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Establishment and validation
of a ferroptosis-related
signature predicting prognosis
and immunotherapy effect
in colon cancer

Zhufeng Li1†, Fang Yuan2†, Xin Liu1†, Jianming Wei1, Tong Liu1,
Weidong Li1 and Chuan Li1*

1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
Background: Ferroptosis, a novel form of regulating cell death, is related to various

cancers. However, the role of ferroptosis-related genes (FRGs) on the occurrence

and development of colon cancer (CC) needs to be further elucidated.

Method: CC transcriptomic and clinical data were downloaded from TCGA and

GEO databases. The FRGs were obtained from the FerrDb database. The

consensus clustering was performed to identify the best clusters. Then, the

entire cohort was randomly divided into the training and testing cohorts.

Univariate Cox, LASSO regression and multivariate Cox analyses were used to

construct a novel risk model in training cohort. The testing and the merged

cohorts were performed to validate the model. Moreover, CIBERSORT algorithm

analyze TIME between high- and low- risk groups. The immunotherapy effect

was evaluated by analyzing the TIDE score and IPS between high- and low- risk

groups. Lastly, RT-qPCR were performed to analyze the expression of the three

prognostic genes, and the 2-years OS and DFS between the high- and low- risk

groups of 43 clinical CC samples to further validate the value of the risk model.

Results: SLC2A3, CDKN2A, and FABP4 were identified to construct a

prognostic signature. Kaplan–Meier survival curves showed that OS between

the high- and low-risk groups were statistically significant (pmerged<0.001,

ptraining<0.001, ptesting<0.001). TIDE score and IPS were higher in the high-risk

group (pTIDE<0.005, pDysfunction<0.005, pExclusion<0.001, pmAb-CTLA-4 = 3e-08,

pmAb-PD-1 = 4.1e-10). The clinical samples were divided into high- and low- risk

groups according to the risk score. There was a statistical difference in DFS

(p=0.0108).

Conclusion: This study established a novel prognostic signature and provided

more insight into the immunotherapy effect of CC.
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Introduction

According to the 2020 Global Cancer Observatory data, colon

cancer (CC) is the fourth most common cancer worldwide and the

fifth leading cause of cancer-related death worldwide (1). In 2020,

there were about 1.15 million new cases of CC and 580,000 deaths

due to CC worldwide (1). Because there are no obvious clinical

symptoms in the early stages of CC, many patients do not undergo

early detection, resulting in a diagnosis of CC at an advanced stage.

According to literature statistics, the 5-year relative survival rate of

CC varies from 90% for stage I patients to slightly more than 10%

for stage IV patients, and late diagnosis is one of the reasons for the

poor prognosis of CC (2). Therefore, understanding the molecular

mechanisms leading to the development of CC and identifying CC

prognostic indicators are crucial for predicting the development of

CC and personalizing treatment.

Ferroptosis, first proposed by Dixon in 2012, is a regulatory cell

death (RCD) and depends on iron metabolism and lipid peroxidation

(3). Although ferroptosis plays an important role in maintaining the

survival of normal cells and tissues, it is increasingly recognized that

some carcinogenic processes are related to ferroptosis, making cancer

cells susceptible to ferroptosis. Ferroptosis, which is regulated by several

genes, is gradually being recognized as an adaptive property to

eliminate cancer cells. For example, a study has shown that

SLC7A11 can reduce the proliferation of CC cells by inducing

ferroptosis (4). The tumor suppressor gene p53 inhibits ferroptosis

induced by erastin in colon cancer cells by blocking the activity of

dipeptidyl peptidase 4, thereby inhibiting tumor development (5).

Moreover, activated CD8+ T cells can enhance lipid peroxidation to

induce ferroptosis and contribute to the antitumor effect of

immunotherapy (6). Therefore, ferroptosis-related gene (FRG) has an

important impact on the occurrence and development of CC and

subsequent immunotherapy.

The immune components in the tumor microenvironment

(TME), referred to as the tumor immune microenvironment

(TIME), are closely related to tumor development, recurrence,

and metastasis (7). TIME has played an important role in

immunotherapy and even became a prognostic indicator. In

recent decades, immunotherapy has gradually emerged as a

promising area of cancer treatment, in which cytotoxic T

lymphocyte antigen-4 (CTLA-4) and programmed cell death

protein-1 (PD-1) is the most effective T cell immune checkpoint

molecule and plays a negative immunoregulatory role (8). In

patients with unresectable metastases CC, the use of PD-1 or PD-

L1 to block the binding of PD-1 to ligands between tumor cells and
Abbreviations: CC, colon cancer; TCGA, The Cancer Genome Atlas; GEO, gene

expression omnibus; FRG, ferroptosis-related gene; RCD, regulatory cell death;

ROS, reactive oxygen species; LASSO, Least absolute shrinkage and selection

operator; DEGs, Differentially expressed genes; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; ROC, Receiver operating

characteristic; AUC, Area under the curve; PCA, Principal component analysis;

t-SNE, Stochastic Neighbor Embedding; OS, Overall survival; DFS, Disease free

survival; TME, Tumor Microenvironment; TIME, tumor immune

microenvironment; TIICs, tumor infiltrating immune cells; CTLA-4, cytotoxic

T lymphocyte antigen-4; PD-1, programmed cell death protein-1.
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T cells can improve immunity and is an option for advanced

palliative treatment. However, immune checkpoint blockade

(ICB) therapy has only a complete response rate and can show a

durable response in a few CC patients, which is difficult to meet the

clinical requirements of the majority of patients (9). Therefore, CC

immunotherapy still needs to be explored.

