
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tonghe Wang,
Memorial Sloan Kettering Cancer Center,
United States

REVIEWED BY

Joshua Pohyun Kim,
Henry Ford Health System, United States
James Michael Balter,
University of Michigan, United States

*CORRESPONDENCE

Kai Ding

kding1@jhmi.edu

RECEIVED 06 April 2023

ACCEPTED 08 June 2023
PUBLISHED 06 July 2023

CITATION

Hooshangnejad H, Chen Q, Feng X,
Zhang R, Farjam R, Voong KR, Hales RK,
Du Y, Jia X and Ding K (2023) DAART:
a deep learning platform for deeply
accelerated adaptive radiation
therapy for lung cancer.
Front. Oncol. 13:1201679.
doi: 10.3389/fonc.2023.1201679

COPYRIGHT

© 2023 Hooshangnejad, Chen, Feng, Zhang,
Farjam, Voong, Hales, Du, Jia and Ding. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 July 2023

DOI 10.3389/fonc.2023.1201679
DAART: a deep learning platform
for deeply accelerated adaptive
radiation therapy for lung cancer
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2Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine,
Baltimore, MD, United States, 3Carnegie Center of Surgical Innovation, Johns Hopkins School of Medicine,
Baltimore, MD, United States, 4Department of Radiation Oncology, City of Hope Comprehensive Cancer
Center, Duarte, CA, United States, 5Carina Medical, Lexington, KY, United States, 6Division of Computational
Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, United States,
7Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore,
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Purpose: The study aimed to implement a novel, deeply accelerated adaptive

radiation therapy (DAART) approach for lung cancer radiotherapy (RT). Lung

cancer is the most common cause of cancer-related death, and RT is the

preferred medically inoperable treatment for early stage non-small cell lung

cancer (NSCLC). In the current lengthy workflow, it takes a median of four weeks

from diagnosis to RT treatment, which can result in complete restaging and loss

of local control with delay. We implemented the DAART approach, featuring a

novel deepPERFECT system, to address unwanted delays between diagnosis and

treatment initiation.

Materials and methods: We developed a deepPERFECT to adapt the initial

diagnostic imaging to the treatment setup to allow initial RT planning and

verification. We used data from 15 patients with NSCLC treated with RT to train

themodel and test its performance.We conducted a virtual clinical trial to evaluate

the treatment quality of the proposed DAART for lung cancer radiotherapy.

Results: We found that deepPERFECT predicts planning CT with a mean high-

intensity fidelity of 83 and 14 HU for the body and lungs, respectively. The shape

of the body and lungs on the synthesized CT was highly conformal, with a dice

similarity coefficient (DSC) of 0.91, 0.97, and Hausdorff distance (HD) of 7.9 mm,

and 4.9 mm, respectively, compared with the planning CT scan. The tumor

showed less conformality, which warrants acquisition of treatment Day1 CT and

online adaptive RT. An initial plan was designed on synthesized CT and then

adapted to treatment Day1 CT using the adapt to position (ATP) and adapt to

shape (ATS) method. Non-inferior plan quality was achieved by the ATP scenario,

while all ATS-adapted plans showed good plan quality.
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Conclusion: DAART reduces the common online ART (ART) treatment course by

at least two weeks, resulting in a 50% shorter time to treatment to lower the

chance of restaging and loss of local control.
KEYWORDS

deep learning, machine learning, image synthesis, adaptive radiation therapy (ART),
artificial intelligence, non small cell lung cancer (NSCLC)
1 Introduction

It is the most common cause of cancer-related death (1).

