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Circulating circRNA: a social
butterfly in tumors
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Circular RNAs (circRNAs) are a class of single-stranded non-coding RNAs that form

circular structures through irregular splicing or post-splicing events. CircRNAs are

abnormally expressed inmany cancers and regulate the occurrence and development

of tumors. Circulating circRNAs are cell-free circRNAs present in peripheral blood,

they are considered promising biomarkers due to their high stability. In recent years,

more and more studies have revealed that circulating circRNAs participate in various

cellular communication and regulate the occurrence and development of tumors,

which involve many pathological processes such as tumorigenesis, tumor-related

immunity, tumor angiogenesis, and tumor metastasis. Understanding the role of cell

communicationmediated by circulating circRNAs in tumorwill further reveal the value

and significance behind their use as biomarkers and potential therapeutic targets. In

this review, we summarize the recent findings and provide an overview of the cell-cell

communication mediated by circulating circRNAs, aiming to explore the role and

application value of circulating circRNAs in tumors.
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The structure, regulation and function of circRNA

Structure

Unlike linear RNAs terminated with 5’ caps and 3’ tails, circRNAs are characterized by

covalently closed-loop structures with neither 5’ to 3’ polarity nor a polyadenylated tail.

CircRNA is produced by pre-mRNA through back-splicing or alternative (back) splicing. No

specific motifs are required for circularization except the splice sites (1, 2). A median exon

length of 353 nucleotides is required for single-exon back-splicing, compared with only 112-130

nucleotides per exon for multiple-exon back-splicing in human cells (3). CircRNA can be

divided into three types according to its composition: exon-derived circRNA (this type of

circRNA is composed of single or multiple exons of a gene), intron-derived circRNA (consisting

of a single intron, mainly derived from the lasso RNA and tRNA introns produced by pre-

mRNA splicing) and exon−intron circRNA (including both exons and introns). Most

endogenous human circRNAs contain several exons, usually two or three (3).
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Regulatory mechanisms of
circRNA expression

Back-splicing and alternative splicing mediate the formation of

circRNA. According to reports, intronic complementary elements

facilitate back-splicing to increase circRNA levels (2). Exon

circularization efficiency can be regulated by competition between RNA

pairings across flanking introns or within individual introns. Importantly,

the alternative formation of inverted repeated Alu pairs and the

competition between them can lead to alternative circularization,

resulting in multiple circular RNA transcripts produced from a single

gene. In addition, RNA binding proteins (RBPs) regulate the formation of

circRNAs. The one hand, RNA binding proteins (RBPs) directly bridge

distal splice sites to promote back-splicing (4). On the other hand, RBPs

bind to intronic complementary elements to enhance (5) or suppress (6)

back-splicing by enhancing or reducing the pairing capacity of intronic

complementary elements. It has also been reported that circular RNA

biogenesis can proceed through an exon-containing lariat precursor

without relying on cis elements or trans factors (7). Abnormal circRNA

expression may also be associated with changes in genomic DNA (8).
Functions of circRNA

The expression of circRNAs is cell-specific and developmental stage-

specific (9, 10), and their biological functions are diverse. CircRNAs can

negatively regulate pre-mRNA splicing, resulting in a reduction in linear

mRNA levels and changing the composition of processed mRNA. Some

circRNAsmay be reverse transcribed to cDNA and incorporated into the

genome. Stable circRNAs and EIcircRNAs are localized in the nucleus

where they bind to the elongated RNA Pol II and promote transcription.

They can act as sponges by competitively binding miRNAs to aid in

miRNA transport or inhibit the binding of miRNAs to target genes (11).

In addition, circRNAs can bind to RBPs and act as protein sponges (12).

They can also bind two or more proteins to act as scaffolds and promote

the interaction between enzymes and substrates (13). Besides, they can

encode functional proteins (14).
Circulating circRNA and cell-cell
communication

Circulating circulatory RNAs, as their name suggests, are cell-free

circulatory RNAs present in peripheral blood. They mainly come from
Abbreviations: CAFs, cancer-associated fibroblasts; AFP, alpha-fetoprotein; BCa,

bladder cancer, circRNAs, circular RNAs; CRC, colorectal cancer; GC, gastric

cancer; HCC, hepatocellular carcinoma; HSCs, hepatic stellate cells; HUVEC,

human umbilical vein endothelial cells; LC, lung cancer; LUAD, lung

adenocarcinoma; MSCs, mesenchymal stem cells; NK, natural killer; NSCLC,

non-small-cell lung cancer; PCa, prostate cancer; PD1, programmed cell death

protein 1; PD-L1, programmed death-ligand 1; RBP, RNA binding protein;

SOX9: SRY-box transcription factor 9, TANs: tumor-associated neutrophils;

TAMs, tumor-associated macrophages; TGF-b, Transforming growth factor-

beta; Tregs, regulatory T cells.
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passive leakage of dead cells or active secretion of living cells (15, 16). They

exist in two forms: free circRNAs that bind to proteins, and circRNAs in

exosomes or microparticles. Compared to other circulating RNAs,

circulating RNAs facilitate cell communication to a greater extent, reach

a wider range of target cells, and have more opportunities for contact with

other tissues and cells. These characteristics endow them with special

advantages and important functions in cell-cell communication (Table 1).
Communication between tumor cells

Cancer is a dynamic disease with high heterogeneity. Tumor

heterogeneity may exist between individuals, tissues, sites, or cells, and

contribute to the low efficacy or failure of therapies through the

development of drug resistance. Tumor heterogeneity is derived from

the genetic differences between cells and the differences in the

microenvironment, and the information exchange between cells confers

tumor plasticity and heterogeneity (47–49), as well as drug resistance.

Cisplatin and 5-Fluorouracil (5-FU) are the most common anticancer

drugs used for the treatment of a variety of solid tumors, such as ovarian

cancer and lung cancer (LC), and adjuvant treatment of glioma (50–53).

