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The retrotransposon known as long interspersed nuclear element-1 (LINE-1),

which is currently the sole autonomously mobile transposon in the human

genome, can result in insertional mutations, chromosomal rearrangements,

and genomic instability. In recent years, numerous studies have shown that

LINE-1 is involved in the development of various diseases and also plays an

important role in the immune regulation of the organism. The expression of

LINE-1 in gynecologic tumors suggests that it is expected to be an independent

indicator for early diagnosis and prognosis, and also, as a therapeutic target,

LINE-1 is closely associated with gynecologic tumor prognosis. This article

discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of

ovarian, cervical, and endometrial malignancies, as well as other gynecologic

malignancies. It offers fresh perspectives on the early detection of tumors and

the creation of novel anti-tumor medications.
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1 Introduction

Gynecological tumors represent a major threat to women’s health, including ovarian,

cervical, and endometrial cancers. With a five-year survival rate of 45 percent, ovarian

cancer has the highest mortality rate among gynecological cancers, trailing only cervical

and endometrial cancer in its incidence (1). Cervical cancer is the most commonly

diagnosed cancer and the fourth leading cause of death in women, according to

statistics, with an estimated 604,000 new cases and 342,000 fatalities worldwide in 2020

(2). Additionally, endometrial cancer, the sixth most common cancer in women, has seen a

132% increase in the overall incidence over the past 30 years, and the associated mortality

rate is increasing rapidly (3). As a result, there is a critical need for efficient early diagnostic

methods to find gynecological malignancies.
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Transposons, also known as “jumping genes”, are mobile

(Deoxyribonucleic acid) DNA sequences in the genome that

compose approximately 45% of the human genome (4).

According to their transcribing methods, there are two primary

categories: The first category is DNA transposons, which use a “cut-

and-paste” method to transport DNA sequences from one location

to another after specifically recognizing them by their transposases.

The second type is RNA transposons, sometimes referred to as

retrotransposons (RT), which take DNA sequences as templates

and first produce intermediate forms of mRNA before producing

cDNA through the activity of reverse transcriptase and then “paste”

the DNA sequence to a new spot (5). Retrotransposons are divided

into long terminal repeat (LTR) and non-long terminal repeat

(Non-LTR) elements. Non-LTR mainly includes long scattered

repeat element LINE-1, short scattered repeat element SINE and

Alu (6). Among them, LINE-1, the most active type of Non-LTR

transposon, is the only class of human reverse transcription

transposon with autonomous activity, which can cause genomic

instability and is considered a harmful endogenous substance with

potential carcinogenic activity (7).

Studies have shown that LINE-1 plays a role in gynecologic

malignancies, such as ovarian, cervical, and endometrial cancers, so

it is important to investigate the role of LINE-1 in the early

diagnosis and prognosis of gynecologic tumors. In this paper, we

review the composition and regulatory mechanism of LINE-1 and

its role in the early diagnosis, prognosis, and treatment of ovarian,

cervical, and endometrial cancers, which will provide a theoretical

basis for the development of novel tumor molecular markers or

targeted medications.
2 Introduction of LINE-1

2.1 Composition of LINE-1

The LINES family includes LINE-1, LINE-2, and LINE-3, of

which the most abundant and functionally rich is LINE-1 with

approximately 500,000 copies, accounting for 17% of the human

genome (8). About 100 of these are still complete and functioning,

while the majority have lost retrotransposition owing to deletion,

mutation, or truncation (4, 9). The full-length LINE-1 sequence is

6000-7000 base pairs (bp) and contains a 5’ untranslated region

(UTR), two open reading frames (ORF) ORF1 and ORF2, and a 3’

UTR containing a polyadenylation signal (polyA) (10). LINE-1

activity is driven by RNA polymerase II binding to the 5’UTR

internal promoter, and ORF1 and ORF2 encode two proteins

required for reverse transcription, ORF1p, and ORF2p,

respectively, ORF1p is an RNA-binding protein with nucleic acid

chaperone activity (11); ORF2p contains nucleic acid endonuclease

(EN) and reverse transcriptase (RT) structural domains (12).