Multiple studies have reported that lung cancer with a higher

mortality rate is associated with treatment delay (2–5). Clinical

studies have found that 13% of patients may develop new lymph

node involvement, site of disease, and a chance of increase in the

stage at 4 weeks (6), and potentially, a 14% loss of local control per

week with prolongation of the treatment course (7). More recent

studies have suggested an association between prolonged time to

treatment initiation (TTI) and mortality for pancreatic and lung

non-small cell lung cancer NSCLC, where each week of increase in

TTI was associated with 3.2% and 1.6% mortality increases in stages

I and II (4). In 2015, Samson et al. reported that delay in resection

could be associated with upstaging and decreasing median survival,

and for each week of delay to surgery, mortality can increase by

0.4% (3). A recent study reported patients with TTI<45 days had a

median overall survival of 70.2 months, while patients with TTI >45

days had a median 61.5 overall survival (5).

Radiation therapy (RT) is a highly effective and preferred

treatment for medically inoperable NSCLC (8). NSCLC accounts

for 87% of lung cancer diagnoses (9), and over 60% of patients with

NSCLC require radiotherapy at least once during the course of their

disease (10, 11). However, the current RT workflow consists of

numerous steps that result in a considerable delay before treatment

initiation. As mentioned, the delay in NSCLC treatment initiation

may cause complete restaging (6) and thus, it can be very beneficial

for patients to expedite TTI after diagnosis. Therefore, the question

arises as to how the current workflow can be optimized.

The current workflow is considerably lengthy owing to the many

sources of delay (12–18), which imposes a huge burden on patients

and their caregivers (19, 20). A major source of delay is the need

for several appointments and separate image acquisitions, such as

the acquisition of a diagnostic positron emission/computed

tomography (PET/CT) scan (Figure 1A) in the radiology

department and a simulation/planning scan (pCT) in the radiation

oncology department. It causes a median delay of 15 days for patient

diagnosis and an additional 15 days from diagnosis to treatment
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initiation (21). A 2015 study also reported a median duration of 27

days from diagnosis to treatment initiation (16). A 2020 study

reported an increase in the median TTI from 35 to 39 days

between 2004 and 2013 (5). Considering the chance of complete

restaging with a delay of four weeks (6) we addressed the median 15

days delay between diagnosis and treatment initiation.

In addition to being used for target delineation, PET/CT has been

shown to be compatible with RT planning (20, 22) and is used for RT

treatment of prostate and head and neck cancer (23–25). However, in

practice, however, the acquisition of planning CT (pCT) is still

required for lung cancer RT. This is because of the different image

acquisition settings and motion management techniques used for

acquiring PET/CT and pCT images. The PET/CT scan is performed

in the radiology department using a curved couch top for patient

comfort, whereas pCT is acquired in radiation oncology and uses a

flat couch top, for patient position reproducibility. Moreover, to

minimize tumor motion, the widely used active breath-hold

coordinator (ABC) or similar techniques are used during pCT

acquisition and RT treatment initiation. As a result, there is a

notable difference between the patient body shape and diaphragm

level on the two scans (Figures 1B, 2), which results in a large

dosimetric difference between RT plans designed on planning CT and

PET/CT (Figure 2). This is the reason why PET/CT cannot be used

directly for treatment planning. Although a PET/CT dedicated

simulator approach is also available, the cost of staffing, purchasing,

and maintaining such a device can be prohibitive (26) and no clear

clinical difference has been observed (27).

The advent of current advances in the application of artificial

intelligence (AI) (28, 29), graphical processing unit (GPU)-based dose

calculation engines (30–32), and automatic and semi-automatic

segmentation and planning systems (33) have made the many steps

of the online adaptive workflow to be performed faster and in the online

ART timeframe (34), such as the recently developed ART systems such

as ViewRay’s MRIdian A3i (ViewRay, Oakwood Village, Ohio, USA)

and Varian Ethos system (Varian Medical Systems, Palo Alto, CA). For

instance, the Ethos system can perform online ART in less than 20 min

(35–37). Although these advanced ART systems increase the accuracy

of dose delivery and shorten the same-day treatment course, they still

do not help reduce the long delay between diagnosis and treatment

initiation, as pCT is still required for initial RT planning.