Tumor markers commonly used in monitoring prognosis CC

include CEA, Ras, P53, Bcl-2 and so on. The mutation or

overexpression of these genes is of great importance to the prognosis

of patients and the choice of treatment. However, because tumor

occurrence, development and metastasis are extremely complicated, it

is still inaccurate to use only the above factors for prognosis assessment.

Therefore, we need to explore other prognostic markers of CC. This

study clearly aimed to establish and validate the prognostic signature of

CC. The signature provides an effective and practical method for

clinicians to predict the survival rate of patients with CC and could

predict the immunotherapy effect.
Materials and methods

Dataset collection

A total of 471 ferroptosis-related genes (FRGs) were

downloaded from the FerrDb database (http://www.zhounan.org/

ferrdb). Original counts of RNA-seq transcriptome data and clinical

data derived from TCGA-COAD tissues (n=473) were obtained

from The Cancer Genome Atlas (TCGA) database (https://tcga-

data.nci.nih.gov/tcga/). The GSE17536 (n=177), GSE17537 (n=55),

and GSE39084 (n=70) from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) were downloaded.

The 8 rectal cancer samples in GSE39804 were deleted.
Consensus clustering

The downloaded TCGA and GEO data were merged while

maintaining common genes. The “sva” package of the R software

was used to remove batch effects between different datasets. The

expression matrix of 390 FRGs was obtained by the intersection of

the expression matrix of merged cohort and the 471 FRGs. We

employed consensus clustering using k-means algorithms to identify

clusters. The number and stability of clusters were established by

implementing the “ConsensuClusterPlus” package (10). Moreover, the

categorization was repeated 1000 times to ensure its accuracy and

stability (10). Lastly, the “survival” package in R software was used to

evaluate the overall survival (OS) among different clusters through the

Kaplan-Meier curve. Principal component analysis (PCA) could

determine whether the clusters can be intuitively separated.
Enrichment analyses

Differentially expressed genes (DEGs) were identified between

different clusters using the “limma” package with an adjusted P value

of 0.05 and an absolute value of |log2FC|=0.585. Using the Gene
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Ontology (GO)database, informationofDEGs incell components (CC),

biological processes (BP), and molecular functions (MF) was identified

(11). Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, we were able to obtain information on possible signaling

pathways, genes, and diseases associated with DEGs (12). DEGs were

enriched and visualized by GO and KEGG analyzes using the packages

“clusterProfiler”, “org.Hs.eg.db”, “enrichplot”, and “ggplot2”. Gene Set

VariationAnalysis (GSVA) enrichment analysis was used to analyze the

differences in signaling pathways between different clusters (13).

The”GSVA”package was used to identify the 20 most enriched

signaling pathways that are differentially expressed in different clusters.
Construction and validation of the
prognostic gene signature

Univariate Cox analysis was used to identify 16 DEGs. Patients in

the merged cohort were randomly divided into a training cohort and a

testing cohort. Then, the Least Absolute Shrinkage and Selection

Operator (LASSO) regression analysis was used to eliminate genes

that might overfit the model and minimize variables (14). Multivariate

Cox analysis was used to identify the prognostic genes. The risk model

was constructed by three prognostic genes (SLC2A2 CDKN2A and

FABP4). Risk score = Coefgene1 * Expgene1+Coefgene2 * Expgene2+…

+Coefgenen * Expgenen. The Coefgene was the risk coefficient of each gene

calculated by the LASSO Cox model, and the Expgene was each gene

expression level. Patients in the training cohort were divided into high-

and low-risk groups based on the median risk score. Survival analysis

was performed using the “survival” and “survminer” packages to

compare the OS of patients in the high-and low-risk groups. Time-

dependent receiver operating characteristic (ROC) curve analysis was

performed with the “timeROC” package to evaluate the predictive

value of the prognostic signature. Next, PCA and t-distributed

stochastic neighbor embedding (t-SNE) analysis were performed

using the “Rtsne” and “ggplot2” packages to determine whether the

high- and low-risk groups can be intuitively separated. The testing

cohort and the merged cohort were used to validate the prognostic

value of the three genes.
Value of prognostic genes

To further validate the prognostic value of the three FRGs in

CC. The Tumor-immune System Interactions Database (TISIDB)

database (http://cis.hku.hk/TISIDB/) was used to analyze the

differences in expression of prognostic genes at different stages of

CC. The Kaplan-Meier curves of the high and low expression levels

of the three prognostic genes in CC were obtained from the Gene

Expression Profiling Interactive Analysis (GEPIA) database (http://

gepia.cancer-pku.cn/), respectively.
Tumor immune microenvironment

To explore the differences in immune cells between high- and

low-risk groups, we analyzed the correlation between tumor
Frontiers in Oncology 03
infiltrating immune cells (TIICs) and prognostic genes, risk score.