Among them, the endonuclease cleaves genomic DNA by

specifically recognizing the 5’-TTTT/AA-3’ sequence, and its

induced single-stranded DNA break triggers the recruitment of

poly(ADP-ribose) polymerase 2 (PARP2) at the LINE-1 integration

site to promote reverse transcriptional translocation (13). Reverse
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transcriptase activity can use LINE-1mRNA as a template to

produce cDNA (14). ORF1p and ORF2p are translated in the

cytoplasm and first bind to LINE-1 mRNA to form the LINE-

1RNA/ORF1p/ORF2p ribonucleoprotein (RNP) complex particle

(15), RNP is then transported into the nucleus using the membrane-

associated nuclear endosome sorting complex (ESCRT) required for

transport (16), Generation of a new copy of LINE-1 and its insertion

into host DNA through a unique mechanism of target-primed

reverse transcription (TPRT) (17) (Figure 1). Additionally, LINE-1

can assist in transposing components without an independent

reverse transcription function, such as SINE and ALU (18).
2.2 Regulation of LINE-1

LINE-1 played an essential role in the evolution of the species,

however, in normal somatic cells, the host cell has tight control over

LINE-1 translocation to maintain genomic stability (Table 1). The

5’UTR promoter region of LINE-1 is rich in guanine and cytosine

enriched regions (cytosine phosphate-guanosine, CpG) (28), which

are often repressed by the organism in normal tissues, while the

absence or deficiency of methylation, i.e. CPG hypomethylation,

enhances its reverse transcription activity and promotes

retrotranscription transposition (29). Sanchez-Luque et al.

reported a conserved Yin-Yang 1 (YY1) transcription factor

binding site that mediates LINE-1 promoter methylation in

pluripotent and differentiated cells, thereby inhibiting LINE-1

reverse transcriptional translocation (19). N6-methyladenosine

(m6A), the most prevalent methylation modification in

eukaryotic mRNA, promotes LINE-1 RNA expression and reverse

transcriptional translocation, enhances translation efficiency, and

promotes RNP formation (20, 21). In addition, oncogenes and

tumor suppressor genes are also involved in the regulation of LINE-

1. Myc oncoprotein may be a major regulator of LINE-1

transcription during cancer development, Sun et al. found that

Myc expression levels significantly and inversely correlated with

LINE-1 expression in breast and ovarian tumors (22). Tumor

suppressor P53, which inhibits LINE-1 in cancer tissues derived

from human cell cultures by acting on the 5’UTR promoter of

LINE-1 and stimulating local deposition of inhibitory histone

marks, limits autonomous replication of mobile elements in cells

(23). Mita et al. revealed that the tumor suppressor BRCA1, which is

involved in DNA homologous recombination repair (HR), has a

strong inhibitory effect on LINE-1 retrotransposition, and in the

cytoplasm, BRCA1 inhibits ORF2p translation by binding to its

mRNA (24). Therefore, LINE-1 expression and its activity in an

environment of HR dysregulation may increase genomic instability

and accelerate tumor development or the formation of drug-

resistant clones after treatment. In addition, endogenous proteins

also regulate the expression of LINE-1. Liang et al. showed that The

apolipoprotein B mRNA-editing catalytic polypeptide 3 APOBEC3

(A3) family, APOBEC3 (A3DE) inhibited LINE-1 reverse

transcription translocation by interacting with ORF1p and

affecting LINE-1 reverse transcriptase activity (25). Dual

specificity protein phosphatase 1 (DUSP1), is involved in the
frontiersin.org

https://doi.org/10.3389/fonc.2023.1201568
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2023.1201568
negative regulation of cell proliferation and suppression of

inflammatory responses, and its activity downregulates LINE-1 in

cancer cells (26). The human silencing center (Hush) complex, a

newly discovered epigenetic complex, represses LINE-1 expression
Frontiers in Oncology 03
in the organism, selectively binds evolutionarily young full-length

LINE-1 and promotes the deposition of histone H3Lys9

trimethylation (H3K9me3) and the formation of heterochromatin

for transcriptional silencing (27, 30–32).
B

C

D

A

FIGURE 1

The transposition process of LINE-1. (A) Transcription: The LINE-1 mRNA is produced. (B) Translation: Proteins ORF1p and ORF2p are produced.
(C) LINE-1 RNP formation: ORF1p and ORF2p bind to LINE-1 RNA to generate LINE-1 RNP. (D) TPRT: The nucleic acid endonuclease activity and
reverse transcriptase activity of ORF2p insert LINE-1 into the new locus through the TPRT process.
TABLE 1 Regulation of LINE-1.