Thus, we have devised a new expeditious RT workflow by

developing a novel deep learning method for Planning External-

beam Radiotherapy Free from Explicit simCT or deepPERFECT to

address the considerably long wait time between NSCLC diagnosis
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and RT treatment initiation (Figure 3). Using deepPERFECT, we

synthesized the treatment Day1 pCT or sCT from a diagnostic PET/

CT scan, previously applied to pancreatic cancer RT (20, 38–53). The

sCT scan is used to design the initial RT treatment plan (sCT plan)

for early assessment and evaluation of the RT plan and to decide on

dose trade-offs. Therefore, the design and verification of the initial RT

plan are no longer delayed owing to the lack of pCT scans. On

treatment Day1, the sCT plan was adapted to the treatment delivery

patient setup using on/off table imaging for same-day online ART

such as on-table adaptive therapymethods such as Ethos or same-day

off-table online ART, using Raystation adaptive treatment planning

(RaySearch Laboratories, Sweden). Therefore, deepPERFECT enables

deeply accelerated ART or DAART that reduces the current median 4
Frontiers in Oncology 03
weeks workflow to 2 weeks from diagnosis to treatment initiation.

Additionally, the generation of planning CT from diagnostic CT

reduces the patient’s exposure to radiation from multiple CT

acquisitions for planning following the ALARA principle as

suggested by AAPM TG 75 and 180 (54, 55).
2 Materials and methods

2.1 Overview

As mentioned above, Figure 3 shows the proposed DAART

approach. This study aimed to demonstrate the practicality of our
FIGURE 2

The figure demonstrates the anatomical differences due to the breath-hold motion management technique, which causes a large dosimetric
difference between the RT plans recalculated on planning CT and PET/CT scans. However, the deepPERFECT synthesized CT scans captured the
anatomical changes and the dose difference between the planning CT and synthesized CT was significantly reduced. Therefore, PET/CT cannot be
directly used in treatment planning.
FIGURE 1

(A) PET scan overlaid on PET/CT scan, used for the initial diagnosis of the tumor (red arrow). The tumor is recognized by its high uptake of fluorine-
18-fluorodeoxyglucose (F-FDG) (B) pCT scan (red) overlaid on the PET/CT scan (green), and the overlapping area is shown as yellow. One of the
main differences between the two scans is the diaphragm level owing to the motion management technique.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1201679
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hooshangnejad et al. 10.3389/fonc.2023.1201679
method by conducting a virtual clinical trial. We used a

deepPERFECT-adapted diagnostic PET/CT scan to design the

initial treatment plan. Next, we used RayStation off-table adaptive

RT planning to adapt the initial sCT scan to pCT. Here, the pCT or

planning/simulation CT is equivalent to the treatment Day1 CT in

our DAART approach. The adaptation is performed in two steps:

first, the adaption to the isocenter, similar to adaptation to position

(ATP), and if the plan is not satisfactory (for instance, the 95%

target coverage is not acquired), the initial plan is adapted using the

adapt-to-shape (ATS) technique. In the ATP scenario, we only

shifted the isocenter of the beams and recalculated the dose on the

new CT (pCT) without re-optimization. However, for the ATS

scenario, first, the iso-center of the beams is shifted; then, using the

same (sCT) plan parameters, we reoptimized the plan on the new

CT (pCT) and used the new contours.
2.2 Data preprocessing pipeline

In this study, we used retrospective data from 15 patients with

early stage NSCLC with internal review board (IRB) approval. All

patients were treated with standard-of-care stereotactic body

radiation therapy (SBRT) at our institution. PET/CT scan and

planning CT scan (pCT) were acquired as part of their standard

of care for each patient. The scans were acquired with 120 KVp,

200 mA, and 50 cm field of view. Owing to the varying physical

dimensions of the scans and GPU limitations, all scans were first

resampled to a 2.5 mm voxel dimension. We developed a robust

couch removal algorithm to remove the couch prior to registration.

Because the treatment couch was identical, it was digitally added to

the synthesized CT for accurate dose calculation. Certified

physicians delineated all contours.
Frontiers in Oncology 04
To obtain the ground truth for training and validation, we

aligned PET/CT and pCT images via deformable registration.