Cell-type Identification by Estimating Relative Subsets of RNA

Transcript (CIBERSORT) was an algorithm that revealed the

composition ratio of 22 TIICs in TIME and was used to analyze

the correlation between the risk score and the TIICs by the “limma”

and “tidyverse” packages (15). The 22 TIICs of gene expression files

could be obtained from the official CIBERSORT website (http://

cibersort.stanford.edu/).
Prediction of the immunotherapy effect

In order to assess the value of risk scores for the

immunotherapy effect. The tumor immune dysfunction and

exclusion (TIDE) analysis (http://tide.dfci.harvard.edu) was an

algorithm that calculates tumor response to immune checkpoint

inhibitors. The TIDE score integrated both mechanisms of T cell

dysfunction and T cell rejection in tumor immune escape (16). The

higher the TIDE score, the worse the immunotherapy effect and the

prognosis of patients. Immunophenoscore (IPS) is used to predict

the therapeutic effect of immune checkpoint inhibitors in cancer

patients and is calculated based on the expression of four major

types of genes that determine immunogenicity (17). The higher the

IPS value, the better the patient had received immunotherapy with

CTLA-4 monoclonal antibody or PD-1 monoclonal antibody (17).

Obtain IPS of CTLA-4 monoclonal antibody and PD-1 monoclonal

antibody in CC patients from the cancer immunome atlas (TCIA)

(https://tcia.at/home), and compare immunotherapy effect between

high- and low-risk groups.
Cell line culture

The CC cell lines (HCT116, DLD-1, and LOVO) and the

normal colon epithelial cell line (NCM460) were obtained from

the American Type Culture Collection. These cell lines were

cultured in RPMI-1640, McCoy’s 5A or F12-K medium (Gibco)

containing 10% FBS (Hyclone) and 1% penicillin–streptomycin

(Gibco) and incubated at 37°C with 5% CO2.
Clinical samples collection

In this study, a retrospective cohort study was conducted to

collect postoperative CC specimens and clinical data from CC

patients who underwent surgery in the Department of General

Surgery of Tianjin Medical University General Hospital from

January 2021 to April 2021. Inclusion criteria for clinical patients:

a) primary adenocarcinoma of the colon confirmed by

postoperative pathology; b) negative surgical margins, complete

resection of the primary lesion; c) complete clinical and

pathological data, and follow-up can be completed; Exclusion

criteria: a) patients with non-primary colon cancer or patients

with other primary malignancies; b) patients who underwent

emergency surgery; c) patients who were lost to follow-up

postoperatively; d) patients whose postoperative specimens were
frontiersin.org
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not collected. All patients were followed up for 2 years, and follow-

up ended when the patient died. Patient survival was determined

from the time of surgery until the end of follow-up. According to

statistics, from January 2021 to April 2021, a total of 69 patients

with CC were treated surgically, except for 18 patients who did not

have postoperative specimens, 3 patients who underwent

emergency surgery, 3 patients who were lost to follow-up, and 2

patients with CC complicated with rectal cancer. In this study, a

total of 43 patients were collected. Of the 43 CC patients, 21 patients

had tumors located in the right colon, and the remaining 22 patients

had tumors located in the left colon. All of them received radical

tumor resection surgery, and 27 patients completed chemotherapy

with capecitabine plus oxaliplatin (XELOX) after surgery. There

were 3 patients with cancer-related death and 3 patients with liver

metastases after CC surgery.
Real-time quantitative polymerase
chain reaction

Total RNA was extracted using TRIzol reagent (Vazyme)

following the manufacturer’s protocols. The concentration of

RNA was measured using a NanoDrop-2000 spectrophotometer

(Thermo Fisher Scientific, Inc.) and reverse transcribed using a

FastQuant RT Super mix kit (Tiangen Biotech, Co, Ltd.).

Subsequently, qPCR was performed using SYBR-Green qPCR

Master Mix (Bimake Biotechnology) under the following thermal

cycle conditions: initial denaturation at 95°C for 15 min, followed

by 40 cycles at 95°C for 10 s, 60°C for 20 s, and 72°C for 20 s. The

data were quantified using 2−DDCTmethod. The GAPDH gene was

used to normalize target gene expression. The PCR primer used

were as follows:

GAPDH forward primer: 5′‐TGGCACCGTCAAGGCT

GAGAA‐3′;
GAPDH reverse primer: 5′‐TGGTGAAGACGCCAGTG

GACTC‐3′;
SLC2A3 forward primer: 5′‐GCATCGTTGTTGGAAT

TCTGGT‐3′;
SLC2A3 reverse primer: 5′‐TGTAGGATAGCAGGAA

GGATGG‐3′;
CDKN2A forward primer: 5′‐GGGTTTTCGTGGTTCA

CATCC‐3′;
CDKN2A reverse primer: 5′‐CTAGACGCTGGCTCCT

CAGTA‐3′;
FABP4 forward primer: 5′‐ACTGGGCCAGGAATTT

GACG‐3′;
FABP4 reverse primer: 5′‐CTCGTGGAAGTGACGCCTT‐3′.
Statistical analysis

In this study, all statistical analyses were performed using

R software (version 4.1.2) and perl-5.34.0. The t tests,

nonparametric tests, and chi-square tests were used to test for

differences between variables, where appropriate. The Kaplan–
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Meier method was used to draw survival curves for the high- and

low-risk groups in the training, testing and merged cohorts,

respectively, and the log-rank test was used to determine the

statistical significance of differences (18). A p value <0.05

indicated a statistically significant difference.
Results

Identification of clusters based
on the FRGs

When integrating the TCGA and GEO datasets, a total of 24

repeated samples from the 13 CC patients in the TCGA cohort were

deleted. The consensus clustering analysis was used to identify clusters

from 743 CC patients of the merged cohort to further evaluate the

prognostic genes in CC. When increasing the cluster variable (k) from

2 to 10, the intragroup correlations were found to be the highest when

k=2 (Figures 1A–C). There were 398 patients in cluster-A and 345

patients in cluster-B. The two clusters can be clearly distinguished by

PCA analysis (Figure 1D). The Kaplan-Meier curve was drawn

between the two clusters, and the difference was statistically

significant (p<0.001) (Figure 1E). The clinicopathological

characteristics, such as age, sex, grade, pathological stage, T stage, N

stage, and M stage, were compared in the heatmap between the 2

clusters, and no significant difference was found in the

clinicopathological characteristics (Figure S1). In addition, GSVA

enrichment analysis revealed that cluster-B was enriched in the

peroxisome pathway compared with cluster-A (Figure 1F). These

results indicated that the two clusters identified based on FRGs

accurately reflected the prognostic difference.
Functional enrichment analysis of DEGs

To explore the potential biological behavior of ferroptosis in the

two clusters, DEGs between cluster-A and cluster-B were analyzed.

There were 35 DEGs found between the two clusters, including 4

protective genes and 31 risk genes. GO and KEGG enrichment

analyses were implemented to gain insights into signal pathways of

clusters. The GO enrichment analysis indicated that risk genes were

predominantly enriched in multicellular organismal homeostasis

(biological process), membrane raft (cellular component) and heme

binding (molecular function) (Figure 2A). The GO enrichment

analysis indicated that protective genes were predominantly

enriched in response to oxidative stress (biological process),

NADPH oxidase complex (cellular component) and superoxide

−generating NADPH oxidase activity (molecular function)

(Figure 2B). In addition, the KEGG pathway analysis showed that

the risk genes were enriched in the ferroptosis, IL-17 signaling

pathway, NOD-like receptor signaling pathway and HIF-1 signaling

pathway (Figure 2C). The KEGG pathway analysis showed that the

protective genes were enriched in the thyroid hormone synthesis

(Figure 2D). The DEGs were mainly enriched in ferroptosis-related

pathways, and ferroptosis might play a dual effect on tumor cells.
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Construction of prognostic
three-gene signature

We constructed a risk signature to better diagnose the prognosis of

CC. With filtering the 23 CC samples with missing survival status,

missing survival time and 0 survival time in the TCGA database. A

total of 720 CC samples were used for the construction and validation

of the risk model. Using the univariate Cox analysis, 16 DEGs were

identified as prognostic signatures (Figure 3A). Patients in the merged

cohort were randomly divided into training cohort (n=360) and testing

cohort (n=360). Based on the expression levels of the 16 DEGs and

clinical data, three genes significantly associated with the prognosis of
Frontiers in Oncology 05
CC were identified by applying the LASSO regression analysis and the

multivariate Cox analysis, including SLC2A3, CDKN2A, and FABP4

(Figures 3B, C). The risk score was calculated according to the

following formula: Risk score = SLC2A3 Exp*0.136407939746576 +

CDKN2A Exp *0 . 1 75273043748396 + FABP4 Exp

*0.165558961729006. According to the risk model, the heatmap, risk

score distribution plot, and survival status scatter plot were used to

evaluate the model (Figures 3D–F; Table S1). The CC patients in the

training cohort were divided into high- and low-risk groups based on

the median risk score. The number of patients with death status

increased with the risk score. The risk score of cluster-A was

significantly higher than the risk score of cluster-B (p<2.22e-16,
D

A

B

E

F

C

FIGURE 1

Identification of the clusters based on ferroptosis-related genes. (A) Merged cohort was divided into two distinct clusters using consensus clustering
analysis (k = 2, repetition = 1000). (B) Cumulative distribution function (CDF) curve. (C) CDF delta area curve. (D) PCA of two clusters.
(E) Comparison of K–M survival curves among the two clusters. (F) GSVA enrichment analysis between two clusters.
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Figure 3G). Then, the Kaplan-Meier plot showed that low-risk patients

had a significantly better OS than high-risk patients (p<0.001)

(Figure 3H). In this study, the area under curve (AUC) of training

cohort predicting the sensitivity and specificity of 5-year OS was 0.718

(Figure 3I). Finally, after dimensionality reduction by the PCA and the

t-SNE analyses, it was found that the CC samples could clearly visualize

the distribution between the high- and low-risk groups (Figures 3J, K).

