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La Jolla, CA, United States
One of the distinguishing properties of hematopoietic stem cells is their ability to

self-renew. Since self-renewal is important for the continuous replenishment of

the hematopoietic stem cell pool, this property is often hijacked in blood

cancers. Acute myeloid leukemia (AML) is believed to be arranged in a

hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk

tumor. Some of the earliest characterizations of LSCs were made in seminal

studies that assessed the ability of prospectively isolated candidate AML stem

cells to repopulate the entire heterogeneity of the tumor in mice. Further studies

indicated that LSCs may be responsible for chemotherapy resistance and

therefore act as a reservoir for secondary disease and leukemia relapse. In

recent years, a number of studies have helped illuminate the complexity of

clonality in bone marrow pathologies, including leukemias. Many features

distinguishing LSCs from normal hematopoietic stem cells have been

identified, and these studies have opened up diverse avenues for targeting

LSCs, with an impact on the clinical management of AML patients. This review

will discuss the role of self-renewal in AML and its implications, distinguishing

characteristics between normal and leukemia stem cells, and opportunities for

therapeutic targeting of AML LSCs.
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AML as a stem cell disease

Hematopoiesis is organized as a hierarchy, with hematopoietic stem cells (HSCs) at the

apex. Blood homeostasis relies on the regulated differentiation of HSCs into the diverse cell

types that constitute blood. In normal hematopoiesis, blood production is sustained by

HSCs, which create committed progenitor cells that multiply and differentiate into

functional blood cells of distinct lineages (1). Central to this process is the self-renewing

capacity of HSCs, which ensures that the pool of uncommitted stem cells is not exhausted.

Importantly, HSCs are capable of self-renewal, but upon differentiation, their progeny are

severely limited in this capacity (1).
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In Acute Myeloid Leukemia (AML), hematopoietic stem or

progenitor cells acquire genetic alterations that confer pre-leukemic

features of heightened competitive fitness, including proliferative

expansion and enhanced survival (2). The cellular heterogeneity of

AML is believed to reflect the hierarchical organization of normal

hematopoietic differentiation, with undifferentiated stem-like cells

termed leukemia stem cells (LSCs) at the apex of the hierarchy

giving rise to more differentiated AML cells (Figure 1A). In a

seminal paper, the biological diversity and organization of the

leukemic clone within AML patients were demonstrated by

prospective isolation of immunophenotypically defined

populations, followed by engraftment studies in non-obese

diabetic/severe combined immunodeficient (NOD/SCID) mice

(3). The authors showed that highly purified CD34+ CD38- cells

but not CD34- or CD34+/CD38+ cells from AML patient-derived

xenograft (PDX) samples could efficiently repopulate AML in mice.

Importantly, this model implied that only the LSC fraction within

the tumor was capable of reconstituting disease. These pioneering

studies in the hematopoietic system paved the way for the

identification and characterization of cancer stem cells in several

other human cancers and helped establish the paradigm of the

cancer stem cell (reviewed in (4)). Given the inherent limitations of

in vivo xenotransplantation assays alternative techniques to study

human AML-LSCs were also developed. For example, an ex-vivo

bone marrow stromal co-culture system using CD34+ cells from

peripheral blood samples from AML patients allowed long-term

cultures to be maintained over 20 weeks (5). This assay model

allowed a more detailed study of the interactions between LSCs and

stromal cells on the bone marrow microenvironment, compared to

in vivo settings. Based on these studies, LSCs were thought to divide

in a manner analogous to benign HSCs, giving rise to a bulk

population of AML blasts, while also retaining some biological

properties of stem cells. Specifically, these include the propensity to

extensively self-renew, alternate between dormant and cycling
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states, and exhibit resistance to cytotoxic therapies (2, 3, 6).

However, subsequent studies have demonstrated that LSCs may

also harbor complex features that distinguish them from normal

HSCs. The similarities and distinctive features of HSCs and LSCs

are of clinical relevance, since they may help determine a potential

therapeutic window for AML-LSC targeting. These will be

elaborated upon in the following section.