However, these drugs often result in the development of chemoresistance,

leading to therapeutic failure. In esophageal cancer, circ_0000337-

containing exosomes secreted by CDDP-resistant esophageal cancer cells

could promote CDDP resistance in CDDP-sensitive esophageal cancer

cells in vitro partly by regulating themiR-377-3p/JAK2 axis (54). Hon et al.

studied the role of hsa-circ-0000338 in colorectal cancer (CRC) patients

who were resistant to 5-FU and oxaliplatin (FOLFOX), they found

exosomes transferred chemoresistance from FOLFOX-resistant

HCT116-R cells into parental HCT116-P cells by selectively transferring

hsa_circ_0000338 into recipient cells (55). Additionally, high expression of

exosomal circ_0063526 in serum was associated with poor response to

cisplatin treatment in gastric cancer (GC) patients. Exosomal circ_0063526

facilitated cisplatin resistance in GC by regulating the miR-449a/SHMT2

axis (56). Circulating circRNAs act asmessengers between tumor cells, and

targeting them would provide strategies for blocking intercellular

communication and combating drug resistance.

In addition to drug resistance, the communication between tumor cells

also involves symbiotic nutrient sharing, nutrient competition, and the

transmission of oxidative stress (57). Reprogramming of energy

metabolism is a hallmark of tumours caused by genomic instability.

Recently, circRNAs have been reported to be associated with mutant

glycolysis, lipogenesis and lipolysis, glutamate glycoside breakdown, and

oxidative respiration in tumors (58). For example, silencing of circHIPK3,

which is abundant in pancreatic islets, decreased Slc2a2 expression that

encodes GLUT2 (59). CircHIPK3 could sponge miR-124, which represses

the expression of several enzymes and transporters of glycolysis (60).

However, it remains to be further investigated whether circRNAs are

involved in metabolic regulation across different tumor cells.
Communication between tumor cells
and normal cells

The malignant transformation of normal cells is an important

factor to promote the rapid progression of tumors. In
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TABLE 1 The communication between tumor cells and nontumor cells is mediated by circulating circRNAs.

Cancer Circulating
circRNA (source)

Mechanism Clinical signifi-
cance

Ref

CRC hsa_circ_0136666
(tumor cell)

Stimulate Treg cells by the miR-497/PD-L1 axis Potential therapeutic
target

(17)

circPACRGL(N/A) Increase the percentage of N2 neutrophils and promotes CRC proliferation and metastasis (18)

Cholangio-
carcinoma

Hsa_circ_0000284
(tumor cell)

Regulate the behavior of tumor cells and induces malignant transformation of normal cells Potential therapeutic
target

(19)

Circ_0020256
(TAM)

Promote the proliferation, migration, and invasion of cholangiocarcinoma cells via the miR-432-
5p/E2F3 axis.

(20)

HCC hsa_circ_0051443
(liver cell)

Inhibit malignant biological behavior by competitively binding miR-331-3p to promote
apoptosis and block the cell cycle.

Potential therapeutic
target

(21)

circRNA_DB
(adipocyte)

Promote HCC growth and reduces DNA damage by inhibiting miR-34a and activating the
USP7/Cyclin A2 signaling pathway

(22)

circRNA-100338
(tumor cell)

Promote the proliferation of HUVECs and tube formation, regulates vasculogenic mimicry by
regulating VE-cadherin.

(23)

circ_4911, circ_4302
(tumor cell)

Promote the proliferation and migration of HUVECs (24)

CircMET (tumor
cell)

Inhibit the infiltration of CD8+ T cells (25)

circGSE1 (tumor
cell)

Promote HCC by inducing Treg expansion by regulating the miR-324-5p/TGFBR1/Smad3 axis (26)

circUHRF1 (tumor
cell)

Inhibit NK cell-derived interferon-g and TNF-a secretion by upregulating TIM-3 via
degradation of miR-449c-5p

(27)

hsa_circ_0074854
(tumor cell)

Induce macrophage M2 polarization, promoting the migration and invasion of HCC cells Potential diagnostic
and therapeutic
targets

(28)

Glioma circGLIS3 (tumor
cell)

Stimulate the phosphorylation of ezrin (T567) in brain endothelial cells to promote angiogenesis Potential diagnostic
and therapeutic
targets

(29)

CircNEIL3 (tumor
cell)

Recruit macrophages and enable them to acquire immunosuppressive properties. (30)

circRNA BTG2
(macrophage)

Inhibit glioma progression via miR-25-3p/PTEN. (31)

has-circ-0015164,
hsa-circ-0003243
(platelet)

N/A Potential diagnostic
and therapeutic
targets

(32)

Pancreastic
cancer

circ-IARS (tumor
cell)

Increase Ras homolog gene family member A (RhoA) activity via absorption and regulation of
miR-122, and the permeability of the endothelial monolayer is significantly enhanced.

Potential therapeutic
target

(33)

Lung cancer hsa-circRNA-002178
(tumor cell)

Induce PD1 expression in CD8+ T cells (34)

circZNF451 (tumor
cell)

Induce an anti-inflammatory phenotype in macrophages, exhaustion of cytotoxic CD8+ T cells,
and enhance TRIM56-mediated degradation of FXR1 to activate the ELF4-IRF4 pathway in
macrophages

Potential biomarker
and therapeutic
target

(35)

Circ-CPA4 (tumor
cell)

Inactivate CD8+ T cells

circNDUFB2 (tumor
cell)

Regulate the secretion of CXCL10, CXCL11, CCL5, and IFNb, recruits CD8+ T cells and DCs
into the tumor microenvironment

(36)

circNRIP1 (platelet) N/A Potential biomarker
and therapeutic
target

(37)

OSCC circKRT1 (tumor
cell)

Work as a miR-495-3p sponge to regulate PD-L1 in CD8+ T cell. (38)

(Continued)
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cholangiocarcinoma, hsa_circ_0000284 was evidently elevated in

plasma exosomes compared to normal controls, it enhanced the

migration and proliferation of cholangiocarcinoma cells in vitro.

Exosomes from cholangiocarcinoma cells stimulated the migration

and proliferation of surrounding normal cells by transferring circ-

0000284 (19). At the same time, circRNAs from normal cell-derived

exosomes can be delivered to tumor cells. In hepatocellular carcinoma

(HCC), hsa_circ_0051443 was packaged primarily in exosomes and

transmitted from normal cells to HCC cells via exosomes, and it

inhibited malignant biological behavior by competitively binding miR-

331-3p to promote apoptosis and block the cell cycle (21).