Form of
regulation

Participating sub-
stances

Mechanism Effect on LINE-1 References

Methylation
Modification

Transcription factor binding
site(YY1)

Hypomethylation Promoting LINE-1 expression (19)

N6-methyladenosine (m6A) Methylation Inhibition of LINE-1 reverse
transcription

(20, 21)

Oncogenes Myc oncoprotein Inhibition of LINE-1 (22)

Tumor suppressor TP53 Inhibitory histone deposition Inhibition of LINE-1 expression (23)

BRCA1 Binding LINE-1 mRNA Inhibition of ORF2p translation (24)

Endogenous
proteins

APOBEC3(DE) Combined with ORF1p Inhibition of LINE-1
reverse transcriptase activity

(25)

DUSP1 Down-regulation of LINE-1
expression

(26)

Epigenetic
complexes

Hush Promotion of H3K9me3 deposition and
heterochromatin formation

Repression of LINE-1
transcription

(27)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1201568
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2023.1201568
3 LINE-1 and cancer

3.1 Impact of LINE-1 hypomethylation
on cancer

A frequent epigenetic hallmark of cancer is genome-wide

hypomethylation, and LINE-1 hypomethylation can be utilized as a

marker of genome-wide hypomethylation (33, 34). LINE-1

hypomethylation increases LINE-1 mRNA expression, activates

reverse transcription activity, and causes insertional mutations,

rearrangements, and chromatin mutations in genomic DNA (7),

which ultimately lead to tumorigenesis (35). Studies have shown that

LINE-1 hypomethylation is involved in the early development of

various cancers and plays a role in cancer proliferation and invasion.

Hoshimoto et al. found that overall DNA methylation levels were

remarkably lower in esophageal squamous cell carcinoma (ESCC) than

in normal mucosa, suggesting that LINE-1 hypomethylationmay be an

early event in ESCC and significantly correlated with the depth of

tumor invasion in primary ESCC (36). Another study also confirmed

that LINE-1 hypomethylation promotes aggressive tumor behavior by

causing genomic gain of oncogenes such as cell cycle

protein-dependent kinase 6 (CDK6) in esophageal squamous

carcinoma (37). In addition, LINE-1 hypomethylation is closely

associated with cancer prognosis, and studies have shown that

LINE-1 hypomethylation is related to poor prognosis in lung

adenocarcinoma (38), gastric cancer (GC) (39), and colorectal cancer

(40), and also can be used as a diagnostic marker for colorectal cancer

(40). In studies of lung adenocarcinoma, LINE-1 methylation levels

were shown to be negatively correlated with Ki-67 expression, which

reflects the aggressive, proliferative nature of cancer, and therefore,

lower overall methylation levels in cancer may induce an increased

proliferative capacity of the tumor (38). Interestingly, hepatocellular

carcinoma (HCC) also exhibits global DNA hypomethylation which

increases genomic instability and rearrangements in HCC, allowing

LINE-1 to insert into the c-MET gene and drive its transcription

through a “copy-and-paste”mechanism, known as L1-MET, ultimately

promoting the oncogenic pathway in HCC and leading to poor

prognosis (41, 42). Recently, by applying new computational tools

and long-read nanopore sequencing to directly infer the CpG

methylation of new and existing transposable element insertions in

hippocampal heart and liver and paired tumor and non-tumor livers,

Ewing et al. found significant demethylation of young LINE-1

retrotransposons in cancer (43). In addition, Park et al. showed that

LINE-1 methylation levels could also be used as a good early screening

indicator to distinguish healthy individuals from those with lung and

breast cancer (44). In summary, LINE-1 hypomethylation is closely

associated with the development of various malignancies and is

expected to be an independent biomarker of early diagnosis and

poor prognosis of tumors.
3.2 ORF1p and ORF2p expression as
diagnostic markers for cancer

LINE-1 mRNA translates two proteins required for reverse

transcription, ORF1p, and ORF2p, and their overexpression is a
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biomarker and prognostic correlate for a variety of tumors. Early

studies have shown that LINE-1 ORF1p is barely detectable in normal

human cells (45), but it is expressed in cancers such as ovarian (46),

prostate (47), bladder (48), lung (49), and esophageal cancers (50), and

can be used as a diagnostic marker for cancer. Later, Ardeljan et al.