Targeting of AML LSCs: exploiting the
similarities and differences between
HSCs and AML-LSCs

Immunophenotype-based targeting
of AML-LSCs

Several groups have sought to investigate the overlapping and

distinct properties of normal HSCs and AML-LSCs in order to

understand the means by which normal stemness attributes are co-

opted in AML. In human AML, several studies showed that LSCs can

share certain cell-surface markers that are used to define normal

HSCs, including non-expression of lineage (Lin) markers, expression

of the CD34 surface marker, and a CD38 negative (CD38-)

immunophenotype. Later studies using immunodeficient mice –

which are more permissive for engraftment of human cells –

showed that human AML-LSCs from most patients reside in the

CD34+/CD38- or CD34+/CD38+ population, and in a few AMLs

such as NPM1 mutant AML, may also be present in the CD34-

population (7, 8). Therefore, immunophenotypically, AML-LSCs

may not entirely resemble normal human HSCs, but more of a

multipotent progenitor (MPP) (9) or a granulocyte-macrophage

progenitor (GMP)-like stage (10) (Figures 1B, C). In fact, a study

on several human AML patient samples indicated that most AML-

LSCs may reflect the reacquisition of stem cell characteristics in
DA

B

C

FIGURE 1

Self-renewal, an essential component of normal and malignant hematopoiesis. (A) Normal hematopoiesis. (B) Malignant hematopoiesis sustained by
HSC-like LSCs. (C) Malignant hematopoiesis sustained by progenitor-like LSCs. (D) Therapeutic targeting and disease relapse. AML, acute myeloid
leukemia; HSC, hematopoietic stem cell; LSC, leukemia stem cell.
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progenitor cells instead of actual HSCs (11). These results are

consistent with findings from mouse models which sought to

directly identify the LSC potential of different purified

hematopoietic populations by introducing oncogenes such as MLL-

AF9, HOXA9/MEIS1, MOZ-TIF2 or MN1 (10, 12–15). Through the

use of these murine bone marrow transplantation models, it was

shown that the expression of leukemia-inducing oncogenes, such as

MLL-AF9, can activate stem cell-like gene expression programs in

downstream progenitors such as GMPs (10). It is evident that even if

the original oncogenic mutation emerges in HSCs, the LSC

population –as defined by the population of cells that can

regenerate the heterogeneity of the tumor in an experimental

setting in mice – may still reside in a more downstream MPP- or

GMP- like stage that aberrantly acquires self-renewal properties.

Taken together, the mouse and human studies demonstrate that

AML-LSCs can be immunophenotypically diverse compared to what

was initially defined and may resemble more committed progenitor

cells. Moreover, it has now become clear that the immunophenotype

of AML-LSCs can also vary from patient-to-patient and

from diagnosis to relapse (16–19). Thus, AML-LSCs can

immunophenotypically resemble a spectrum of hematopoietic stem

and progenitor cells, which has important ramifications for their

surface-marker-based identification and therapeutic targeting.

Several different surface markers have been shown to be

enriched in the LSC compartment including CD96 (20), CD123

(IL3Ra) (21), CD44 (22), CD47 (23), CLECL12A (CLL-1) (24) and

GPR56 (25), although the degree to which their expression differs

from normal HSCs varies greatly. Concerns derived from their

shared expression with HSCs and ensuing toxicity have prompted

careful evaluation of agents targeting these pathways or considering

their use in combination with other drugs (26–29). A number of

different strategies are being deployed for the therapeutic targeting

of surface proteins in AML. These include unconjugated, or bi and

tri-specific antibodies which can facilitate the engagement of T or

NK cells against AML targets. Another approach being tested is the

use of antibody-drug conjugates (ADCs) where selective antibodies

are conjugated to a toxin (payload). Similarly, radio-conjugated

antibodies can also enhance the cytotoxic potency of antibody-

based therapies and are being tested in AML. Finally, the use of

checkpoint inhibitors or chimeric antigen receptor T-cells (CAR-

Ts) are other strategies that could be directed for LSC elimination as

discussed below:

Some of the most common surface-associated antigens that

have been pursued in clinical trials are CD33, FLT3 and CD123

(IL3-Ra). In each of these cases, trials have been discontinued due to

unforeseen toxicities, raising questions about the selectivity of these

surface markers on AML cells and particularly on AML-LSCs.

Despite substantial toxicities, the ADC gentuzumab ozogamicin

(GO) - a CD33 antibody conjugated to the potent enediyne DNA-

binding cytotoxic antibiotic calicheamicin - is approved by the Food

and Drug Administration for treating certain subtypes of AML. In

core-binding factor AML, GO treatment in induction therapy

increased long-term survival rates (30). Another anti-CD33-based

ADC, vadastuxumab, which is based on the potent DNA minor

groove-binding agent pyrrolobenzodiazepine, showed promise in

preclinical models of AML, but the trial was discontinued due to
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safety issues (NCT02785900). Thus, therapies targeting CD33 have