Hsa_circ_0051443 expression was significantly lower in plasma

exosomes and tissues from patients than in those from healthy

controls (21). This is a strategy for tumor cell survival, but it also

provides lessons for treating tumors from normal cells.
Communication between tumor cells
and stromal cells

Stromal cells, together with extracellular matrix components, are

critical components of the tumor microenvironment. Common stromal

cells include fibroblasts, stellate cells, vascular endothelial cells, and

adipocytes. The composition of stromal cells varies in different tumor

tissues (61). The communication between stromal cells and tumor cells is

the key to the dynamic shift of tumor microenvironment, which affects

the occurrence and development of tumor.
Fibroblasts

Cancer-associated fibroblasts (CAFs) constitute a major portion of

the tumor stroma and play crucial roles in tumor progression and
Frontiers in Oncology 04
metastasis. CAFs derived either from resident fibroblasts or tumor-

infiltrating mesenchymal stem cells (MSCs). When recruited into the

tumor stroma, bone-marrow-derived MSCs can promote cancer stem

cell development by secreting a specific set of paracrine factors or

transforming into pro-stem cell CAFs. CircRNAs are essential

mediators of the intercommunication between the tumor and CAFs,

supporting tumor growth, survival, invasion and metastasis. For

instance, hypoxia could induce secretion of exosomal circEIF3K from

CAFs, and exosomal circEIF3K promoted colorectal cancer (CRC)

progression via miR-214/PD-L1 axis (62). Hsa_circ_0056686, derived

from CAFs, promoted cell proliferation and suppressed apoptosis in

uterine leiomyoma through inhibiting endoplasmic reticulum stress

(63). Moreover, breast cancer cells exposed to CAF-derived exosomes

carrying circHIF1A display significantly increased stemness (64). In

addition, there is evidence that circRNA is involved in the

communication between tumor cells and MSCs. For example,

exosomal circ_0030167 derived from bone-marrow-derived MSCs

inhibited the invasion, migration, proliferation and stemness of

pancreatic cancer cells by sponging miR-338-5p and targeting the

Wif1/Wnt8/b-catenin axis (65). Tumor-associated exosomes play a

significant role in the differentiation of fibroblasts into CAFs, as well as

the differentiation of mesenchymal stem cells (66–68). Currently, there

is evidence to show that circRNAs play a role in their differentiation

(69–71), however, whether tumor-cell-derived circRNAs directly

induce their differentiation still needs to be further revealed.
Stellate cell

Stellate cells are resting stem cells of mesenchymal origin

located in the liver and pancreas. Hepatic stellate cells (HSCs)

comprise a minor cell population in the liver but serve numerous

critical functions in hepatic physiology and pathology (72). HSCs
TABLE 1 Continued

Cancer Circulating
circRNA (source)

Mechanism Clinical signifi-
cance

Ref

hsa_circ_0069313
(tumor cell)

Promote Treg function by maintaining Foxp3 levels Potential therapeutic
target

(39)

BC circ_002172 (tumor
cell)

Inhibit CTL infiltration by upregulating CXCL12 Potential therapeutic
target

(40)

circ-TPGS2 (tumor) Increase proinflammatory chemokine production and evoke tumor-associated inflammation by
acting as a sponge of miR-7 and elevating TRAF6.

(41)

GC circ_0008287(tumor
cell)

Impair the function of CD8+ T cells and promote their apoptosis by binding to miR-548c-3 and
increasing the expression of intracellular chloride channel protein 1.

Potential therapeutic
target

(42)

BCa circ_0001005 (tumor
cell)

Sponge miR-200a-3p to promote PD-L1 expression, facilitating NK cell-mediated BCa cell
killing.

Potential therapeutic
target

(43)

circDHTKD1
(tumor)

Recruit and activate neutrophils by inducing CXCL5 expression. (44)

PCa circSMARCC1
(tumor cell)

Facilitate the expression of CD163 in macrophages through the CCL20-CCR6 axis and induce
TAM infiltration and M2 polarization, leading to PCa progression.

Potential therapeutic
target

(45)

Melanoma
and lung
cancer

mmu_circ_0000730 Involved in gut microbiota induced-cancer metastasis through the IL-11/circ_0000730/miRNA
axis

Potential therapeutic
target

(46)
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are primarily known for their activation upon liver injury and for

producing the collagen- abundant extracellular matrix in liver

fibrosis (72). During HCC progression, activated HSCs are

thought to accelerate carcinogenesis by affecting proliferation

(73), migration and invasion (74), and angiogenesis (75).

Recently, several studies have revealed that circRNAs are involved

in the communication between HCC cells and HSCs. For example,

HSC exosome-derived circWDR25 promoted the progression of

HCC via the miRNA-4474-3P-ALOX-15 and EMT axes (76). In

addition, peritumoral circWDR25 secreted by HSCs affects the

prognosis of HCC patients after radical hepatectomy, and their

elevated expression in the adjacent tissues was closely related to a

poor prognosis of the patients (77). In pancreatic cancer,

upregulated circRNA chr7:154954255-154998784+ in cancer-

associated pancreatic stellate cells promoted the growth and

metastasis of pancreatic cancer by targeting the miR-4459/

KIAA0513 axis (78). There are different subgroups of HSCs, and

the subgroups have different roles in HCC (79). Whether circRNAs

are involved in the activation of HSCs and the dynamical shift of

HSC subpopulations still needs to be further revealed.
Endothelial cells

Endothelial cells are involved in angiogenesis and tumor

metastasis. Huang et al. revealed that circRNA-100338 helped

mediate the communication between HCC cells and human

umbilical vein endothelial cells (HUVECs) via exosomes (23). On

the one hand, exosomal circRNA-100338 promotes the proliferation

of HUVECs and tube formation. On the other hand, exosomal

circRNA-100338 regulates vasculogenic mimicry by modulating

VE-cadherin. In glioma, circGLIS3 could be packed into exosomes

and absorbed by human brain microvascular endothelial cells,

stimulating the phosphorylation of ezrin (T567) to promote

angiogenesis (29). During tumor metastasis, changes in endothelial

permeability act as accelerators for tumor expansion. Circulating

circRNAs act as the “key” that allows tumor cells to “open” the

endothelial cell barrier. In pancreatic cancer, circ-IARS expression is

upregulated in cancerous tissues and in plasma exosomes of patients

with metastatic disease. Circ-IARS was found to enter HUVECs

through exosomes, it significantly increased Ras homolog gene family

member A activity via absorption and regulation of miR-122, and the

permeability of the endothelial monolayer was significantly enhanced

(33). It was reported that increased Ras homolog gene family member

A activity in HUVECs promoted actin-cytoskeletal remodeling and

cell contraction and reduced the expression of the tight junction

ligand protein Zonula occludens-1, leading to endothelial barrier

dysfunction (80, 81) and endothelial hyperpermeability (82, 83). Cell

migration is driven by local membrane protrusion through directed

polymerization of F-actin at the front (84). Circ-IARS also increased

F-actin expression and focal adhesion in HUVECs (33).