examined ORF1p expression in 22 colorectal cancer tissues by

immunohistochemistry and showed that all tumors were positive

(51). In another study, LINE-1 ORF1p was highly expressed in p53

mutated cancers and was associated with the tissue type of advanced

gynecologic tumors (52). Furthermore, its expression suggests a poor

cancer prognosis. Studies in breast cancer have shown that nuclear

localization of ORF1p protein is significantly associated with poorer

survival (53). However, ORF2p is difficult to detect in tumors (54). The

RT encoded by LINE-1-ORF2 has the potential to exert tumor-

promoting effects at the epigenetic level. Sciamanna et al. proposed a

model in which LINE-1-RT drives a previously unrecognized global

regulatory process that exerts global epigenetic regulation of the cellular

transcriptome by intercepting RNA and reverse transcribing it into

RNA: DNA hybrids. LINE-1-RT dysregulation drives cellular

transformation and tumorigenesis, suggesting that ORF2p may have

an impact on cancer cell heterogeneity (55). De Luca et al. investigated

the expression and localization of ORF2p in human cancer cells and

tissues by a highly specific monoclonal antibody (mAb chA1-L1) and

found that LINE-1 ORF2p was highly expressed in transformed cell

lines and staged epithelial cancer tissues (colon, prostate, lung, and

breast), but not detected in untransformed cells, and they also found

that ORF2p was overexpressed in precancerous tissues of colon and

prostate, thus ORF2p can be considered as a potential early diagnostic

biomarker (56).
3.3 LINE-1 regulates oncogene expression
in cancer

Numerous studies have shown that LINE-1 insertion in somatic

cells can induce cancer development through the activation of proto-

oncogenes. In a study on breast cancer, LINE-1 insertion was found to

cause rearrangement and amplification of the MYC oncogene, leading

to the development of ductal adenocarcinoma of the breast (57). Later,

Wolff et al. found that LINE-1 hypomethylation activates the MET

oncogene in bladder cancer, leading to the activation of surrounding

genes that can promote tumorigenesis through synergistic effects (58).

Similarly, LINE-1 can ultimately induce cancer by suppressing the

expression of tumor suppressor genes. LINE-1 retrotransposition can

affect local immune homeostasis by interfering with the expression of

the tumor suppressor gene FGGY in squamous lung cancer and

disrupting cellular energy metabolism, leading to tumor progression

and poor prognosis (59). In addition, earlier studies characterizing

reverse transcription transposon insertions in the whole genome of

colorectal cancer in 202 cases identified highly variable reverse

transcription transposon activity, and insertion of LINE-1 in the

exon of the tumor suppressor gene APC was detected in

approximately 1% of cases, which may be a tumor-initiating event

and was associated with low survival (60, 61). Finally, Rodriguez-

Martin et al. through a pan-cancer whole genome analysis (PCAWG),

found that aberrant integration of LINE-1 retrotransposons plays an
frontiersin.org
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important role in reshaping the structure of the cancer genome, mainly

through deletion of base regions on chromosomes, which leads to

massive deletion of tumor suppressor genes or triggers amplification of

oncogenes, and complex ectopics to promote cancer progression (62).
4 LINE-1 with a role in
gynecologic malignancies

In a variety of tumors, including gynecologic tumors, LINE-1 is

involved in tumor development through the expression of its mRNA,

promoter hypomethylation, and its reverse transcriptional

production of OPRF1p and OPRF2p (Table 2) (Figure 2).
4.1 LINE-1 with a role in ovarian cancer

Ovarian cancer is one of the three major malignant tumors of the

female reproductive system and has the highest mortality rate among

gynecologic tumors because it is asymptomatic and resistant to

chemotherapy in its early stages. According to its histopathological

characteristics, ovarian cancer is mainly divided into three categories:

epithelial ovarian cancer(EOC), germ cell tumors, and gonadal-

mesenchymal tumors. Among them, EOC is the most common

cause of death (69), and its pathological type is most frequently

High-Grade Serous Ovarian Cancer(HGOSC). Numerous studies

have shown that LINE-1 can be used as a molecular marker for

early diagnosis and prognosis of ovarian cancer. Pattamadilok et al.