met with limited success. Similarly, clinical targeting of the CD123

surface maker (IL3Ra) has shown mixed results. A number of

clinical trials with CD123-directed antibody therapies have been

conducted, and while the results of some of the trials are still

awaited, other trials had to be discontinued because of limited

clinical efficacy, suboptimal drug exposure, or unfavorable safety

profiles; e.g.: NCT02992860 (31). Recently, a Phase 1b/2 trial of

IMGN632, a CD123-targeting antibody conjugated to an alkyl-

benzodiazepine together with azacytidine and venetoclax (Aza/

Ven) showed tolerable safety profiles and compelling preliminary

anti-leukemia activity (NCT04086264) (32). Thus, CD123-based

targeting may show promise in some patients with high CD123

expression, although the effect of these ADCs on normal HSCs

remains to be seen given the importance of the IL3 signaling

pathway in normal hematopoiesis (33). Currently, CD70-targeting

antibodies (cusatuzumab), in combination with azaciditine or

venetoclax, remain under clinical investigation with promising

findings (34).

In addition to the use of antibody-based targeting approaches,

there are also several ongoing efforts to engage T-cells using

bispecific T-cell engaging antibodies (BiTEs), which recruit CD3

effector T cells to target tumor cells. Some of the early BiTEs tested

in AML included AMG-330 AMG673, and AMV564, all of which

are dual-targeting agents for CD33 and CD3. Each of these BiTEs

showed early evidence of anti-leukemia activity in patients with

relapsed/refractory AML (35, 36). Similarly, phase I dose-escalation

trials with the CD123-CD3 targeting BiTE XmAb14045 and the

dual-afffity retargeting (DART) antibody flotetuzumab showed

promising anti-leukemia activity in heavily treated relapsed

refractory AML patients, with manageable toxicities.

Aside from ADCs and BiTEs, CAR-T cells targeting CD33 and

CD123 are also under clinical investigation in AML. Because of

HSPC toxicity evident from early clinical studies, clinical trials are

focusing on their therapeutic use as bridge-to-transplant regimes

prior to allogeneic hematopoietic stem cell transplants (37, 38).

Regarding checkpoint immunotherapy, the CD47 macrophage

“don’t eat me” signal is upregulated in AML-LSCs and associated

with poor prognosis (23, 39, 40). The monoclonal humanized

antibody magrolimab binds CD47 and blocks its interaction with

its ligand SIRPa in phagocytic cells, leading to the phagocytosis of

AML cells. Recently, trials with Magrolinab and azacytidine

combination in de novo AML patients showed durable efficacy in

AML, including in p53-mutant AML, which is one of the most

treatment-resistant subtypes of AML (41).

Thus, several types of immunophenotype-based strategies are

under consideration for AML (Table 1), with some showing

impressive clinical activity - although their effects on LSCs and on

LSC-mediated AML relapse remain to be seen.
Transcriptional states of self-renewal
and differentiation

Early studies in the hematopoietic system helped define the

property of stem cell self-renewal, which allows HSCs to produce
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mature blood cells while also retaining the undifferentiated stem cell

pool (42). Similar to HSCs, AML-LSCs are also thought to be long-

lived due to an enhanced replicative capacity as determined by long-

term engraftment in immunocompromised mice (3, 43). Pioneering

experiments first demonstrated long-term reconstitution of multi-

lineage hematopoiesis in immunodeficient mice co-implanted with

fragments of human fetal thymus and fetal liver (44), as well as

unfractionated bone marrow (45). Leukemic cell engraftment

in mice was first obtained with bulk AML samples (43) and

later with purified subsets of AML cells, demonstrating the
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immunophenotypic origin of leukemia-initiating cells (3). The

latter study also demonstrated two current tenets of the cancer

stem cell model: that LSCs were able to proliferate and differentiate

into blast populations immunophenotypically identical to those

present in the original AML samples and that they were capable of

extensive self-renewal in vivo, as measured by leukemia propagation

in primary as well as secondary recipients. Collectively, these studies

led to the hypothesis that, in the majority of cases, AML originates

from -and is maintained by – transformed stem cells or by cells that

have reacquired stem-cell attributes following transformation (8).
TABLE 1 Selected agents in clinical trials for AML as of June 2023.