We identified three FRGs and constructed a prognostic signature that

could well predict the prognosis of CC patients.
Validation of the prognostic signature in
the merged cohort and testing cohort

In order to validate the prognostic value of the risk model, the

same methods were performed in the merged cohort and testing

cohort (Figures 4A–F; Table S1). Then, the Kaplan–Meier plot
Frontiers in Oncology 06
revealed that the high-risk group had a significantly worse OS

compared with the low-risk group in the both groups

(pmerged<0.001, ptesting<0.001) (Figures 4G, H). The AUCs for 5-

year OS were 0.706 and 0.673, respectively, indicating that the risk

model had a strong prognostic value for CC patients in the merged

cohort and testing cohort (Figures 4I, J). Lastly, the high- and low-

risk groups can be clearly distinguished by PCA and t-SNE analyses

(Figures 4K–N). Both the merged cohort and the testing cohort had

well validated the value of the prognostic signature.
The value of three ferroptosis-related
genes in colon cancer

To identify the potential value of SLC2A3, CDKN2A, and FABP4

on the prognosis of CC, we generated gene expression differential

diagrams of CC stages I-IV and Kaplan-Meier survival curves from the
D

A

B

C

FIGURE 2

Enrichment Analyses. (A) GO analysis of risk genes in DEGs. (B) GO analysis of protective genes in DEGs. (C) KEGG analysis of risk genes in DEGs.
(D) KEGG analysis of protective genes in DEGs.
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TISIDB database and the GEPIA database, respectively. The expression

levels of SLC2A3, CDKN2A and FABP4 genes increased with the

growth of CC stage (rhoSLC2A3 = 0.108, pSLC2A3 = 0.0229,

rhoCDKN2A=0.152, pCDKN2A=0.00126, rhoFABP4 = 0.122, pFABP4 =

0.0102) (Figures 5A–C).High expression of CDKN2A and FABP4

were associated with poor prognosis in CC, but there was no statistical

difference in survival curves of SLC2A3 (pSLC2A3 = 0.077,

pCDKN2A=0.011, pFABP4 = 0.021) (Figures 5D–F). The analysis results

of the TISIDB and the GEPIA databases further proved that the three

FRGs were all risk genes in CC.
Frontiers in Oncology 07
Tumor immune microenvironment
in colon cancer

The status of the tumor TIME determines the immunotherapy

effect. The results suggest that there is a close correlation between

prognostic genes and TIICs was investigated. The correlation

between prognostic genes and TIICs was essentially consistent

with the risk score. The risk score was mainly positively

correlated with neutrophils and macrophages infiltration and

negatively correlated with infiltration of CD4+T cells, CD8+T
D

A B

E

F

G IH

J K

C

FIGURE 3

Establishment of three-gene prognostic signature using the training cohort. (A) Univariate Cox analysis of DEGs. (B) LASSO regression analysis of the
16 DEGs. (C) Cross-validation method to select optimal genes. (D) Heatmap of three gene expression levels. (E) Distribution and median value of risk
scores. (F) Distribution of risk scores and alive status. (G) K–M curve. (H) ROC curve. (I) The two clusters have significant differences in risk score. (J)
PCA analysis. (K) t-SNE analysis.
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cells, regulatory T cells, B cells, plasma cells and dendritic cells

(P <0.001) (Figure 6). In this study, there are significant correlations

between SLC2A3, CDKN2A, FABP4, risk score, and TIICs.
Risk model predicts the immunotherapy
effect in colon cancer

To further validate the value of the risk model for

immunotherapy, we predicted response to immunotherapy in

high- and low-risk groups. TIDE analysis calculated response to

immunotherapy from CC in the TCGA cohort. The TIDE score,

dysfunction score, and exclusion score of the high-risk group were

significantly higher than those of the low-risk group (pTIDE<0.005,

pDysfunction<0.005, pExclusion<0.001) (Figures 7A–C). The IPS score

was used to analyze potential response to immunotherapy. The

results showed that the low-risk group had higher IPS score after
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treatment with CTLA-4 monoclonal antibody or PD-1 monoclonal

antibody (pmAb-CTLA-4 = 3e-08, pmAb-PD-1 = 4.1e-10) (Figures 7D, E).