Specifically, we first performed a rigid registration between CT

and PET/CT, that is, diagnosis CT (dCT) and pCT. Since, the dCT

is first acquired in the usual workflow, we registered the pCT to the

dCT so that the dCT physical dimensions served as the reference

dimensions. Next, using an in-house spine segmentation algorithm,

we performed a spine-restricted rigid registration between the dCT

and resampled pCT. Finally, the dCT was deformably registered to

the pCT with spine rigidity penalty. All registrations were

performed using the Elastix image-registration algorithm (56–70).

Out of the 15 cases, we used 10 for training and five cases for testing

and planning. The data were augmented for training by creating

random 128 cubic patches, −20 to 20 mm shifts, and −10 to 10

degrees rotations along the superior–inferior axis.
2.3 Deep learning model

A 3D Pix2Pix generative adversarial network (GAN) was used

for this purpose (Figure 4), which is a general neural network

for image-to-image transition, consisting of a generator and

discriminator (71). The generator–discriminator pair was

simultaneously trained. We used a U-net architecture for the

generator, with seven encoding and decoding levels. Each layer

consisted of 3D convolutional kernels, batch normalization, and

nonlinear activation units. The input to the model single-channel

128 cubic patches of the CT scan and the network generated the

corresponding three-channel deformation vector fields (DVFs) for

the deformation of dCT to pCT. The discriminator is a

convolutional encoder. If the input is a real pair, it should be

classified as real, and if it is fake, it should be classified as fake.
FIGURE 3

Illustration of the deepPERFECT-enabled deeply accelerated adaptive radiation therapy (DAART) workflow. The top pathway shows the implementation
of deepPERFECT in future clinical trials, where the generated sCT from diagnostic PET/CT enables the design of a preliminary plan (sCT plan). Two-step
off-table and on-table plan adaptation (first, ATP and then ATS) adapts the sCT plan to planning CT (pCT). The bottom pathway shows the virtual clinical
trial in this study, where off-table adaptive planning was used for the two-step adaptation.
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The generator was trained to minimize the following loss

function:

Generator   Loss

= Adversial   Loss +   l1 � Image   Similarity   loss +   l2

� Constrast   Fidelity   loss +   l3

� smoothness   regulatory   term Eq: 1

As mentioned, the generator was designed to generate DVFs.

We chose to generate DVFs rather than CT to preserve CT intensity

calibration through careful quality assurance so that they can be

used for treatment delivery and dose calculation. Thus, to avoid

introducing any inaccuracy in the CT Hounsfield Unit (HU), the

model generates DVFs rather than the CT scan. Using

the diffeomorphic transformation method, we converted the

generated DVFs to diffeomorphic deformation on demand.

Consequently, diffeomorphic flows are applied to the image

rather than directly to the output of the network. Diffeomorphism

guarantees topology preservation and prevents contours from

flipping and tearing (72–75). Diffeomorphic DVFs were applied

to the input image immediately as part of the training process to

obtain the deformed image. Thus, the image similarity loss is:

image   similarity   loss = L1   loss   (Input,  Output) Eq: 2

The next loss term was the novel contrast fidelity term. The

contrast fidelity term imposes a heavier weight on the similarity of the

features visible in specific window/level image displays to enhance the

corresponding features. For instance, for lung CT, the common

(window/level) values are (1,600/−600) which enhances lung

features such as the pulmonary vessels. We implemented this

window/level function by using the following differentiable function:

Iout =
1

1 + exp ( − (Iin−a)
b

 !
� c Eq: 3

Here, we used a, b, and c values of 500, 500, and 3,000,

respectively to mimic the lung window. Depending on the
Frontiers in Oncology 05
corresponding sites, a, b, and c can vary to provide a similar

display of the image as physicians use in practice. The contrast

fidelity loss is then defined as:

contrast   fidelity   loss

= L1   loss   (Soft  Contrast(Input), Soft  Contrast(Output))