Modality Target Drug Trial Number

ADC

CD33
Gemtuzumab
Ozogamicin

NCT03531918, NCT00658814

ROR1 Zilovertamab vedotin NCT03833180

TN-C F16IL2 NCT02957032

CAR-T cells CD123 CAR-T cells NCT02159495

Checkpoint
inhibitor

CD47
Evorpacept (ALX148) NCT04755244

Lemzoparlimab NCT04202003

CD70 Cusatuzumab NCT04150887, NCT04023526

CTLA-4 Ipilimumab NCT02890329

PD-1
Nivolumab NCT02275533, NCT02532231, NCT03825367, NCT03092674, NCT04277442

Pembrolizumab NCT02768792, NCT03761914

PD-1 + CTLA-
4

Nivolumab + Ipilimumab NCT02846376

PD-1 + TIM-3 MBG453 + PDR001 NCT03066648

PD-L1 Atezolizumab NCT02935361

TIM3
MBG453 NCT03940352, NCT04150029

SHR-1702 NCT04443751

DART CD123 Flotetuzumab NCT04582864, NCT04158739

Radio-immuno-
conjugate

CD45 Iomab-B NCT02665065

CD33 Lintuzumab-Ac225 NCT03441048

Small molecule

ALDH ABD-3001 NCT05601726

E-selectin Uproleselan NCT03616470

IDH1

FT-2102 NCT02719574

IDH305 NCT02381886

Ivosidenib NCT03173248, NCT02632708

IDH1/2
Ivosidenib, enasidenib NCT02677922

LY3410738 NCT04603001

IDH2 Enasidenib
NCT03728335, NCT03515512, NCT03720366, NCT02577406, NCT04092179,

NCT01915498

MCL1 S64315 NCT04629443

MEN1 DS-1594b NCT04752163

WNT CWP232291 NCT03055286
DART, Dual-affinity retargeting antibody; ADC, Antibody-drug conjugate.
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When HSCs divide, they can either do so symmetrically, giving rise

to two daughter stem cells or two daughter committed progenitor

cells, or asymmetrically – giving rise to one stem cell and one

differentiated or committed progenitor cell. When at least one of the

daughter cells retains the property of self-renewal, the stem cell pool

is replenished (42). Similarly, AML stem cells must be constantly

replenished through the regeneration of AML-LSCs, achieved by

the retention or re-initiation of self-renewal properties in AML

cells. In addition, AML-LSCs also differentiate into the bulk of the

tumor that recapitulates the cellular heterogeneity of the original

disease, consisting mostly of AML blasts that have a much more

limited self-renewing capability. However, a remarkable difference

in comparison to HSCs is that AML-LSCs are more constrained in

their differentiation potential (46, 47). This is largely due to

perturbations in lineage-specifying transcription factors. An

example is the myeloid transcription factor CEBPA, which is

mutated in approximately 10 percent of AML. Other instances

include the altered expression or inactivation of SPI1 (PU.1),

RUNX1 and GATA2 (47, 48), which are known to be coopted for

pathogenesis in AML. In addition, various transcription factors (e.g.

RUNX1, CBFb or RARa) are involved in genetic alterations that

form aberrant fusion proteins in AML (47, 49). These fusion

proteins often perturb the normal functions of these transcription

factors and may also confer neomorphic activities contributing to

aberrant differentiation (47, 49). Interestingly, the stage at which

these fusion proteins cause myeloid maturation arrest appears to be

directly dependent on the nature of the fusion protein (50).

Furthermore, in addition to the fact that AML-LSCs show

aberrant lineage-skewing as well as differentiation arrest, there is

now emerging evidence to show that cells with a more differentiated

phenotype can also regain the characteristics of AML-LSCs (51).

The degree of plasticity that can be attained by blasts remains

largely unexplored in AML, with open questions regarding potential

cell-intrinsic and microenvironmental contributions (52). This

ability of AML cells to de-differentiate into AML-LSCs may play

a significant role in disease relapse and refractoriness to therapies

(51, 53), contributing to the elusiveness of the LSC as a drug target.

In normal hematopoiesis, the transcriptional states of HSCs are

defined by the gene networks that drive self-renewal, while lineage-

specifying transcription factors exert their effects upon activation in

downstream progenitor cells. Some of the self-renewal-associated

genes and gene-networks that are active in HSCs are the clustered

homeobox (HOX) genes, the three amino acid loop extension

(TALE) domain proteins MEIS1 and PBX1 (54, 55), the

transcription factor EVI1 (56), the WNT signaling pathway (57)

and the RNA binding proteins MUSASHI2 (58, 59), STAUFEN2

(60) and SYNCRIP (61), to name a few. Not surprisingly, studies

have shown that many of these gene-networks are aberrantly

activated in AML, with a concomitant dysregulation of the

expression or activity of lineage-specifying transcription factors

(62). Furthermore, these signatures are highly predictive of

chemotherapy response, and different LSC gene subset “scores”

have been developed for clinical prognosis (63–65)