Besides, pericytes are also one of the main cellular components,

they are typically described as greatly elongated, slender, and

branched cells, with projections that extend longitudinally and

circumferentially around the vessel wall (85, 86). They support

the formation and function of blood vessel, and can be recruited
Frontiers in Oncology 05
during tumor angiogenesis (87, 88). However, the mechanism by

which they are recruited is unclear. Whether it involves

communication between tumor cells and pericytes, endothelial

cells and pericytes remains to be explored further.
Adipocyte

Adipocytes are specialized cells that regulate energy balance,

store excess energy as fat, and play a regulatory role in tumors by

secreting metabolites, enzymes, hormones, growth factors, and

cytokines. During the development of cancer, tumor cells have a

metabolic symbiosis with neighboring adipose tissue. For example,

adipocytes provided adipokines and lipids to cancer cells and

regulated therapeutic resistance (89). Zhang et al. reported that

circRNAs secreted by adipocytes regulated the development of

HCC. Exosomal circRNA_DB was upregulated in HCC patients

with high body fat ratios. CircRNA_DB secreted by adipocytes

promoted HCC growth and reduced DNA damage by inhibiting

miR-34a and activating the USP7/Cyclin A2 signaling pathway (22).

Increased adiposity contributes to carcinogenesis and tumor

progression, but advanced stages of numerous cancers are

associated with loss of white adipose tissue and wasting of the

body, which complicates treatment and adversely affects patient

survival. Exploring the communication between adipocytes and

tumor cells may provide an answer to this question.
Communication between tumor cells
and immune cells

T cells
Current immunotherapeutic methods mainly focus on T

lymphocytes, especially restoring exhausted cytotoxic T cells (CTLs).

An example of such an approach is immune-checkpoint blockade, in

which monoclonal neutralizing antibodies block of receptors or ligands

that inhibit the activation of CTLs, including programmed cell death

protein 1 (PD1), PD1 ligand PD-L1 and lymphocyte-activation gene-3

(90). The use of PD1 antibodies decreases tumor progression and

provides long-term clinical benefits in patients (91, 92). However, most

patients inevitably acquire resistance after several cycles of treatment

(93). More and more mechanisms have been revealed, including the

role of circulating circulating RNA.

First, circulating circRNAs are important regulators of PD1

expression in CTLs. In lung adenocarcinoma (LUAD), hsa-

circRNA-002178 was significantly upregulated in LUAD tissues

and LUAD cancer cells. It can be detected in the exosome of plasma

from LUAD patients and could serve as a biomarker for early

diagnosis of LUAD. Hsa-circRNA-002178 could enhance PD-L1

expression by sponging miR-34 in cancer cells, and circRNA-

002178 could be delivered into CD8+ T cells to induce PD1

expression via exosomes (34). Second, circulating circRNAs

inactivate CTLs by up-regulating PD-L1 expression in tumor

cells. By coculturing non-small cell lung cancer (NSCLC) cells

with CD8+ T cells isolated from human peripheral blood
frontiersin.org
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mononuclear cells in a transwell coculturing system, Hong et al.

found that Circ-CPA4 positively regulated exosomal PD-L1.

NSCLC cells inactivated CD8+ T cells in a secreted PD-L1-

dependent manner, and NSCLC cells with circ-CPA4 ablation

reactivated CD8+ T cells in the coculturing system (94). Third,

circulating circRNAs regulate T cell penetration. In HCC, high

levels of circMET were significantly correlated with a low density of

tumor-infiltrating CD8+ lymphocytes. CircMET promoted HCC

deve lopment by induc ing EMT and enhanc ing the

immunosuppressive tumor microenvironment through the miR-

30-5p/Snail/dipeptidyl peptidase 4 (DPP4)/CXCL10 axis (25). In

NSCLC, circNDUFB2 regulated the secretion of CXCL10, CXCL11,

CCL5, and IFNb, it is recognized by RIG-I to activate RIG-I-MAVS

signaling cascades and recruited CD8+ T cells and dendritic cells

into the tumor microenvironment , and circNDUFB2

downregulation in NSCLC tissues was correlated with NSCLC

malignant features (36). What’s more, circulating circRNAs

regulate T cell apoptosis. Upregulation of circ_0008287 in GC

impaired the function of CD8+ T cells and promoted their

apoptosis by competitively binding to miR-548c-3 and increasing

the expression of intracellular chloride channel protein 1 (42).

The adaptive immune system is modulated by an essential

subset of CD4+ T lymphocytes called regulatory T cells (Tregs)

that function in maintaining immune homeostasis by preventing

excessive immune activation. In tumors, Tregs secrete

immunosuppressive factors to inhibit the function of CD8+ T

cells, causing tumor immune escape (26, 95). In OSCC,

hsa_circ_0069313 was upregulated and predicts a poor7

prognosis. It is an exosomal circRNA, and the transfer of

hsa_circ_0069313 to Treg cells promoted Treg function by

maintaining Foxp3 levels (39). In conclusion, circulating circRNA

affects the body’s immunity by regulating the function of T cells in

various ways, and targeting circulating circRNA will provide a new

strategy for tumor immunotherapy.

Natural killer cells
In recent years, the rapid and potent antitumor function of innate

immunity, which occurs even at highly early stages of tumor

progression, has attracted increasing attention. As a subset of innate

lymphoid cells, natural killer (NK) cells, commonly considered type 1

innate-like cells, are currently defined as effector cells, exerting natural

cytotoxicity against primary tumor cells and metastasis by inhibiting

migration and colonization to distant tissues (96). They can distinguish

abnormal cells from healthy cells, leading to more specific antitumor

cytotoxicity and reduced off-target complications (97). In addition, they

can produce cytokines, mainly interferon-g, to modulate adaptive

immune responses and participate in other related pathways (98).