Eq: 4

where the Soft  Contrast function is defined in Eq. 3. Finally, to

enforce smooth deformation fields we used the second-order

curvature regulatory term (76) given by

smoothness   regulatory   term =  
Z
o
3

j=1
‖DDVFj(x) ‖2 dx Eq: 5
2.4 Radiation therapy planning

The five test cases were planned with volumetric modulated arc

therapy (VMAT) SBRT (50 Gy in five fractions) according to our

institution’s planning protocol for the lung. To create the planning

target volume (PTV), the internal gross target volume (IGTV) by

3 mm. Each patient was asked to hold their breath using the Elekta

ABC system (Stockholm, Sweden). The IGTV was then created by

incorporating a patient-specific interbreath-hold variation by

combining all four sets of tumor contours from the four simulation

CT sets (47). The clinical objectives were as follows: at least 95% of the

PTV received 50 Gy and 100% of the IGTV received 50 Gy. The

organs at risk (OAR) constraints were as the following: lung Dmean,

V20 Gy and V10 Gy less than 4 Gy, 4.5% and 12%; esophagus max

dose 34 Gy and V18.8 Gy less than 5 cc; heart max dose 34 Gy, V28

less than 15 cc; proximal chest wall V35 Gy and V30 Gy less than 1 cc

and 30 ccs; trachea max dose 34.8 Gy and V15.6 Gy less than 4 cc;

spinal cord max dose 26 Gy and V20.8 Gy and V14.5 Gy less than

0.35 cc and 1.2 cc. A RayStation treatment planning system

(RaySearch Laboratories, Stockholm, Sweden) was used for plan

and dose distribution calculations. Collapse Cone version 5.3 dose

calculation was used for the dose distribution calculation.
FIGURE 4

Architecture of deepPERFECT. We illustrated the generator and discriminator pair, along with an online diffeomorphic deformation block, to transform
the generated fields into diffeomorphic DVFs. The network was trained using multiple cost functions, including a novel contrast-fidelity term.
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2.5 Evaluation metrics

We evaluated the performance of deepPERFECT by using the

root averaged squared sum of differences (RASSD) to compare the

intensity of pCT scans with sCT scans, given as

RASSD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
L*M*N

*oL
l=1oM

m=1oN
n=1 IpCT (xl , ym, zn) − IsCT (xl , ym  , zn)
� �2s

Eq: 6

where xl , ym, and zn are the Cartesian coordinates of the voxel.

Secondly, the body, lung, and GTV contours on the two scans

(Independently verified by the clinician) were compared using the

Dice similarity coefficient (DSC)

DSC =
X ∩ Yj j
Xj j + Yj j Eq: 7

and Hausdorff distance (HD) sCT for the body and lungs.

HD = max (dH(Vp,Vs), dH(Vs,Vp)) Eq: 8

where vp, and vs are the coordinates of the contours on pCT and

sCT.

dH(vp, vs) = max min d vp, vs
� �� �� �

Eq: 9

where d is the distance between two voxels. Because the lengths

of the scans are different for sCT and pCT, as PET/CT and thus sCT

include more body length, we only compared the bodies on

overlapping Z-slices. Finally, for dosimetric comparison, we used

point measurements of dose–volume histogram curves (DVH).
Frontiers in Oncology 06
We reported the median and range values for the initial plan (sCT

plan), adaptation to position, and adaptation to shape scenarios.
3 Results

3.1 Evaluation of synthesized CT

Figure 5 shows two sample cases for planning the CT synthesis.

The scans were shown in a coronal view to emphasize

diaphragmatic movement. The first three columns show the dCT,

pCT, and sCT, respectively. The fourth and fifth columns show the

differences between pCT, dCT, and sCT. As shown, deepPERFECT

significantly reduced the difference between pCT and dCT, resulting

in the same level of the diaphragm on the two scans.