The transcriptional control of these “stemness” gene networks is

tightly regulated by several distinct chromatin regulators in normal

HSCs. These chromatin regulators maintain the balance between
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self-renewal and differentiation in normal HSCs (6). These

regulators include the mixed-lineage leukemia gene (MLL) (66,

67), the histone methyltransferase DOT1L (68), the histone acetyl-

transferases KAT6A (MOZ) (69), KAT8 (MOF) (70, 71) and KAT7

(HBO1) (72). Similarly, DNAmethylation plays a crucial role in the

control of HSC stem cell fate decisions. The DNA methyl-

transferase DNMT3A regulates the expression of stem cell

developmental programs, such as the clustered HOX genes (73,

74). Mutations in DNMT3A are frequently found in both pre-

leukemic as well as leukemic states and are correlated with poor

prognostic outcomes (75–77). Other epigenetic regulators such as

TET2 (78), ASXL1 (79), and splicing regulators such as SRSF2 (80)

and SF3B1 (81, 82) are also commonly involved in regulating the

normal stem cell state. Large-scale sequencing studies have found

that these epigenetic and transcriptional regulators constitute one of

the most common class of genes mutated in AML (83, 84).

Interestingly, mutations in these classes of genes are early events

in AML pathogenesis and it is now believed that these mutations set

the stage for the establishment of a pre-leukemic state.

Given their established importance in maintaining the LSC-

state, drugs targeting chromatin-modifying proteins are being

actively pursued in the clinic. One of the most promising targets

for AML in this class is the histone methyltransferase DOT1L

whose deletion or pharmacological inhibition shows potent effects

in multiple preclinical models of AML (68, 85). However, phase I/II

clinical trials with the DOT1L inhibitor pinometostat showed

limited efficacy, due to pharmacological limitations of the drug

(86). Since DOT1L is a highly selective regulator of the AML

oncotranscriptome in several AML subtypes, such as KMT2A,

MLLT10 or NUP98-rearranged AML, as well as of NPM1 mutant

AML, further investigation of DOT1L inhibition with better

pharmacological properties (85, 87) is warranted. Another

promising epigenetic regulator in this leukemia subtype setting is

Menin. Drugs targeting the interaction of Menin with KMT2A are

being tested in separate clinical trials (NCT05153330, NCT0498855,

NCT04067336, NCT05360160, NCT04811560, NCT05326516,

NCT04065399). Recently, results from the AUGMENT-101

clinical trial with the menin inhibitor revumenib revealed a 53%

overall response rate, with 30% of the patients showing complete

remissions (88). Given that these were relapsed/refractory AML

patients who had failed multiple previous lines of therapy, these

results are remarkable, and highlight the potential of chromatin-

targeting therapies in AML. Another clinical trial (KOMET-101)

(89) with the structurally distinct MLL-Menin inhibitor Ziftomenib

is currently ongoing and results are awaited. Clinical testing with

inhibitors of other epigenetic regulators that are either mutated or

recognized as non-oncogene dependencies in AML are also

ongoing, including PRMT5, LSD1 and BRD4 inhibitors, although

their roles in AML LSC-regulation is unclear (90).
Metabolic states

It has recently been appreciated that several metabolic features

distinguish AML-LSCs from HSCs. Studies using cellular efflux of

the dye Hoechst 33342 as a phenotypic strategy for marking stem
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cells showed that this dye efflux capacity is altered in AML-LSCs,

allowing their separation from the leukemic bulk (91, 92). These so-

called side-population cells could enrich the LSC fraction,

indicating that similar to normal HSCs, AML-LSCs are

metabolically active in transporting this dye due to action of the

G2 multidrug transporter (93, 94). Furthermore, it was shown that

LSCs display higher levels of mitochondrial oxidative and lipid

metabolism compared to glycolysis-driven quiescent HSCs (95). A

recognized hallmark of cancer cells is their reliance on glycolytic

metabolism, termed the Warburg effect. Indeed, it has been shown

to be the preferred metabolic route for the bulk population of many

tumor types. However, cancer stem cells from various solid and

hematological cancers rather depend on oxidative phosphorylation

(OXPHOS) for their survival (96). LSCs activate mitochondrial

metabolism to coordinate regeneration and are unable to utilize

glycolysis effectively. This vulnerability has thus been exploited in

the development of targeted inhibitors that create synthetic

lethalities in LSCs only, but not HSCs. For example, the BCL-2

inhibitor venetoclax has been paired with heme biosynthesis and

amino-acid catabolism inhibition in proof-of-principle preclinical

studies in AML (97, 98). The mechanism by which cancer cells

regulate the balance between OXPHOS and glycolytic metabolic

pathways is not yet fully understood, but recent studies have

pointed to oncogene-induced “waves” of gene regulation that

enable switching between the two states (99).