Recently, NK cell dysfunction has been demonstrated in various

malignancies. Several studies have shed light on the role and

mechanisms of circulating circRNAs in NK cell dysfunction. On the

one hand, circulating circRNA levels are correlated with the number of

NK cells and their penetration into tumor tissue. In plasma from HCC

patients, circUHRF1 was predominantly secreted by HCC cells in an

exosomal fashion. Elevated plasma exosome circulating UHRF1 levels

were associated with a decreased NK cell fraction and decreased NK
Frontiers in Oncology 06
cell tumor infiltration. CircUHRF1 inhibited NK cell-derived

interferon-g and TNF-a secretion by upregulating TIM-3 via

degradation of miR-449c-5p, thereby promoting immune evasion

(27). On the other hand, circulating circRNA modulates the killing

effect of NK cells on tumor cells. For example, in bladder cancer (BCa),

androgen receptor (AR) influenced the initiation and progression of

tumors. Both androgen therapy and AR knockdown effectively reduced

PD-L1 expression, facilitating NK cell-mediated BCa cell killing.

Mechanistically, androgen receptor upregulated circ_0001005

expression via the RNA-editing gene ADAR2. Circ_0001005

competitively sponged miR-200a-3p to promote PD-L1 expression

(43). In addition, the abnormal expression of circRNAs also regulated

the toxicity of NK cells to tumor cells in HCC (99), breast cancer (100),

and renal cell carcinoma (101).

Macrophages
Macrophages include many cell types with complex and delicate

regulatory networks. The type, density and location of macrophages

have good prognostic value in various cancer types. Tumor-associated

macrophages (TAMs), including both resident macrophages and

circulating monocytes recruited to the tumor microenvironment, are

a predominant cell type in tumors (102). Under the guidance of

different microenvironmental signals, macrophages differentiate into

two functional phenotypes, namely, classically activated macrophages

(M1) and alternately activated macrophages (M2). In contrast to the

anti-tumor effects of M1 macrophages, M2 macrophages have anti-

inflammatory and tumorigenic properties. Consistent with

macrophages, TAMs are also highly plastic and switch from one

phenotype to another (103, 104).

CircRNAs mediate macrophage infiltration, facilitating

carcinogenesis and cancer development. CircNEIL3 derived from

NEIL3 increased with increasing glioma grade and was regulated by

EWS RNA-binding protein 1 (EWSR1). Functionally, circNEIL3

promoted tumorigenesis and progression of gliomas in vitro and in

vivo. Mechanically, circNEIL3 stabilized IGF2BP3, a known oncogen,

by preventing HECTD4-mediated ubiquitination. CircNEIL3-

overexpressing glioma cells drove macrophage penetration into the

tumor microenvironment by activating YAP1 signaling and secreting

CCL2 and LOX. Moreover, circNEIL3 could be packaged into

exosomes by hnRNPA2B1 and transmitted to infiltrating TAMs,

thereby enabling them to acquire immunosuppressive properties by

stabilizing IGF2BP3, in turn promoting glioma progression (30). In

prostate cancer (PCa), high expression of circSMARCC1 was positively

associated with colonization of CD68+/CD163+/CD206+ TAMs in the

tumor microenvironment. Overexpression of circSMARCC1 facilitated

the expression of CD163 in macrophages through the CCL20-CCR6

axis and induces TAM infiltration and M2 polarization, thereby

leading to PCa progression (45). CircRNAs are also involved in M2

macrophage polarization. CRITGB6, which was robustly upregulated

in tumor tissue and sera from platinum-resistant OC patients, was

associated with a poorer prognosis. CircITGB6 overexpression

promoted M2 macrophage-dependent CDDP resistance both in vivo

and in vitro. Mechanistic research determined that circITGB6 directly

interacted with IGF2BP2 and FGF9 mRNA to form a circITGB6/

IGF2BP2/FGF9 RNA−protein ternary complex in the cytoplasm,
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thereby stabilizing FGF9 mRNA and inducing polarization of TAMs

toward the M2 phenotype. Importantly, blocking M2 macrophage

polarization with an antisense oligonucleotide targeting circITGB6

markedly reversed the circITGB6-induced CDDP resistance of OC in

vivo (105). In HCC, hsa_circ_0074854 can be transferred from HCC

cells to macrophages via the exosomes. Exosomes with downregulated

hsa_circ_0074854 suppressed macrophage M2 polarization, which in

turn suppressed the migration and invasion of HCC cells both in vitro

and in vivo (106). Interestingly, the exosomal circRNAs produced by

TAMs also affect tumors. Circ_0020256 in TAM-secreted exosomes

promoted the proliferation, migration, and invasion of

cholangiocarcinoma cells via the miR-432-5p/E2F3 axis (20). In

HCC, exosomal miR-628-5p from M1-polarized macrophages

hindered N6-methyladenosine (m6A) modification of circFUT8 to

suppress HCC progression (107). In summary, circulating circRNAs

affect tumor development by modulating the interaction between

macrophages and tumor cells. Targeting circRNA-mediated

information exchange between macrophages and tumor cells may be

one of the strategies to reshape the tumor microenvironment.
Neutrophils
The role and importance of neutrophils in cancer has received

increasing attention over the past decade. Many patients with

advanced cancer show elevated neutrophilia levels. Intratumoural

neutrophils (also known as tumor-associated neutrophils (TANs))

are connected to a dismal prognosis, and the neutrophil-to-

lymphocyte ratio has been introduced as a significant prognostic

factor for survival in many types of cancer (108). TANs constitute

an important portion of the infiltrating immune cells in the tumor

microenvironment, and they are recruited to the tumor and can

acquire either protumor or antitumor functions (109). In BCa,

circDHTKD1 was positively associated with lymph node metastasis

and significantly upregulated. CircDHTKD1 interacted directly

with miR-149-5p and antagonized CXCL5 inhibition by miR-149-

5p. CircDHTKD1-induced CXCL5 expression recruited and

activated neutrophils, which participated in lymphangiogenesis by

secreting VEGF-C (44). Like TAMs, TANs are also divided into two

types, N1 and N2 (37). N1 TANs have cytotoxic and antitumor

effects, and N2 TANs promote tumor progression (110).