assessed the genome-wide LINE-1 methylation status in isolated cell

populations by an improved quantitative combined bisulfite

restriction analysis(COBRALINE-1) PCR technique and found that

LINE-1 hypomethylation was an early event in the development of

EOC. The Cox regression model showed that excessive LINE-1

hypomethylation shortened overall survival (70). Similarly, another

study identified LINE-1 expression as an early event in HGOSC

carcinogenesis that may precede the development of ovarian cancer

itself (71). In addition, Tang et al. detected LINE-1 acquired
Frontiers in Oncology 05
insertions in HGOSC with BRCA1 genetic mutations by two novel

techniques, next-generation sequencing (TIPseq) and machine

learning-based computational pipeline (TIPseqHunter), suggesting

that LINE-1 is a major source of heritable structural variants in the

human genome (72). Acquired chemoresistance is a major driver of

mortality in HGOSC patients, and Nguyen et al. analyzed the

presence of LINE-1 hypomethylation and full-length transcripts in

HGOSC. Meanwhile, they also identified a tumor-specific LINE-1

insertion that enhanced the expression of the STC1 oncogene,

thereby increasing in vitro chemoresistance, suggesting that the

LINE-1 insertion was associated with prognosis (63). In addition,

Senthong et al. found that LINE-1 hypomethylation is an early

molecular event involved in the malignant transformation of

ovarian endometrioid adenocarcinoma (OEA) and ovarian clear

cell carcinoma (COCC) and can be used as a basis for diagnostic

biomarkers (64). The same conclusion was later reached by Xia et al.

who found that TTC28-L1-mediated transduction occurs early in the

development of CCOC and endometriosis-associated ovarian cancers

(EAOCs) (73). Besides, investigators found that LINE-1 ORF1p was

observed in a wide range of ovarian cancer specimens and was

present independently of human epididymal protein 4(HE4) and

cancer antigen 125(CA-125), and they confidently detected ORF1p

expression in biological fluids including ascites and plasma from

ovarian cancer patients using Immuno multiple reaction monitoring-

mass spectrometry (iMRM-MS) (74). LINE-1 ORF1p significantly

activates the expression of c-Met proto-oncogene in ovarian cancer,

thus participating in tumor progression (46). Xia et al. by tissue

microarray (TMA’s) technique, found high expression of ORF1p in

P53-mutated plasmacytoid intraepithelial carcinoma (STIC),

suggesting that ORF1p may be clinically useful as a diagnostic

immunohistochemical marker for P53-deficient STIC lesions (52).

Furthermore, Yun et al. examined the expression of LINE-1ORF1p in

100 ovarian cancer tissues and found that ORF1p expression in

ovarian cancer was higher in metastatic disease and elderly patients

(75). It is suggested that LINE-1-ORF1p has the potential to be used

as a diagnostic marker for ovarian cancer and its metastatic potential.

Thus, evidence suggests that LINE-1 hypomethylation and ORF1p
TABLE 2 LINE-1 translocation and related gynecologic tumors.

Tumor prognosis,
diagnostic
markers

Mechanism Related cancer References

LINE-1 mRNA Acquired insertion of LINE-1 enhances STC1 oncogene expression Ovarian cancer (HGOSC) (63)

LINE-1
hypomethylation

Promotes mRNA expression/genomic DNA rearrangement/chromatin
mutation

Ovarian cancer (OEA, COCC) (64)

Promotes IB20 expression and induces altered signaling pathways
and increased cell invasiveness

Cervical Cancer (65)

Mutation, amplification, and deletion of genomic DNA Gestational Trophoblastic Neoplasms (GTN) (66)

ORF1p Activates c-Met proto-oncogene expression and promotes tumor
progression

Ovarian cancer (STIC) (52)

Activates ATM-MRN-SMC S-phase signaling and causes DNA damage Endometrial cancer (67)

Insertion mutations, modification of regulatory sequences, causing
genomic
instability

differentiated Vulvar Intraepithelial Neoplasia
(dVIN)

(68)
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can be used as biomarkers for early diagnosis of ovarian cancer and

are associated with prognosis.
4.2 LINE-1 with a role in cervical cancer

Cervical cancer is mainly caused by human papillomavirus HPV16

and HPV18 infection, and LINE-1 hypomethylation plays an

important role in the progression of cervical cancer. Smith et al. used

combined bisulfite restriction analysis and PCR techniques to measure

LINE-1 hypomethylation levels in squamous cell carcinoma (SCC) and

carcinoma in situ (CIS) of the uterine cervix and found a significant

correlation between the degree of LINE-1 hypomethylation and

progression of cervical mucosa from normal to elevated CIS to

invasive cancer (76). In addition, it has also been found that LINE-1

methylation status in white blood cell DNA may be a cost-effective

biomarker for high-grade cervical intraepithelial neoplasia (CIN2+) in

high-risk human papillomavirus (hrHPV)-positive women (77),

suggesting that LINE-1 methylation status may be used as a non-

invasive early diagnosis in women at risk of cervical cancer. In further,

Flatley and his colleagues found that most cervical cancer samples had

global DNA hypomethylation compared to precancerous lesions (78).

