based radiomics

nomogram for PNI and prognosis in colorectal cancer (15).

Zheng et al. previously reported a radiomics approach for

prediction of PNI in GC. However, their study only included 154

patients from single institute. Additionally, the radiomics features

were extracted solely from one phase of images. Liu et al.

demonstrated that CT texture attributes are correlated with

Lauren’s classification, vascular invasion status, and the

differentiation degree of GC (21). Nevertheless, their feature

analysis was based on the 2D maximum dimension and failed to

predict the PNI status (21). Compared to previous studies, our

study had clear advantages. In our study, a total of 955 GC patients
A B

FIGURE 3

Feature selection using least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of tuning parameter (l) in the
LASSO model via 10-fold cross-testing based on minimum criteria. The AUC curve was plotted against log (l). Dotted vertical lines were drawn at
the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1- standard error criteria). (B) LASSO
coefficient profiles of the selected features. A vertical line was plotted at the optimal l value, which resulted in 8 features with nonzero coefficients.
TABLE 2 Predictive performances of different machine learning classifiers.

Model AUC Accuracy Sensitivity Specificity

LASSO 0.85 0.82 0.77 0.83

SVM 0.82 0.79 0.74 0.80

RF 0.65 0.60 0.50 0.63

DT 0.81 0.78 0.70 0.80

KNN 0.75 0.71 0.74 0.75

NB 0.79 0.74 0.62 0.77

XGBoost 0.77 0.71 0.66 0.72
LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; RF, random forest; DT, decision tress; KNN, k-nearest neighbor; NB, naïve Bayes; XGBoost, eXtreme
Gradient Boosting; AUC, area under the receiver operating characteristic.
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(225 PNI+) were enrolled. The model was built based on a large

cohort of GC patients, and further validated in independent sets of

patients from two centers. Moreover, the radiomics features of our

model were collected from 3D VOI of three-phase CECT images,

enabling a comprehensive representation of lesion. The analysis
Frontiers in Oncology 07
process of our study increased the robust and reliability of

our model.

The PNI is an important component of the tumor microenvironment

(1). Complex interactions between neural, tumor, and stromal cells

promote the development of PNI (22). The radiomics method has
A B

D E F

C

FIGURE 4

Comparison of radiomics score between perineural invasion (PNI) - and PNI + groups in the training (A), internal testing (B) and external testing
(C) sets. The ROC curves of the radiomics signature in the training (D), internal testing (E) and external testing (F) sets.
TABLE 3 Univariate and multivariate analyses of predictors of perineural invasion in gastric cancer .

Variable

Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Gender (male vs. female) 0.83 (0.55-1.26) 0.39

AGE (<60 vs. ≥ 60) 1.16 (0.79-1.71) 0.45

Tumor site 1.19 (0.97-1.46) 0.10

Differentiation 3.75 (1.69-8.32) <0.01 2.29 (0.99-5.30) 0.06

T stage 3.56 (2.33-5.43) <0.01 3.06 (2.00-4.68) <0.01

N stage 1.63 (1.39-1.91) <0.01 1.24 (1.04-1.47) 0.02

CEA 0.85 (0.50-1.45) 0.55

CA 242 0.64 (0.33-1.25) 0.20

CA 19-9 1.24 (0.76-2.01) 0.38

CA 72-4 0.64 (0.36-1.11) 0.11

Radiomics signature 7.81 (3.53-17.22) <0.001 6.36 (3.01-16.06) <0.01
CI, confidence interval.
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been extensively utilized in tumor microenvironment heterogeneity

prediction (23). By analyzing high-dimensional information rather

than simple semantic features, radiomic methods allow for

comprehensive characterization of the tumor microenvironment

(24). The radiomics features chosen in our signature were suggested

to be useful for the characterization of intratumoral heterogeneity

and clinical information. A previous systematic review reported that

first order features were most reproducible radiomics features for

characterization of tumor heterogeneity (25). In our radiomics

signature, two first order features (entropy and uniformity) were

selected. According to previous study, uniformity and entropy were
Frontiers in Oncology 08
the important feature for predicting prognosis of various

malignancies (26, 27). Gray Level Dependence Matrix (GLDM)

quantifies gray level dependencies which is defined as the number

of connected voxels. Gray Level Run Length Matrix (GLRLM)

features describes gray level runs, which are defined as the length

in number of pixels, of consecutive pixels that have the same gray

level value. Non-uniformity, which is one of the most important

features in GLRLM and GLDM, was sleeted in our signature. The

higher value of uniformity correlates with a greater heterogeneity

(28). Neighbouring Gray Tone Difference Matrix (NGTDM)

features quantifies the difference between a gray value and the
FIGURE 5

Radiomics nomogram based on radiomics score and clinicopathological factors.
A B

D E F

C

FIGURE 6

ROC curves of the radiomics nomogram for the prediction of PNI status in the training (A), internal testing (B) and external testing (C) sets.
Calibration curves of the nomogram in the training (D), internal testing (E) and external testing (F) sets.
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average gray value of its neighbors. Contrast feature of NGTDM

measures the spatial intensity change. High value of contrast

indicates an image that exhibits large changes between voxels and

their neighbourhood., which also suggest more heterogeneity in the

texture patterns. Yang et al. reported that tumor size was positively

associated with PNI (29). Nonetheless, since the precise

confirmation of tumor size can only take place postoperative, this

factor was not used in our model building. Nevertheless, a

maximum 3D diameter, which was an indicator of tumor size,

was determined as a key feature in our radiomics signature.

Therefore, our radiomics signature offers promising insights into

tumor microenvironment with good explainability for the

prediction of PNI status.

Traditional serum tumor biomarkers are used commonly for

the diagnosis and prognosis of GC (17, 30). Previous studies have

reported that CEA levels are associated with PNI risk in colorectal

cancer (31). However, according to our results, four markers, CEA,

CA72-4, CA19-9, and CA24-2, showed no correlation with PNI.

This indicates that serum biomarkers have limited utility in the

prediction of PNI in GC.

This study has some limitations. First, evaluating radiomics

features may not be consistent among scanners and institutions

because of differences in the parameters used. Second, 3D lesion

segmentation based on multiphase images are computationally

complex and time-consuming. Third, the molecular mechanism

of PNI in GC still unclear. The molecular factors participating in

the development of PNI may provide information on the

prognosis and therapeutic response. Epithelial-mesenchymal

transition (EMT) is a molecular subtype that shows the worst

survival for GC patients (32). Ahmadi et al. reported that EMT

contributes to the development of PNI (22). Multiple reports

have demonstrated the value of the radiomics approach in

assessing gene mutation status (33, 34). Consequently, future

studies will require additional radiogenomics analyses that

correlate radiomic features with molecular profiles. Lastly, as

with any other retrospective study, the current analysis may have

included a selection bias. Therefore, larger prospective

multicenter investigations should be performed to verify the

applicability of this model.

In conclusion, our study demonstrates that radiomics

analysis of preoperative CT images can provide useful

information for predicting the presence of PNI in GC patients.

The high accuracy of our radiomics model suggest that it could

potentially be used as a non-invasive tool to help identify

patients at high risk of PNI. Future prospective studies with

larger cohorts are needed to validate our findings and assess the

clinical utility of our radiomics model.
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