Transforming growth factor-beta (TGF-b) is a multifunctional

cytokine implicated in tumor initiation, progression, and

metastasis. TGF-b promotes the formation of TANs. In

particularly, TGF-b inhibits N1 but promotes N2 neutrophil

differentiation (111). It has been reported that circPACRGL

served as a sponge for miR-142-3p/miR-506-3p to facilitate TGF-

b1 expression in CRC. CRC-derived exosomal circPACRGL

increased the percentage of N2 neutrophils and promotes CRC

proliferation and metastasis (18).
Communication between tumor cells
and platelets

Platelets participate in physiologic hemostasis and pathologic

thrombus, and the role in tumors has also attracted considerable
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attention. They affect all aspects of cancer progression, most notably

tumor cell metastasis. Platelets isolated from cancer patients frequently

show different RNA and protein profiles without significant changes in

hemostatic activity. This phenotype is unique to a population known as

tumor-educated platelets. At present, the mechanism by which tumor

cells educate platelets is not completely understood, but many studies

have revealed the interaction between tumor cells and platelets. For

example, platelets can interact with circulating tumor cells through

receptors and ligands (112, 113), and platelets can be recruited to the

tumor tissue microenvironment to play a regulatory role (114, 115). Of

concern, platelets can directly take up and store RNAs (mRNAs,

miRNAs, LncRNAs) from tumor cells, and tumor-educated platelets

in liquid biopsies have emerged as valuable resources that can be used

to assess cancer-related RNA profiles with tumor specificity, high

sensitivity, and high accuracy (116–118). CircRNA levels in human

platelets are 17- to 188-fold higher than those in nucleated tissues and

14- to 26-fold higher than those in samples digested with RNase R

(119). Like other RNAs, platelet circRNAs have shown promising

applications in human disease. For example, NRIP1 circRNA was

identified to be pregnancy specific, with significant upregulation in

maternal platelets in the first trimester compared to those from non-

pregnant control participants. This finding allows NRIP1 circRNA to

be used as a first-tier check (gold standard) in future efforts for

diagnostic screening purposes using circRNAs as targets and

maternal first-trimester platelets as a source (120). In NSCLC, 4732

circRNAs were detected in platelet samples from patients and controls,

and 411 of these circRNAs were significantly differentially expressed;

circNRIP1 is one representative of the differentially expressed circRNA.

CircNRIP1, which was downregulated in the NSCLC group, could be

employed as a potential biomarker for NSCLC (37). Chen et al.

analyzed the platelet RNA profiles of 8 glioblastoma samples and 12

normal samples and constructed a ceRNA network (circRNA-mRNA

−miRNA) based on 2 miRNAs (hsa-let-7a-5p, hsa-miR-1-3p), 2

mRNAs (CCR7 and FAM102A), and 2 circRNAs (has-circ-0015164,

hsa-circ-0003243) to investigate the potential interactions (32). This

study also sheds light on the potential relationship between platelet

circRNAs and cancer, as well as the clinical value of platelet circRNAs.

However, the cause of changes in platelet circRNA in patients with

tumors remains unclear. These changes may be related to the uptake of

circulating circRNA or may be the result of platelet-selective release

(119). In addition, platelets are fragments from megakaryocytes, and

tumor cells can also educate megakaryocytes (121). Whether these

changes are the result of megakaryocytes being educated by tumor cells

remains to be further revealed. What’s more, tumor-associated

thrombosis is one of the common complications in tumor patients

and is an important cause of death (122, 123), which is closely related to

the abnormality of platelet quantity and function (124–126). Whether

circulating circRNA is involved in platelet dysfunction remains to be

further investigated.
Communication between tumor cells
and erythrocytes

Erythrocytes account for ∼84% of the total blood cells count in the

average adult (127). Recently, several studies show that abnormal red
frontiersin.org

https://doi.org/10.3389/fonc.2023.1203696
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Miao and Zhang 10.3389/fonc.2023.1203696
blood cell distribution width is associated with poor prognosis in

cancers (128, 129). Erythrocytes can interact with tumor cells (130),

and erythrocytes from cancer patients have a differential proteome

profile compared with cancer-free controls (131). In fact, erythrocytes

also have high circRNA content besides platelets (132–134). Recently,

Nicolet et al. provided the first detailed analysis of circRNA expression

during erythroid differentiation (135). They found that circRNA

expression not only significantly increased upon enucleation but also

had limited overlap between progenitor cells andmature cells, and only

one out of 2531 (0.04%) circRNAs was associated with mRNA

translation regulation. These results suggest that circRNA expression

originates from regulatory processes rather than from mere

accumulation, yet their contribution to regulatory cellular processes

is still unknown. Interestingly, the levels of approximately 4% circRNAs

in the erythrocytes did not overlap with the levels of mRNAs in

differentiated erythrocytes. These circRNAs may be acquired from

other cell types in the circulation or endogenous vascular-derived RNA

(136). If this is the case, circRNAs taken up by erythrocytes could be

novel biomarkers for tumors due to their high stability. In addition,

tumor-associated anemia (137), is the key reason for leading to a

decline in patients’ quality of life. And anemia in tumor patients is

associated with a decrease in the number of red blood cells (138).

Whether circulating circRNAs are involved in the reduction of red

blood cells is also an urgent question to be explored.
Communication between tumor cells and
the gut microbiota

The human gut harbors diverse microbes that play a fundamental

role in the well-being of their host, including participating in energy

collection and storage, fermenting and absorbing undigested

carbohydrates (139), promoting the maturation of immune cells and

the normal development of immune function (140). However, the

influence of gut microbiota is not limited to the local part of the

intestine but is instead systemic (141, 142). In recent years, the role of

the gut microbiota in tumor-related immune regulation has attracted

much attention. In particular, the gut microbiota regulates antitumor

immunity through metabolites, which are small molecules that can be

transported in the body and act on local and systemic antitumor

immune responses to promote the efficacy of immune checkpoint

inhibitor (ICI) therapy (143–146). Recently, Zhu et al. found that the

levels of circulating miRNAs and circRNAs changed significantly with

dysbiosis of the microbiota, and the gut microbiota regulated tumor

metastasis via circRNA/miRNA networks. Specifically, the gut

microbiota downregulated circulating mmu_circ_0000730 and

upregulated circulating mmu-miR-466i-3p or mmu-miR-466 f-3p.