Later, Curty et al. also reported LINE-1 expression in cervical cancer

and found that a comparison between HPV co-infection and HPV

single infection showed a higher percentage of differential LINE-1

expression than the rest (65). In addition, LINE-1 hypomethylation

also promotes IL20RB expression to induce alterations in cellular

signaling pathways, leading to abnormal cell proliferation and
Frontiers in Oncology 06
increased tumor cell invasiveness. They also found that DNA

methyltransferase 1 (DNMT1) in cervical cancer was significantly

correlated with up- and downregulation of LINE-1 expression, and

DNMT1 overexpression led to transcriptional repression of genes

through hypermethylation, suggesting that LINE-1 correlates with

endogenous factors (such as IL20 family genes and DNMT1) and

exogenous factors (HPV) in cervical cancer. Recently, Sun et al. (79)

used bisulfite LINE-1 pyrophosphate sequencing and ELISA-based

methods to analyze global DNAmethylation and showed a progressive

global DNA methylation reduction from normal cervical cells to

cervical cancer samples. In conclusion, LINE-1 is closely associated

with the development of cervical cancer and can be used as an early

screening indicator for cervical cancer.
4.3 LINE-1 with a role in
endometrial cancer

Endometrial cancer is an epithelial malignancy originating from the

endometrium. Compared to other gynecologic tumors, LINE-1 has been

less studied in endometrial cancer, but some studies have indicated that

LINE-1-ORF1p is associated with endometrial cancer. McKerrow et al.

found that in endometrial cancer, upregulation of LINE-1-ORF1p

expression led to increased RAD50-S635 phosphorylation and

activation of ATM-MRN-SMC S-phase signaling, resulting in a DNA

damage response as well as replication stress not directly attributable to

LINE-1 insertion (67). In addition, LINE-1-ORF1p expression positively

correlated with P53 mutation, copy number Alteration (CNA), and
FIGURE 2

Role of LINE-1 in different tumors. (By Figdraw.).
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DNA replication initiation protein complex, and the expression of LINE-

1-ORF1p was on average approximately two-fold higher in p53 mutant

endometrial cancers. This indicates that LINE-1-ORF1p expression is

positively correlated with structural genomic alterations in tumor

tissue (67).
4.4 LINE-1 with a role in gestational
trophoblastic neoplasms and differentiated
vulvar intraepithelial neoplasia

GTN includes invasive staphyloma, choriocarcinoma, placental

trophoblastic tumors, and epithelioid trophoblastic tumors. Although

staphyloma can now be diagnosed earlier than before, the incidence of

GTN after staphyloma remains unchanged. However, the correlation

between malignant staphyloma and LINE-1 has rarely been studied.

Lertkhachonsuk et al. (66) established a ROC curve for LINE-1 partial

hypomethylation to predict whether postmenopausal GTN would

occur, and they concluded that the decrease in partial methylation of

LINE-1 occurs early before the clinical manifestation of malignant

transformation and that choriocarcinoma and invasive staphyloma

have higher levels of LINE-1 hypomethylation sites; therefore, partial

methylation levels of LINE-1 may be a promising marker for

monitoring staphyloma before progression to GTN.

Vulvar cancer is a relatively rare gynecologic cancer, and Hofstetter

et al. (68) used immunohistochemistry to determine LINE-1-ORF1p

and p53 expression in dVIN, suggesting that ORF1p may be a useful

diagnostic marker for dVIN, especially if wild-type p53 is preserved.
5 LINE-1 as a therapeutic target for
gynecologic tumors