We have summarized the quantitative evaluation of sCT

compared with pCT using RASSD, DSC, and HD for the entire

body and lungs in Supplementary Table 1. The difference between

HU of the sCT and pCT was negligible and the body and lungs

contours showed a high conformality reflected in average DSC of

0.91 and 0.97, and HD values of 7.9 and 4.9 mm for the body and

lungs, respectively. As expected, due to day-to-day variation (77–

82) and breathing motion, the GTV showed lower conformality. We

also found 0% folding for the generated DVFs.
3.2 Evaluation of deformation vector fields

The curvature smoothness regularization curve (Eq. 5) enforces

the smoothness of the DVFs and prevents folding; however, folding
FIGURE 5

Example coronal slides extracted from two sample test cases. The input image, dCT (PET/CT scan), target scan (pCT), warped scan using the
deepPERFECT generated DVFs (sCT), difference image pCT–dCT (target–input scan) (fourth column), and difference image pCT–sCT (target–output
scan). The output scans high conformality with the target image for the overlapping area. Most prominently, the diaphragm level and lung bronchus,
which are mainly affected by the ABC technique, are well aligned on sCT and target pCT scans.
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may still occur. Thus, we ensured the prevention of folding using

diffeomorphic deformation. Mathematically folding occurred when

the Jacobian determinant of the DVF matrix became negative. The

Jacobian determinant is defined as

det (J(x, y, z))

= det   ∂
∂ x

∂
∂ y

∂
∂ z �T*  ½ fx(x, y, z) fy(x, y, z) fz(x, y, z)

h i� �
Eq: 10

where fx ,   fy , and fz are the deformation vector fields in the x, y,

and z directions, respectively. Supplementary Figure 1 shows the

overlay of the Jacobian determinant on the CT coronal view. As

shown, the Jacobian determinants were primarily around 1 (yellow

overlay), for some parts, they became close to zero (gold overlay)

and no folding occurred (no red overlay).
3.3 Evaluation of radiotherapy plans

We evaluated the quality of the SBRT plans by comparing the

DVH indices for the dose distributions of the initial sCT, ATP, and
Frontiers in Oncology 07
ATS plans. Table 1 summarizes the median and range of DVH

indices for all three dose distributions.

Our results (Table 1) show that the target coverage can be

preserved using our method. This was shown by the 100% coverage

of the GTV with the prescribed dose for all scenarios and a

negligible difference in PTV coverage. Moreover, we found

comparable values for all OARs doses, with the chest wall

showing the highest dose difference owing to the proximity of the

GTV to the chest wall in some cases. Additional dosimetric

evaluations are presented in Supplementary Table 2, which

further shows that the preliminary plan can achieve comparable

values for the spinal canal, aorta, and esophagus.
4 Discussion

This paper presented a deep learning platform for the adaptation of

a diagnostic PET/CT scan (dCT) to planning CT (pCT) in NSCLC. It

can compensate for the changes in the patient body shape and image

acquisition setup between the two scans. Although dCT has been used

for RT planning (22–24), we demonstrated in Figure 2 that the

anatomical changes between dCT and pCT lead to different dose
TABLE 1 Dosimetric comparison of the three planning scenarios.