Importantly, OXPHOS inhibitors have shown efficacy in AML

and are currently being tested in clinical trials (100–103). Another

metabolic therapeutic window for targeting AML-LSCs relates to

amino acid and lipid utilization. Notably, it was demonstrated that

AML-LSCs from newly diagnosed samples upregulate amino acid

metabolism for their survival and that pharmacological inhibition of

this pathway could selectively eradicate AML LSCs (98). It was also

found that compared to new diagnoses, LSCs from relapsed AML

samples were instead dependent on increased fatty acid metabolism

and may therefore require different therapeutic strategies (98).

An alternative strategy for targeting mitochondrial function

involves the inhibition of Dihydroorotate dehydrogenase

(DHODH), a flavoprotein located in the inner mitochondrial

membrane. DHODH is interesting because it connects two

important nodes recognized to be important in AML. It plays a

crucial role in de novo pyrimidine synthesis, connecting nucleotide

production with energy metabolism and the generation of reactive

oxygen species (ROS). Recent studies have demonstrated that

blocking DHODH activity, resulting in pyrimidine deprivation,

induces the differentiation or death of AML blasts (104–106). It

was further demonstrated that chemotherapy-resistant cells rely on

pyrimidine synthesis and that combining DHODH inhibition with

standard chemotherapy significantly reduces tumor burden in vivo

(107). A recent study showed that a novel DHODH inhibitor

AG636 induced potent anti-AML as well as anti-LSC effects with

limited effects on normal hematopoiesis in preclinical model of

MLL-AF9 AML. Mechanistic analysis demonstrated that DHODH

inhibition led to the reduction of protein synthesis rates, which is a

known metabolic vulnerability of AML-LSCs (108). Based on a

number of promising preclinical studies, clinical trials on DHODH

inhibition were initiated to leverage this selective vulnerability in
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AML cells, but at least two of these trials BAY2402234

(NCT03404726 – terminated due to limited efficacy) or with

PTC299 (NCT03761069) have been discontinued. Thus, clinical

translation of this highly promising metabolic vulnerability with

LSC targeting potential remains to be realized.

Aside from the metabolic changes seen in AML-LSC regardless of

AML mutational subtypes, more specific metabolic alterations are

seen in AML subtypes that bear mutations in specific metabolic

regulators, such as isocitrate dehydrogenases (IDH1/2) or TET2

(109). IDH1/2 mutations result in the production of 2-

hydroxyglutarate (2-HG), an oncometabolite that disrupts

epigenetic regulation and drives malignant hematopoiesis (110). 2-

HG is an inhibitor of TET2, a dioxygenase enzyme that enables DNA

promoter demethylation (111, 112) and is also mutated in AML,

being mutually exclusive with IDH1/2 mutations. The accumulation

of 2-HG due to IDH1/2 mutations in AML has been linked to the

accumulation of reactive oxygen species (ROS) and the depletion of

cellular NADPH, thus creating distinct, IDH mutation-initiated

metabolic states. It remains to be known whether these changes are

selective to LSCs and how these metabolic alterations can be

therapeutically exploited for LSC-targeted therapies. In the context

of leukemia with TET2 mutations, it has been recently shown that

supplementation with Vitamin C - a co-factor of the TET2 enzyme -

can rescue the function of wildtype TET2 and restore normal DNA

methylation. Following successful clinical validation, this strategy

may potentially provide a therapeutic avenue for the 30-50% of AML

patients that harbor TET2 pathway disruptions (109, 113). These

proof-of-principle studies demonstrate how metabolic vulnerabilities

of AML-LSCs in general or those created by specific mutations in

AML can be exploited for therapy (114).
The role of the BM niche in the emergence
of AML

HSCs reside in the bonemarrow niche, a specialized environment

that protects their quiescent state. Cell cycle quiescence allows for the

limitation of oxidative stress from mitochondrial respiration and

avoiding exhaustion from excessive cell cycling and proliferation

(115–117). The hypoxic conditions in the bone marrow nice result in

the stabilization of the hypoxia-inducible factor 1 (HIF-1), a

transcription factor that promotes the expression of glycolytic

genes (118). The depletion of HIF-1a, a monomer of the HIF-1

heterodimer formed with HIF-1b, leads to an increase in ROS and

OXPHOS and ultimately, loss of quiescence (119).

The hypoxic state of the bone marrow niche also contributes to

the therapy resistance features of LSCs (120, 121). A recent study

found that AML cells that persisted after chemotherapy treatment

used glutamine for pyrimidine and glutathione generation.