5.1 Targeted epigenetic therapy

5.1.1 Targeting LINE-1 hypomethylation
DNAmethylation and histonemodifications are the main forms of

epigenetic modifications, and studies have shown that genome-wide

LINE-1 hypomethylation is associated with immune escape features in

aneuploid tumors, promotes high mutations and high chromosomal

copy number changes, and is an important manifestation of epigenetic

abnormalities in a variety of tumors (80). Studies related to ovarian

cancer have shown that LINE-1 hypomethylation directly activates the

ATM-MRN-SMC S-phase checkpoint pathway by promoting mRNA

expression, genomic DNA rearrangements, and chromatin mutations,

leading to double-strand breaks (DSBs) and replication stress, which

ultimately cause cancer development (67). In addition, LINE-1

hypomethylation promotes IL20 expression in cervical cancer,

induces altered signaling pathways, and increases cell invasiveness,

which is an important epigenetic alteration in several cancers, including

gynecologic tumors (65). Therefore, inhibition of LINE-1

hypomethylation is an effective therapeutic strategy. In a clinical trial,

LINE-1 hypomethylation was found to be associated with the

progression of oral precancerous lesions to head and neck squamous

cell carcinoma (HNSCC), and short-term soy isoflavone intake resulted
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in a significant increase in tissue-specific overall methylation in

patients, suggesting that patients’ LINE-1 hypomethylation levels

could be modulated by soy isoflavone supplementation. Also, the

association of LINE-1 hypomethylation with genetic instability,

tumorigenesis, and prognosis suggests that soy isoflavones may be

used as potential cancer-preventive agents (81). Szabo et al. also found

that olive oil (EVOO) improved the hypomethylation of LINE-1

reverse transcription transposon DNA in an environmental

carcinogen model compared to controls, resulting in reduced tumor

incidence (82). Therefore, it can be considered that the treatment of

gynecological tumors by targeting and regulating LINE-1

hypomethylation. In addition, DNA methyltransferase (DNMT), an

important epigenetic molecule that causes DNA methylation, plays an

important role in the occurrence and development of various tumors.

Zhang et al. showed that in breast cancer cell lines treated with

paclitaxel, DNMT3a positively regulated LINE-1 mRNA expression

levels by increasing methylation within the LINE-1 gene, while

promoting the development of a drug-resistant phenotype in breast

cancer (83). Therefore, DNA methyltransferase inhibitors (DNMTis)

can be used to downregulate DNMT3a levels and thus inhibit LINE-1

expression. Thus, DNAmethylation alterations also suggest epigenetics

in precision immunotherapy.

5.1.2 Targeted histone modifications
Targeted histone modifications provide another important

epigenetic treatment modality. The inhibitory-modified histones

(H3K9me3 and H3K9me2) are highly enriched in LINE-1 and

silence LINE-1 expression at different stages (84, 85). It has been

shown that the histone demethylase KDM4B, a novel regulator of

LINE-1, activates the reverse transcriptional activity of LINE-1 by

catalyzing the demethylation reaction of the repressive histone

H3K9me3 leading to DNA damage, and exhibits increased LINE-1

expression and copy number in breast cancers expressing high levels of

KDM4B (86). In addition, hypoxia-induced KDM4B is expressed in

approximately 60% of epithelial ovarian cancer (EOC) and positively

correlates with the tumor hypoxia marker CA-IX, which is strongly

induced in EOC cell lines under hypoxic conditions, and inhibition of

KDM4B expression can effectively control ovarian cancer cell invasion

and migration in vitro (87). Therefore, LINE-1 expression in tumors

can be inhibited by using histone demethylase inhibitors. Later, Fukuda

et al. identified the H3K9methyltransferase SETDB1 as a key repressor

of retrotransposable elements in mouse embryonic stem cells (mESCs),

i.e., histone methylation mediates transcriptional silencing of LINE-1

(88). Taken together, targeting histone demethylation is a major focus

of epigenetic therapy for tumors.

5.1.3 Small RNA interference pathway
In addition, the small RNA-mediated pathway governs gene

expression in a sequence-dependent manner, inhibiting LINE-1

expression and exerting anti-tumor activity. P-element-induced

weak testis protein (PIWI) interacting RNA (piRNA) PIWI-piRNA

complex enters the nucleus and targets nascent TE transcripts,

recruiting epigenetic silencers, including histone methyltransferases,

and even ab initio DNA methylation to maintain transcriptional

silencing in the long term (89, 90). RNA interference induced the
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downregulation of LINE-1 expression in mouse models, leading to a

significant reduction in tumorigenicity of cancer cells, and this RNA

interference also led to post-transcriptional silencing of LINE-1

elements in human melanoma cells and prostate cancer cells (91).