Therefore, we predicted that the immunotherapy effect might be

better in low-risk groups than in high-risk groups.
Validation of the risk model in colon
cancer clinical samples

In order to further validate the prognostic value of the risk

model, we performed RT-qPCR on 43 CC samples and obtained the

relative expression level of prognostic genes in each sample

(Table S2). The risk score of 43 CC samples was calculated. There

were no statistically significant differences in clinicopathological

characteristics between high- and low-risk groups (Table S3). The

expression levels of prognostic genes were higher in the high-risk

group than in the low-risk group (pSLC2A3 = 0.0002,
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FIGURE 4

Validation of the prognostic signature in the merged and testing cohorts. Risk heatmap (A, B), risk grouping (C, D), survival status (E, F), Kaplan–
Meier curves (G, H), ROC curves (I, J), PCA and t-SNE analyses (K-N) of different risk groups in the merged cohort and the testing cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1201616
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1201616
pCDKN2A<0.0001, pFABP4 = 0.0001) (Figures 8A–C). Combined with

the 2-years follow-up data of 43 CC patients, the OS and DFS were

calculated between the high- and low-risk groups. There was no

statistical difference in OS, but there was a statistical difference in

DFS (pOS=0.0831, pDFS=0.0108) (Figures 8D, E). Validation of the

risk model with clinical samples further demonstrated the

prognostic value of the risk model for CC patients, and the high-

risk group patients might have the worse OS and DFS.
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Expression analysis of prognostic genes in
GEPIA database and cell lines

In this study, the expression differences between normal tissues

and cancer tissues were also compared. The diagram for difference

analysis of expression of three prognostic genes in normal and

cancer tissues was downloaded from the GEPIA database. The

result showed that there was no significant difference in the
FIGURE 6

Correlation between tumor infiltrating immune cells and prognostic genes, risk score.
D
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FIGURE 5

Value of prognostic genes. (A-C) Associations between prognostic genes expression and stage across colon cancer from the TISIDB database.
(D-F) Kaplan-Meier survival curves from the GEPIA database.
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expression of SLC2A3 between normal and cancer tissues; the

expression of CDKN2A in cancer tissues was higher than that in

normal tissues (p<0.01); the expression of FABP4 in cancer tissues

was lower than that in normal tissues (p<0.01) (Figures 9A–C). The

expression of three prognostic genes was verified by RT-qPCR in

CC cell lines. The expression results of the three prognostic genes

between CC cell lines (HCT116, DLD-1, and LOVO) and normal
Frontiers in Oncology 10
cell line (NCM460) were consistent with the expression differences

between tissues in the GEPIA database (pCDKN2A-HCT116<0.0001,

pCDKN2A- LOVO<0.0001, pCDKN2A-DLD-1 = 0.0013, pFABP4-

HCT116<0.0001, pFABP4-LOVO<0.0001, pFABP4-DLD-1<0.0001)

(Figures 9D–F). Therefore, CDKN2A and FABP4 not only had

the prognostic value for CC patients, but also were expected to

become the therapeutic targets of CC in the future.
D

A B

E

C

FIGURE 8

Validation of the risk model in colon cancer clinical samples. (A-C) Expression levels of prognostic genes in the high- and low-risk groups.
(D, E) Kaplan-Meier curve of 2-years OS and 2-years DFS in the high- and low-risk groups. ***p < 0.001, ****p < 0.0001.
D
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FIGURE 7

Risk score predicts the immunotherapy effect of colon cancer. (A–C) The TIDE score, dysfunction score, and exclusion score of the high- and
low-risk score groups. (D, E) Prediction of the immunotherapy effect of high- and lowrisk groups to the anti-CTLA4 or anti-PD1 based on IPS. **p <
0.005, ***p < 0.001.
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Discussion

Colon cancer (CC) is one of the leading causes of cancer-related

death worldwide, and its increasing morbidity and mortality have

led to CC patients with poor prognosis (1). Both the TNM stage of

the tumor and the clinicopathological characteristics of the patient

are closely related to the prognosis of CC (19). However, the

diagnosis is often made late, because the initial symptoms of CC

are not obvious. In many patients, the diagnosis is made at an

advanced stage. In recent years, with the development of molecular

biology, biomarkers have become an important part of clinical

diagnosis and treatment. Valuable biomarkers can predict the

prognosis of patients and open a new direction for exploring the

study of disease development (20).

Ferroptosis is a form of RCD characterized by iron overload,

accumulation of lipid reactive oxygen species (ROS), and

inactivation of the cellular antioxidant glutathione (GSH) (21). A

growing number of evidence shows that ferroptosis is closely related

to the cancer occurrence, development and inhibition (21–23). N-

acetyltransferase 10 promotes the progression of CC, by inhibiting

ferroptosis through N4-acetylation and stabilization of ferroptosis

suppressor protein 1 (FSP1) mRNA (24). In vitro studies confirmed

that combined treatment with b-elements and cetuximab induced

ferroptosis in KRAS mutant CC cells HCT116 and LOVO (25).