DVH Index
sCT Plan Adapt to Position Adapt to Shape

Median Min Max Median Min Max Median Min Max

IGTV 50 Gy (%) 100 100 100 100 100 100 100 100 100

PTV 50 Gy (%) 95 95 95 94.1 92.3 96.2 95 95 95

Chest wall 45 Gy (cc) 0.18 0 0.57 0.14 0 1.34 0.23 0 0.95

Chest wall 30 Gy (cc) 3.14 1.99 4.9 3.6 0.39 5.95 3.89 1.02 5.24

Spinal Canal Max dose (cGy) 969 530 1,730 988 526 18,50 987 542 1,741

Spinal Canal 20 Gy (cc) 0 0 0 0 0 0 0 0 0

Lungs 5 Gy (%) 6.35 5.63 13.02 6.54 5 12.9 6.39 5.42 12.5

Lungs 10 Gy (%) 2.78 1.71 6.7 2.71 1.56 6.71 2.71 1.59 6.66

lungs 15 Gy (%) 1.52 0.98 5.01 1.47 0.88 4.99 1.51 0.94 4.99

lungs 20 Gy (%) 0.99 0.66 3.45 0.94 0.59 3.42 0.98 0.61 3.4

lungs 30 Gy (%) 0.52 0.31 1.59 0.48 0.29 1.58 0.51 0.31 1.57

Esophagus max (cGy) 959 331 1840 966 420 1,806 1,027 388 1,766

Esophagus 30 Gy (cc) 0 0 0 0 0 0 0 0 0

Heart max (cGy) 540x 0 897 504 0 1,040 631 0 1,045

Heart 40 Gy (cc) 0 0 0 0 0 0 0 0 0

Heart 20 Gy (cc) 0 0 0 0 0 0 0 0 0

Trachea 35 Gy (cc) 0 0 0 0 0 0 0 0 0

Trachea max (cGy) 0 0 841 0 0 815 0 0 812

Aorta max (cGy) 2,237 0 2,611 2,331 0 3,750 2,339 0 3,690

Aorta 30 Gy (cc) 0 0 0 0 0 0.21 0 0 0.29
frontier
For each plan, the initial sCT plan (left), adapted to position (middle), and adapted to shape (right), we show the median and range of clinically significant DVH indices. As shown, there is only a
trivial target coverage loss with adaptation to the position plans which was rectified by adapting to the shape scenario.
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distributions; thus, dCT cannot be used directly for treatment planning,

while we are capturing these differences with our novel deepPERFECT

imaging method. This method is superior to using dCT planning for

initial planning, as it incorporates the changes in the shape of the

patient’s body and diaphragm level in planning to provide a more

realistic dose distribution. Thus, with deepPERFECT, we consider prior

knowledge of the patient body and treatment setup. Therefore,

deepPERFECT allows the implementation of the DAART approach.

To train the model, we employ the multiterm cost function

shown in Eq. 1. We found that curvature smoothing regularity is

essential for the generation of plausible deformation vector fields.

Moreover, it facilitated the training process of the model. In

addition, we used a novel contrast-fidelity term (Eqs. 3 and 4).

One of the major considerations in lung CT is the details of the lung

region. In practice, physicians enhance the visualization of these

details using a specific level and window that are otherwise barely

visible on the original CT. In deepPERFECT, we trained the model

using our novel contrast fidelity term so that it could see the lung

CT as the physician sees. Be that as it may, the use of image

similarity loss (Eq. 2). It is still imperative to balance the lung

features and body shape.

Supplementary Table 1 shows the results of the quantitative

assessment of sCT and contours. Our results confirm previous

studies that dCT is suitable for planning (22, 24, 83), and sCT has

comparable HU for the body, lungs, and GTV structures. The

deepPERFECT-generated body and lung shapes showed a high

conformality to the patient’s body on the pCT scan. Our unique

approach to applying diffeomorphic vector fields ensures plausible

and realistic contours by preventing folding and tearing. We

confirmed the plausibility of the contours by calculating the

Jacobian determinant (Supplementary Figure 1); thus, we believe

that our approach is a robust DVF generation method for medical

image adaptation.

Although the body and lungs showed high conformality

(Supplementary Table 1), the GTV had the lowest spatial overlap

between the sCT and pCT. This was expected mainly because of the

small size of the GTV compared to the entire body (median of 3.1

cc), and DSC had a positive correlation with GTV size. As a result,

by simply copying the sCT plan and recalculating the dose on the

pCT scan, we achieved low PTV coverage. This can be mitigated by

plan adaptation using the proposed expeditious adaptive workflow.