Therefore, RNA interference technology can be considered to reduce

the expression level of reverse transcriptase, thus slowing down the

proliferation of tumor tissue.
5.2 Inhibition of ORF1p activity

The reverse transcriptase (RT) machinery is mainly present within

ORF2p, and preclinical studies have shown that RT inhibitors

(nevirapine and efavirenz) promote cancer cell differentiation, reduce

cell proliferation and antagonize tumor progression in mouse models.

Phase II trial species in patients with prostate tumors confirmed the

anticancer efficacy of RT inhibitors (91). Furthermore, clinical studies

on lung adenocarcinoma have shown that LINE-1 forms a chimeric

transcript LCT (L1-FGGY) with the tumor suppressor gene FGGY via

reverse transcriptional translocation, and analysis of its function

suggests that LCT deletion activates the arachidonic acid (AA)

metabolic pathway and promotes tumor growth, which can be

effectively targeted by the combination of anti-HIV drugs (NVR)

and metabolic inhibitors (ML355) (79). These studies suggest that

endogenous RT can be considered as an epigenetic regulator of cell

differentiation and proliferation and can be a new target for cancer

therapy, and RT inhibitors are effective tools for novel anti-cancer, non-

cytotoxic therapy. The chaperone ORF1p also causes loss of

retrotransposon activity. Recently, Kou et al. provided new insights

into the potential of ORF1p expression inhibitors in antitumor therapy

by suggesting that ORF1p may have an independent role in driving

tumor development and is considered as a cancer marker (92). They

screened LINE-1 ORF1p expression inhibitors in lung cancer cell lines,

non-small cell lung adenocarcinoma cell lines, and breast cancer cell

lines by efficient high-throughput ICW assays and showed that

inhibition of LINE-1 ORF1p expression can affect reverse

transcriptional translocation of LINE-1 and inhibit the proliferation

of cancer cell lines. These studies point us to the RT and ORF1p

encoded by LINE-1 as potential targets in future cancer therapy.

6 Discussion

Effective treatment strategies and reliable biomarkers are essential

to improve cancer treatment. Currently, among all gynecologic tumors,

endometrial and cervical cancers are more often diagnosed at early

stages due to different symptoms and screening tools, while ovarian

cancer still faces great challenges in its diagnosis and treatment due to

the lack of obvious early symptoms. Therefore, the development of

effective early diagnostic markers is of great importance for the early

detection of cancer. In recent years, The expression of LINE-1 in

tumors has aroused particular interest in the scientific community, and

numerous studies have shown that LINE-1, as the only autonomously

mobile transposon in the human genome, plays an important role in

tumorigenesis and development due to its reverse transcriptional

activity leading to genomic instability. LINE-1 hypomethylation is an

early stage in gynecological tumors such as ovarian, cervical, and
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endometrial cancers events, and can be used as a molecular marker

for early diagnosis and prognosis determination. In addition, ORF1p

generated by LINE-1 retrotransposition is highly expressed in ovarian,

endometrial, and differentiated vulvar epithelial cancers, and it has been

noted that ORF1p is expressed in 90% of HGSOC and 90% of STIC,

but is undetectable in 99% of controls; therefore, plasma ORF1p

appears to be a highly specific cancer biomarker in gynecologic

cancers as well as in high-risk precursor lesions and has important

value for tumor prognosis (93). In summary, exploring the function

and mechanism of LINE-1 in gynecologic tumors will provide a novel

direction for targeted cancer therapy. Its expression in gynecologic

tumor tissues such as ovarian cancer, cervical cancer, and endometrial

cancer suggests that it is expected to be a novel molecular marker for

early diagnosis and prognosis of gynecologic tumors and a potential

therapeutic target.

However, the mechanism of LINE-1 in the development of

gynecologic tumors has not been fully understood, and few clinical

trials have been reported on LINE-1 as a therapeutic target in

gynecologic tumors. Therefore, in-depth studies on the mechanism

of LINE-1 in gynecologic tumors and related clinical studies are

valuable for the early diagnosis of tumors and also help us to find

more effective treatments. In conclusion, the use of LINE-1 as a

biological agent in gynecologic tumors is of great value. In

conclusion, the use of LINE-1 as a biomarker has generated

considerable excitement in the scientific community, and it is

reasonable to expect that in the coming years, LINE-1 may

become a useful biomarker for early diagnosis and prognosis of

gynecologic tumors, and research on LINE-1 is expected to become

a new strategy for effective treatment of gynecologic tumors.
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