Thus, it was found that ferroptosis may not only play a role as an

anti-tumor method, but also that absence of ferroptosis may

promote tumorigenesis. However, the understanding of FRGs in

the pathogenesis of CC is still insufficient. Therefore, we analyze
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FRGs to construct a novel risk model to predict the prognosis of

patients with CC.

Solute Carrier Family 2 Member 3 (SLC2A3), also known as

Glucose Transporter 3 (GLUT3), is a FRG involved in glucose

transmembrane transport. Glucose transporter (GLUT) protein

expression is often increased in cancer cells, and upregulation of

the SLC2A encoding GLUT protein is associated with poor

prognosis in many cancers (26–28). A study pointed out that

upregulation of SLC2A3 was associated with decreased OS and

DFS in colorectal cancer patients (29), which indicated that SLC2A3

played an important role in the prognosis of CC patients. Highly

expressed SLC2A3 can increase the expression of PD-L1 in CC, and

the prognosis of CC patients with overexpression PD-L1 is

worse (26).

Cyclin Dependent Kinase Inhibitor 2A (Cyclin Dependent

Kinase Inhibitor 2A, CDKN2A) is an important cell cycle

regulator that plays a regulatory role in cell proliferation and

apoptosis, and mainly encodes two proteins, p16INK4A and

p14ARF (30). A study has found that the overexpression of

CDKN2A is an independent prognostic factor for colorectal

cancer, and its overexpression can induce the occurrence of

epithelial-mesenchymal transition, thereby promoting the further

development of tumors (31).CDKN2A also can increase the

sensitivity of cells to ROS-triggered ferroptosis and promote

carcinogenesis by enhancing p53-dependent transactivation and

ferroptosis (32).

Fatty Acid Binding Protein 4 (FABP4) is a class of intracellular

lipid transporter mainly expressed in adipocytes and macrophages
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FIGURE 9

Expression analysis of prognostic genes in GEPIA database and cell lines (A-C) Expression analysis of the three genes in GEPIA database.
(D-F) Expression analysis of the three genes between normal cell line and colon cancer cell lines. *p < 0.01.
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(33).FABP4 can participate in lipid transfer between adipocytes and

tumor cells, induce fatty acid oxidation pathway to promote tumor

growth (34).Chen et al. also pointed out that overexpression FABP4

is a risk factor for colorectal cancer and can be used as a potential

biomarker to diagnose colorectal cancer (35). In other similar

studies, FABP4 also affects the prognosis of CC as a risk gene

(36, 37).

Although the mechanism of tumor susceptibility to ferroptosis

has been a research focus in the past few years, the relationship and

regulation between TIME and ferroptosis is still elusive. The TIME,

regulated by TIICs, has a critical effect on the occurrence and

development of CC. For example, neutrophils can promote tumor

growth by promoting tumor angiogenesis or suppressing anti-

tumor immunity (38). Uribe-Querol et al. believe that the ROS

produced by neutrophils in the early stages of tumor development is

not sufficient to kill tumor cells but promotes tumor proliferation

through genotoxicity and DNA damage (39). Both types of M1 and

M2 macrophages are polarized from M0 macrophages but play

opposite roles in tumor development (40). The M2 macrophage can

promote the motility, migration and invasion of CC cells through its

exosomes (41). M1 macrophages secrete large amounts of

proinflammatory factors and tumor necrosis factors to play the

biological functions of promoting inflammation and inhibiting

cancer (40). Yang et al. indicate that iron accumulation in

ferroptosis is correlated with abundant iron stores in M1

macrophages, and high levels of ROS generated by ferroptosis

may also promote polarization of macrophages toward M1 (42).

This study suggests a high correlation between ferroptosis and M1

macrophages and also explains the positive correlation of risk score

with M1 macrophages. In a disease state such as cancer, regulatory

cells (Tregs) become an impediment as they compromise the anti-

tumor response of the host by dampening the efficiency of T-

effector cells (43). However, Tregs suppress bacterial-driven

inflammation that promotes carcinogenesis, which benefits the

host (44). Therefore, Tregs may be a double-edged sword in

tumor development. B cells play a crucial role in humoral

immunity by producing antibodies, while they also enhance T

cell-mediated immunity by acting as APCs (45). CD8+T cells, also

known as cytotoxic T lymphocytes (CTLs), mainly mediate

cytotoxic activity by inducing tumor cell apoptosis, which is

considered to be the most critical component of antitumor

immunity (46). Interestingly, we found that CDKN2A appeared

to be less correlated with TIICs than the other two genes and the

risk score. A study has found that up-regulated CDKN2A affects

intercellular signal transduction through the TGF-b pathway to

induce immunosuppression (47). Luo et al. inferred the high

expression of CDKN2A affects the immune microenvironment,

downregulates immune activity, and thus promotes the

recurrence of metastatic CC (48). In summary, the risk score is

inversely correlated with the infiltration of CD8+T cells, B cells,

CD4+T cells, but positively correlated with the infiltration of

neutrophils and macrophages. Due to the complexity and

multifunctionality of TIICs, we need to further investigate the

relationship between the three prognostic genes and TIICs in

the future.
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In recent decades, immunotherapy has gradually emerged a