Malignant pyrimidine synthesis also required aspartate, which

was provided by stromal cells in the niche and drove the

metabolic adaptation of residual AML cells (107). Furthermore,

stromal cells have been found to provide mitochondria to AML

cells, supporting their energy production (122–124). The adipocyte

niche within the bone marrow has also shown to be protective for

LSCs (125, 126), along with the adhesion molecule and cytokine
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environment in the bone marrow niche, reviewed in (127). Indeed,

clinical trials with the E-selectin ligand inhibitor uproleselan

(NCT03616470), which blocks the interaction of AML blasts and

LSCs with the bone marrow vasculature, are underway for

AML (128).
LSCs as prognostic biomarkers

Identifying pre-leukemic stem cells:
lessons from clonal hematopoiesis

As mentioned previously, early studies on normal and

malignant hematopoiesis relied on the characterization of cell-

surface markers by flow cytometry and limiting dilution

experiments to determine long-term reconstitution of the entire

heterogeneity of normal or leukemic hematopoiesis in mouse

models. More recently, emerging techniques including next-

generation sequencing (NGS) and the computational

deconvolution of complex clonal hierarchies have allowed new

insights into the hematopoietic system. Among these is the

understanding of age-related clonal hematopoiesis (CH), a

phenomenon in which the progeny of certain HSC clones

expands progressively, due to selective advantage conferred by

accumulated mutations in the HSC (reviewed in (129, 130).

CH holds the potential to predispose to AML, a genetically

heterogenous disease where typically patients harbor several co-

occurring mutations (109). It is now becoming apparent that few

mutations in a small number of genes such as DNMT3A, TET2 and

TP53, among others, are present in long-lived self-renewing cells,

while other mutations are acquired as subsequent hits, in a

sequential, multi-step process (129). Interestingly, the first few

mutations are more likely to expand the pre-leukemic stem cell

pool, leading to the clonal expansion of these mutant HSCs and in

consequence, CH. Subsequently, the acquisition of mutations in

genes that block differentiation may lead to the establishment of

overt leukemia. Thus, this step-wise process, confers clonal

heterogeneity and distinguishes pre-leukemic clonal populations

which can eventually lead to the establishment of overt AML (131).

With this knowledge, NGS-based studies are now able to investigate

the impact of anti-AML therapies on these distinct leukemic clones,

thus shedding new light on the response of patients to targeted

treatments (132, 133). Further, the assessment of CH and AML

genotypes have changed clinical management to accommodate the

evolving understanding of the biological complexity of the leukemic

clone (134–136). CH remains under intense investigation and is

beyond the scope of this review, but it serves to underscore the

importance of charting a potential premalignant state for

therapeutic translation in AML (137).
LSC features and disease progression
and relapse

A body of evidence supports that LSCs may drive chemotherapy

resistance and thus disease relapse in AML (63, 120, 138–142).
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Using functional approaches, it has been shown that high LSC

frequency at diagnosis is associated with enhanced engraftment in

immunocompromised mice, high measurable residual disease load

after chemotherapy, and poor survival outcomes in patients (143,

144). With greater insights from large sequencing efforts, an LSC

expression signature was defined across patients and its correlation

to adverse outcomes in AML patients was established (145). Indeed,

in a study comparing prognostic factors, LSC frequency was found

to be the strongest predictor of overall survival compared to other

parameters, such as age, blast counts and genetic aberrations (146).

It needs to be mentioned that while there is a body of functional and

clinical evidence supporting the role of LSCs in chemoresistance

and relapse, one recent study reported that LSCs may not be always

resistant to treatment (147). Nevertheless, the eradication of LSCs is

currently a therapeutic development goal for a wide variety of AML

patients that fail to respond to currently-used therapies.