DeepPERFECT is an invaluable tool for expeditious image-

guided RT, as it is highly compatible with recent advanced adaptive

RT (ART) systems. Traditional patient CT sim can be avoided, and

the ART system can image and adapt the preliminary plan

generated from synthetic CT to the current patient anatomy on

treatment day1. Currently, several ART systems are available such

as MRIdian (ViewRay, Oakwood Village, Ohio, USA), UNITY MR-

linac (Elekta AB, Stockholm, Sweden), and Varian Ethos (Varian

Medical Systems, Palo Alto, CA). For instance, the UNITY system

provides two different workflows for plan adaptation: adapting to

position (ATP) and adapting to shape (ATS) (84, 85). Here, we

showed that the deepPERFECT-enabled DAART (Figure 3)

resulted in good plan quality for the adaptation scenarios

(Table 1). ATS adaptation of the early plan (sCT plan) to pCT

resulted in a good plan for treatment delivery. More importantly,
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the power of deepPERFECT is more prominent in achieving a non-

inferior plan by just ATP, which resulted in minimal PTV coverage

loss (less than 3%) in four out of five cases.

One concern may be that all the work is happening in the

adaptation stage rather than the synthetic CT and preliminary RT

plan stage, but the use of simulation/planning-CT-free ART is

limited to disease sites with limited anatomical variation, such as

the brain, head, and neck. In contrast, the anatomy of patients with

lung cancer can vary greatly, as shown in Figure 2. The difference

between diagnostic PET-CT and planning CT can result in

significant changes in the relative spatial locations of tumors and

OARs, which may lead to dosimetric inaccuracies and suboptimal

dose constraints. For instance, RT-planning CT may have a larger

lung volume, and these constraints may restrain plan optimization,

resulting in suboptimal tumor coverage. Significant anatomical

differences require radiation oncologists to re-evaluate the spatial

relationships between targets and OARs and make trade-off

decisions between tumor coverage and OAR sparing, as well as

their dose constraints. The requirement for additional evaluation

and decision-making immediately before RT delivery owing to

unexpected anatomical differences can further increase the time

and complexity of ART, which is a time-consuming process. It is

important to mention that the purpose of IGRT and online

geometric adaptive strategies is to react to changes in patient

configuration under the same setup guidance. The combination of

the method developed here, and ART can extend the capabilities of

ART to scenarios where there is a large difference in patient

configuration between diagnosis and RT treatment.

Our study had a few limitations. First, owing to GPU

limitations, we had to down-sample the scans to 2.5 mm voxel

size so that the network field of view (128 cubic patch) encompasses

a decent view of the body. Our initial experiments showed that the

network showed the best performance when it had a large view of

the body rather than small patches. Future studies will use the

original image rather than a downsampled scan. Another limitation

is the small amount of data, which was limited to one institution

used in this study. To overcome this limitation, we performed a

rigorous evaluation of our method using several image-similarity

metrics and RT-planning dosimetric indices. More importantly, our

virtual clinical trial demonstrated the practicality of this method

and future studies are aimed at clinical trials with larger cohorts.

In future studies, we will investigate possible solutions for using

full-resolution CT scans with no down-sampling, conduct multi-

institutional clinical trials, and extend the application of

deepPERFECT to other anatomical sites. Here, we showed the

feasibility of deepPERFECT for lung cancer and to enhance the

performance of the system; a larger cohort will be used for

future studies.
5 Conclusion

This paper presents a novel deep accelerated adaptive RT

(DAART) approach to address the challenge of the current

considerably lengthy RT workflow and implement an expeditious

RT treatment course. We demonstrated the effectiveness of DAART
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for NSCLC radiotherapy in a virtual clinical trial. Our method

features a novel deepPERFECT system that adapts and transforms

the patient diagnostic scan to a treatment initiation setup that

allows the initial RT treatment plan for the early assessment and

evaluation of RT plans and deciding on dose trade-offs. We

introduced a novel contrast fidelity term that significantly

enhanced the performance of DL models to capture the relevant

details of medical images for different applications. Using

deepPERFECT, we achieved state-of-the-art CT transformation

accuracy and an expedited framework for adaptive radiation

therapy with at least 50% shorter wait time.
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