promising field of cancer treatment, among which T lymphocyte-

based tumor immunotherapy becoming an effective tool for cancer

treatment. Activated CD8+T cells can enhance lipid peroxidation in

tumor cells, thereby inducing ferroptosis and contributing to the

antitumor efficacy of immunotherapy (6). Although PD -1 or

CTLA-4 monoclonal antibody may show some efficacy in

colorectal cancer with DNA mismatch repair deficiency, more

accurate biomarkers to predict immunotherapy effect remain to

be found. Therefore, we hypothesized that FRGs have an important

impact on the immunotherapy of CC. It is particularly important to

explore the relationship between FRG and CC immunotherapy and

predict the immunotherapy effect in patients with CC. The TIDE

score corresponds to T cell dysfunction and exclusion, which has

been proven to be significant in predicting the efficacy of immune

checkpoint blockade (16). IPS is a reliable method for predicting

anti-CTLA-4 and anti-PD-1 immunotherapy (17). In this study,

both the IPS score and the TIDE score in predicting the

immunotherapy effect showed that the immunotherapy effect was

worse in high-risk groups than in low-risk groups. This risk model

also has predictive value for the immunotherapy effect in

CC patients.

In order to further validate the accuracy of the risk model, a

total of 43 clinical samples from CC patients from January 2021 to

April 2021 were selected for RT-qPCR to detect the expression of

prognostic genes and calculate the risk score. The expression of

SLC2A3, CDKN2A, and FABP4 was higher in the high-risk group

of clinical samples than in the low-risk group, and there was

statistical significance. Combined with the clinicopathological

data of the patients, the prognosis of the patients in the high-risk

group and the low-risk group was poor. There was no statistical

difference in OS, but there was a statistical difference in DFS. This

might be due to the small number of patients and the short

postoperative follow-up period. In the future, the sample size

needs to be increased and the follow-up time of patients needs to

be extended before the results can be verified. Thus, the risk model

composed of SLC2A3, CDKN2A, and FABP4 has some value for

the clinical evaluation of the prognosis of CC.

To further explore the value of prognostic genes, we analyzed

the differences in expression levels of prognostic genes between

normal tissues (or normal cell line) and CC tissues (or CC cell

lines). CDKN2A was significantly overexpressed in CC tissues

compared with normal colon tissues, whereas the expression of

FABP4 was significantly lower in CC tissues compared with normal

colon tissues. There was no difference in the expression of SLC2A3

between CC tissues and normal colon tissues. The above results are

similar to the expression differences of prognosis genes between CC

cell lines (HCT116, DLD-1, and LOVO) and normal colon cell line

(NCM460) in our RT-qPCR results. Most importantly, the analysis

results of some studies on the expression of prognostic genes are

also consistent with the results of the GEPIA database or our RT-

qPCR (35, 49, 50). Because the screening of DEGs in this study was

carried out between two CC tissues with different prognosis, there

are uncertainties in expression levels of prognostic genes between

normal tissues (or normal cell line) and CC tissues (or CC cell
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lines). In future studies still need to study the mechanism of

occurrence and development of prognostic genes in CC for

further explanation. In summary, we believe that CDKN2A and

FABP4 not only have a certain value in the prognosis of CC

patients, but also are expected to become targets for future CC

treatment options.

Compared with other studies, we constructed the risk model by

consensus clustering based on FRGs. In addition, a total of 471

FRGs were included in this study, which is more extensive than

other ferroptosis-related signatures (51, 52). And we predicted the

effect of CC immunotherapy based on the prognostic signature.

Finally, the value of the risk model was validated using external

databases and clinical samples. To our knowledge, this study

discovered and established a new prognostic signature of CC,

which playes a role in evaluating the prognosis and predicting the

immunotherapy effect in CC patients.

This study has some limitations. First, with the continuous

progress of ferroptosis research, more and more FRGs may occur

in the future, and the different FRGs included in the risk model may

lead to different risk model results. Second, this risk model is only

used to predict the prognosis of CC patients and the immunotherapy

effect, but not all low-risk patients have a good prognosis or respond

positively to immunotherapy. Finally, the number of clinical samples

used to verify the risk model is small and the follow-up time is not

long, so it is necessary to further increase the sample size and extend

the follow-up time for further verification.
Conclusion

SLC2A3, CDKN2A, and FABP4 are risk genes in CC, and they

are involved in the three key steps of ferroptosis in energy

metabolism (SLC2A3), iron metabolism (CDKN2A) and lipid

metabolism (FABP4). The risk model, which was constructed

using the ferroptosis-related genes (SLC2A3, CDKN2A, and

FABP4), has good predictive value for the prognosis of CC

patients. This risk model can also predict the effect of CC

immunotherapy. CC patients with high risk scores had higher

TIDE scores, more T-cell dysfunction and rejection, lower IPS

and poorer response to immunotherapy with CTLA-4 mAb or

PD-1 mAb.
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