SRY-box transcription factor 9 (SOX9) is a target gene of mmu-

miR-466i-3p and mmu-miR-466 f-3p. Mmu_circ_0000730

upregulated SRY-box transcription factor 9 (SOX9) and activated

epithelial-mesenchymal transition markers in cancer cells by

targeting mmu-miR-466i-3p or mmu-miR-466 f-3p. Furthermore,

intestinal flora reconstruction significantly decreased IL-11

expression. IL-11 treatment induced mmu_circ_0000730/SOX9

expression, while it downregulated mmu-miR-466i-3p and mmu-

miR-466 f-3p. In cancer cells, IL-11 promoted SOX9 expression,
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induced cell invasion, and promoted the stemness of cancer stem

cells (46). This study shows that there is a mechanistic link between the

gut microbiota and cancer metastasis through the IL-11/circRNA/

miRNA axis, which will help to pave the way to the clinical use of gut

microbiota for cancer prevention or treatment in the future (147–149).
Clinical applications of
circulating circRNAs involved
in cell-cell communication

Biomarkers for tumors

Seeking specific molecules of tumor origin to improve the accuracy

and sensitivity of early screening and prognosis assessment has

consistently been an urgent issue. CircRNAs have attracted much

attention in tumor biomarker studies due to their stability, tissue

specificity of expression, and relatively high content (150). Circulating

circRNAs are widely respected in the field of non-invasive liquid biopsy.

Large numbers of clinical samples also reveal its huge application

prospect (151–154). For example, AR is the key driver gene and a

common target for the treatment of PCa. CircRNA AR3,derived from

AR, is widely expressed in PC cells and prostate tumors. Plasma

circRNA_AR3 level was positively associated with Gleason scores and

lymph node metastasis of PCa, and it was undetectable in men after

radical prostatectomy (151). It is considered a promising circulating

RNA with tumor specificity. In fact, the circRNAs identified so far,

tumor-specific circRNAs are very rare, and most of them are non-

specific. However, these abnormally expressed circRNAs still have high

diagnostic value (155–157). For example, in CRC, circRNA_PNN was

found to have significant value for CRC diagnosis among 122

differentially expressed circRNAs. The area under the receiver

operating characteristic curve of serum exosomal circ-PNN for early-

stage CRC was 0.854 (sensitivity=91.7%, specificity=69.0%) (152). In

addition, another study showed that exosomal HSA-circ-0004771 levels

in serum were 14 times higher in patients with CRC than in healthy

controls. Its level was correlated with stage and distant metastasis. The

sensitivity and specificity values of exosomal hsa-circ-0004771 for

differentiating CRC patients from HCs were 80.91% and 82.86%,

respectively (153). To further improve diagnostic accuracy, several

studies have analyzed multiple circulating circRNAs in combination,

which performed well in tumor detection and showed a higher accuracy

(158). For example, a plasma circRNA panel (CircPanel)

(hsa_circ_0000976, hsa_circ_0007750 and hsa_circ_0139897) showed

a higher accuracy than alpha-fetoprotein (AFP) in distinguishing

individuals with HCC from controls. The circPanel also performed

well in detecting small HCC (solitary, ≤3 cm), AFP-negative HCC and

AFP-negative small HCC (158). These results indicate the high sensitivity

and accuracy of circulating circRNAs in tumor diagnosis. The biological

functions of these non-tumor specific circRNAs are not restricted to the

tumor cells. Compared with tumor-specific circRNAs, those that

promote malignant transformation of normal cells are also worthy of

attention (19), they are the starting point of evil and the key point of evil

progress. Moreover, angiogenesis is a prerequisite for rapid tumor

development and a key to metastasis. Endothelial cell proliferation and
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angiogenesis based on the regulation of circulating circRNAs is another

concern (24, 29), and the levels of these circulating circRNAs will provide

a strong reference for evaluating tumor metastasis or prognosis.
Biomarkers for tumor immunity

Compared with normal people, numerous tumor patients have

obvious abnormalities in peripheral blood immune cells, including

changes in number and function. In addition to the self-regulation of

immune cells, the role of circulating circRNA should not be ignored.

First, circulating circRNAs reflect the functional state of T cells. The

functional status of CD8+T cells is of primary concern in current

immunotherapy. Abnormally expressed circulating circRNAs cause T

cell dysfunction in several ways, such as affecting PD1/PDL1

expression (25, 34, 94) or reducing infiltration (34, 159) or

promoting their exhaustion (25, 40). In addition, circulating

circRNA enhances CD8+ T cytotoxicity (38). The detection of

specific circulating circRNAs will provide reference and support for

the analysis of T cell functional status. Second, circulating circRNAs

reveal the function of NK cells. NK cells are known for their cytotoxic

role, but they are dysfunctional in tumors. On the one hand, NK cell

infiltration is regulated by circRNA. A study involving 240 patients

with HCC reported that there was a negative correlation between

plasma circUHRF1 levels and the proportion of NK cells.With higher

expression of circUHRF1, NK cell penetration also decreased.

CircUHRF1 inhibited NK cell function by reducing the expression

of interferon-g and TNF-a, which promoted immune evasion (27).

On the other hand, the killing effect of NK cells is regulated by

circRNAs. Circ_0001005 competed with miR-200a-3p in sponging to

promote PD-L1 expression. and NK cell-mediated BCa cell killing

could be facilitated by downregulating circ_0001005 (43). Third,

cancer-associated systemic inflammation is frequently characterized

by a high ratio of neutrophils to lymphocytes and is associated with a

poor prognosis, it occurs in both the late stages of the tumor and in

the early stages (stage I and stage II, separately) before treatment

(160–162). Exosomal circRNAs are involved in recruitment and

activation of neutrophils (18, 44), suggesting their potential value as

biomarkers. Therefore, the screening and identification of circulating

circRNAs involved in cell communication could be useful for the

detection of tumor-related immunity and would also provide a

reference for the early prevention and treatment of tumors.