A greater understanding of the disease risk based on therapy

response has led to recent revisions and updates of major treatment

consensus guidelines. AML remains a disease with poor long-term

survival rates, as most patients relapse despite achieving remission

(148) (Figure 1D). Recently, the European LeukemiaNet revised

both its AML clinical guidelines (in 2022), and its measurable

residual disease (MRD) testing guidelines for AML (in 2021). The

World Health Organization and International Consensus

Classification for myeloid neoplasms were also updated and

published in 2022 (149). As discussed in this review, LSCs have a

preeminent role in relapse given their persistence after

chemotherapy. Mechanistically, this was thought to be due to

mutations that produce drug resistance, arising as a consequence

of the mutagenic properties of chemotherapeutics (150). However,

other lines of evidence have pointed to the pre-existence of drug-

resistant cells (151). Deep-sequencing studies of paired samples of

human AML at diagnosis and relapse have shown that relapse may

arise from minor genetic sub-clones present at diagnosis that

survive chemotherapy (151–153). The generation of resistant cells

could thus occur before treatment (151), and selection would be

driven by therapy (16, 18, 154). A recent study (155) combined

genetic and functional analysis of sorted subpopulations and

xenografts from initial diagnosis and relapse patient samples to

resolve the cell types that are fated to drive relapse. The findings

elucidated two major patterns of relapse. In the first, relapse

originated from a rare LSC population with a hematopoietic

stem/progenitor cell phenotype, already present at diagnosis

before therapy initiation. In the other model, relapse arose from

larger sub-clones of immunophenotypically committed leukemia

cells that retained strong transcriptional signatures of stemness

(155). These data showed that AML undergoes complex clonal

evolution in the pre-leukemic and LSC compartments, supporting

the concept that instead of the emergence of clones with new

mutations due to chemotherapy, the selection pressure of anti-

AML therapies may select for resistant clones due to the

dormancy or epigenetic plasticity of these clones (6). These and

other recent reports reinforce the notion of the LSC as “a moving

target” (156) – a cell state that may exist prior to therapy or can

emerge from other clones that take on stem cell characteristics

following treatment.
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Therefore, the identification of pre-existing LSCs as well as of

pre-leukemic clones that can acquire LSC characteristics may help

improve methods for disease management and monitoring in AML,

although it remains challenging. Dispersed residual leukemic cells

(1 in 104 to 106 white blood cells at clinical remission (157)),

including LSCs, may fall below the limit of detection of measurable

residual disease (MRD) by multicolor flow cytometry (MFC) or

molecular quantification by real-time quantitative PCR, the most

widespread methods for detection (158, 159). MRD can also be

measured by NGS and other methods with high sensitivity,

including droplet-digital (dd) PCR (160). The technology used to

assess MRD is critical and the standards for its interpretation across

different subtypes and disease stages remain under discussion in

multiple specialist working groups (reviewed in (161)). The

mounting impact of MRD assessment on treatment decision-

making remains to be standardized (162) and highlights the

relevance of LSCs and the difficulty posed by the molecular

heterogeneity of AML.

Since relapse may arise from genetically diverse dormant

populations that can take on LSC properties, therapeutic

approaches that target only the features of the dominant clone

would prove ineffective. Therefore, any anti-LSC therapies

would have to comprehensively address these recently appreciated

features of LSC biology in order to achieve long-lasting cures

in AML.
Concluding remarks

Challenges and open questions regarding
targeting LSCs

Research over the last two decades has enabled a better

understanding of the concept of LSCs, their importance on

AML progression, pathogenesis, and disease refractoriness. The

main challenge in the near future is to determine how this rapidly

growing information can be harnessed to develop effective LSC-

targeting therapies. To this end, it is critical to expand on the

search for clinically actionable LSC-specific targets. Rapid strides

have been made in this direction as mentioned previously in this

review. Immunophenotypic markers, including CD96 (20, 163),

CD123 (164), CD47 (165), and TIM-3 (166), expressed on pre-

leukemic and leukemic LSCs, are being explored as potential

targets for immunotherapy. Unique metabolic features that

distinguish AML-LSCs from HSCs are also being exploited as a

therapeutic vulnerability in AML. It is already apparent that drugs

such as venetoclax may be targeting the pro-survival mechanisms

that are active in AML-LSCs, which may partly explain their

efficacy in AML (114). One of the long-standing challenges in the

AML-LSC field is this: how can we reverse transcriptional

“stemness” networks that are constitutively activated in AML

and drive limitless self-renewal of AML-LSCs? One way of

addressing this important problem is by targeting epigenetic

regulators that sustain the expression of genes important to

stemness. Several studies have identified upstream epigenetic
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regulators of AML-LSC genes, and the clinical translation of

these findings has brought mixed results. For example, an

inhibitor of the histone methyltransferase DOT1L which

reverses HOX/MEIS activation in AML was found to have

modest efficacy in a clinical trial for patients with MLL-

rearranged AML. The efficacy of other epigenetic regulators that

can control the transcription of self-renewal associated genes in

AML, such as inhibitors of the MLL-Menin interaction is

promising (88, 167–172). Recent approaches for the high-

throughput identification of LSC self-renewal regulators have

combined whole-genome or targeted genetic perturbation

platforms and single-cell RNA sequencing to gain deeper

insights into HSC and AML-LSC self-renewal at the single-cell

level (72, 173–175). These strategies will help nominate several

novel candidates for bench-to-bedside translation of anti-AML-

LSC therapies. Once again, the time has come to revisit self-

renewal in AML – a concept that has presented both challenges

and opportunities in the advancement of therapies targeting the

elusive cancer stem cell.
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