Targets for therapy

In addition to acting as biomarkers, circulating circRNAs are

promising therapeutic targets (163–166). For example, the expression

of hsa_circ_0014235 was notably elevated in NSCLC serum derived

exosomes. Hsa_circ_0014235 promoted proliferation and invasion of

NSCLC cells. Hsa_circ_0014235 triggered the malignant development of

NSCLC through the miR-520a-5p/CDK4 regulatory axis (163). In

addition to the direct regulatory effect on tumor cells, the effect of

circulating circRNA on other cells in the tumor background is also of
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interest. For example, in HCC, the exosomal circRNA-100338 enhanced

communication between HCC cells and endothelial cells. It promoted

the proliferation and tube formation of HUVECs and regulated

vasculogenic mimicry (23). And circRNA_DB secreted by adipocytes

promoted HCC growth and reduced DNA damage by inhibiting miR-

34a and activating theUSP7/Cyclin A2 signaling pathway (22). However,

when exosomal circ_0051443 was transferred from hepatocytes to HCC

cells, it inhibited HCC progression by promoting apoptosis and blocking

the cell cycle (21). These studies further demonstrate that tumor

development is a networked regulatory process based on multicellular

communication, and that breaking cellular communication is key to

blocking its development.

Signals of drug resistance

Medication is critical, especially for patients who miss the best time

for surgery. However, drug resistance significantly reduces the

effectiveness of treatment and increases mortality. Circulating

circRNAs are deeply involved in resistance to antitumor drugs, from

traditional chemotherapeutic drugs to targeted and immunotherapeutic

drugs (167–170). Numerous experiments have demonstrated that drug

resistance was never the sole event of individual cells (55, 171). For

example, in CRC, exosomes from FOLFOX-resistant CRC cells

selectively transferred hsa_circ_0000338 into recipient cells to confer

chemoresistance (55). The transmissibility of chemotherapeutic drug

resistance is due to the heterogeneity and communication among tumor

cells. Communication between tumor cells and immune cells is closely

related to tumor immunotherapy resistance. Immunotherapy,

represented by anti-PD-1/PD-L1 antibodies, has shown great efficacy

in the clinical treatment of cancers (172). Circulating circRNAs are

involved in immunotherapeutic resistance through mediated

dysregulation of PD-1/PD-L1 expression (34, 38). Additional

exploration of the role of circulating circRNA on immune cells will

shed further light on the mechanism of resistance.

Potential challenges in clinical application

Circulating circRNAs have a higher stability than other RNAs

due to their circular structure and critical regulatory role in tumor

development, making them a rising star in tumor detection.

However, there are still some challenges and problems that need

to be addressed in practical clinical application. First, the source of

the samples. The samples collected in different studies varied

widely, with some are exosomal circRNAs and others are cell-free

circRNAs (including free circRNAs that bind with proteins and

circRNAs in exosomes or microparticles). The difference in the

samples may lead to difference in circRNA content and thus in the

origin. In addition, some studies used serum and some used plasma.

Serum and plasma have different sensitivities and specificities in

tumor detection, and the RNAs they contain are also different (173,

174). The choice of sample will directly affect the type and content

of circRNA. The second is the absence of standardized protocols for

sample preparation, such as which anticoagulant should be chosen
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and at what temperature the sample should be stored. In addition,

the accidental release of nucleic acid from peripheral blood cells

should be fully considered (175, 176). Third, there is the problem of

technical methods. The level of circulating circRNAs is extremely

low compared to tissue circRNAs. Traditional experimental

methods such as PCR, microarray technique and northern blot

are no longer suitable for clinical use due to their low specificity and

sensitivity. RNA sequencing (RNA-seq) has been widely used for

the discovery and quantification of circRNAs. Despite the

tremendous successes of short-read RNA-seq studies of circRNAs

(177, 178), there are inherent limitations of this approach, especially

the inability to capture the full length of circRNA completely and

internal alternative splicing events within circRNAs, and the

difficulty in accurately quantification of circRNA (179). Long-

read RNA-seq (third-generation RNA-seq) technology is a newly

developed transcriptome analysis technology (such as the Pacific

biosciences (PacBio) and the Oxford nanopore technology

company (permanent)), which can produce thousands to tens of

thousands of bases in length (180), and can fundamentally eliminate

the excessive fragmentation of short-read RNA-seq, bringing hope

for full-length detection and accurate quantification of circRNAs.

However, it has a higher error rate and lower throughput (181).

Although the development of some technologies has made up for

the loopholes of the third generation RNA-seq to some extent (181,

182), a technical means with high sensitivity, accuracy, repeatability

and universality is still needed in the practical clinical application.
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Conclusion and future prospect

Cancer is a rapidly progressive malignant disease, especially in its

terminal stages, that can involve multiple systems and organs in the

body. The exchange of information between tissues or cells underlies a

range of processes and is key to the occurrence and rapid development

of tumors. Due to their unique advantages, circulating circRNAs

participate in multiple cell-cell communications and regulate the

occurrence and development of tumors from many aspects, which

gives them great value and significance in tumor detection and

treatment. However, intercellular communication is diverse and

complex, and many questions remain open, such as whether

circulating circRNAs are involved in the communication between

tumor cells and red blood cells, and whether tumor-associated

anemia is related to circulating circRNAs. It is also unclear whether

tumor-associated thrombosis is associated with platelet uptake of

tumor-derived circRNAs (Figure 1). In addition, most of the MSCs

and immune cells in the tumor microenvironment come from the

circulatory system. The role andmechanism of circulating circRNAs or

tumor-derived circulating RNAs in the recruitment of these cells

remains to be investigated further. An in-depth understanding of

cell-cell communication mediated by circulating circRNAs will

establish a new mechanism of tumor development from point to

surface, breaking the one-way relationship in previous studies and

improving the accuracy and specificity of tumor diagnosis and

enhancing the effectiveness of tumor-targeted therapies.
FIGURE 1

Cell-cell communication is mediated by circulating RNAs and tumor development. First, circulating cirRNAs affect tumor growth, metastasis,
angiogenesis, and drug resistance by mediating communication between tumor cells and tumor cells, tumor cells and normal cells, and tumor cells
and endothelial cells. Second, circulating cirRNAs mediate communication between tumor cells and immune cells, by which they suppress tumor-
related immunity and reshape the tumor microenvironment. Third, the communication between tumor cells and platelets, and between tumor cells
and red blood cells, may be involved in the occurrence and development of tumors.
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