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Tumor-derived extracellular
vesicle nucleic acids as
promising diagnostic biomarkers
for prostate cancer

Yanjun Diao, Bingbing Zhu, Ting Ding, Rui Li , Jinjie Li ,
Liu Yang, Lei Zhou, Xiaoke Hao and Jiayun Liu*

Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an,
Shaanxi, China
Liquid biopsy as a non-invasive method has a bright future in cancer diagnosis.

Tumor-related extracellular vesicles (EVs) and their components (nucleic acids,

proteins, and lipids) in biofluids may exert multiple functions in tumor growth,

metastasis, immune escape, and angiogenesis. Among all the components,

nucleic acids have attracted the most interest due to their simplicity of

extraction and detection. In this review, the biological functions of EVs in

prostate cancer (PCa) genesis and progression were summarized. Moreover,

the diagnostic value of EV RNA markers found in clinical body fluid samples was

reviewed, including their trends, challenging isolation methods, and diagnostic

efficacy. Lastly, because relatively much progress has been made in PCa, studies

on EV DNA markers are also discussed.

KEYWORDS

prostate cancer, extracellular vesicles, nucleic acids, diagnosis, biomarker
1 Introduction

As a new and minimally invasive method, liquid biopsy is aimed at isolating genetic

material from biological fluids for tumor diagnosis. It is promising to overcome the

invasive sampling and heterogeneity problems of tissue biopsy to achieve better screening

and monitoring of tumor recurrence risk. As one of the three targets of liquid biopsy, these

lipid-bilayered vesicles with cellular origins are released into the extracellular region by a

variety of cells, including cancer cells. Extracellular vesicles (EVs) can be categorized into

exosomes, microvesicles, and apoptotic bodies according to their size, origin, morphology,

and mode of release. Tumor-derived EVs are thought to mediate intracellular

communication as “horizontal” transfer cargo and reflect their cell-type origin,

suggesting they could offer a good source of novel tumor diagnosis biomarkers.

EVs are exciting in a vast range of biofluids (blood, urine, bronchoalveolar lavage fluid,

ascites and pleural effusion, breast milk, saliva, etc.) and contain a myriad of functional

biomolecules (proteins, lipids, RNA, DNA). Considering EVs in biological fluids generally
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reflect their parent cells’ information, their unique composition

could assist in cancer detection. Compared to lipids and proteins,

the easy-to-detect nature of nucleic acids makes them an attractive

source for clinical application (1). RNA, in particular, has been the

most exploited because it is protected from nucleases by lipid

bilayers and is easier to detect using PCR and next-generation

sequencing (NGS). Another component of nucleic acids, DNA, has

been less studied but has gained more attention in recent years.

Prostate cancer (PCa) has the highest incidence of male

genitourinary malignancy and is the most common cancer in

Western men. It is well known that the routine screening method

prostate-specific antigen (PSA) has many limitations due to its poor

specificity. For example, in addition to the elevation in PCa, PSA

also increases during anal digital examination, catheter insertion,

prostate inflammation, and hypertrophy (2). Therefore, novel,

noninvasive, and highly specific diagnostic biomarkers are highly

needed. Although it is controversial whether the number of EVs in

tumor patients is increased relative to healthy controls, the reported

PCa studies are relatively consistent in suggesting that the secretion

of EVs in PCa patients is five to 10 times higher than that in healthy

subjects or patients with benign prostatic hyperplasia (BPH) (3–5).

As an androgen-dependent tumor, androgen deprivation therapy

(ADT) is the main standard treatment for PCa and the basis for the

combination of various treatment options. Studies have shown that

after ADT, EVs isolated from the urine of PCa patients or cell

culture supernatant were approximately two- to threefold decreased

(6). In terms of quantity, all this evidence suggests the potential of

EVs for diagnosis and treatment efficacy prediction for PCa.

Therefore, this study took PCa as the object to review the

diagnostic value of EV RNA markers found based on clinical

body fluid samples, as well as the relevant progress of PCa EV

DNA markers in recent years.
2 The biological function of EVs
in PCa

The potential of EVs for clinical application may be determined

by their biological function. The education function of tumor-

related EVs to target cells is through the horizontal transfer of

carried biomolecules, which is involved in the modulation of cancer

metabolism and the microenvironment. Several studies have

confirmed that intercellular transfer of EV cargo changes the

phenotype of recipient cells and contributes to PCa occurrence

and development. A model of the action mechanism is shown in

Figure 1, and the literature related to EV function is summarized

in Table 1.

At present, a few studies have suggested that the nucleic acid

component of EVs could be useful for developing novel biomarkers.

In one such study, Hessvik et al. evaluated EVs derived from the cell

culture medium of PCa epithelial cell lines PC-3 and the human

prostate (noncancer) epithelial cell line RWPE-1. Microarray

identified 26 unique miRNAs in the EVs of RWPE-1, 20 unique

miRNAs in the EVs of PC-3, and 362 overlapping miRNAs between

the two (20). These unique EV miRNAs from noncancer and PCa

cell lines could lead to the discovery of novel biomarkers.
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Furthermore, lots of comparison studies were conducted between

different PCa clinical conditions such as aggressiveness [Gleason

Score (GS)], metastasis, androgen resistance, and response to

antitumor drugs (3, 21). These results demonstrated that EV

RNA expression patterns can be related to specific PCa clinical

situations, fueling the hope to find more valuable biomarkers to

distinguish tumor subtypes and predict treatment response. The

other EV nucleic acid component, DNA, was first observed in 2014;

it was found later and got less attention than EV RNA (22). In

addition, using PCa as a model, it has been proven that in different

subtypes of EVs, DNA components are mainly encapsulated in

large EVs (1~10 mm diameter) (23). In this review, we

systematically summarize studies investigating EV nucleic acids

(RNA and DNA) in biofluids of prostate cancer patients and discuss

the utility of the identified biomarkers in various clinical scenarios.

Furthermore, we outline the biological questions and technical

challenges that have arisen from these studies.
3 EV RNA biomarker in PCa

At present, due to the simplicity of isolation and detection,

nucleic acids have attracted the most interest in EV content. Under

such circumstances, research on tumor miRNA marker screening

has gradually turned from free-circulating miRNAs to EV-

encapsulated miRNAs in body fluids. Compared to free

circulating RNA in body fluids, EV RNA has advantages such as:

(i) EV double-layer lipid membrane could protect RNA against

nuclease degradation (24), which allows for higher level and easier

detection; (ii) EVs selectively encapsulate RNA. Matthew et al. have

demonstrated the selective sorting of miRNAs into EVs (25). In

PCa, Hessvik et al. identified 31 miRNAs only detected in EVs

through a comparison of the miRNA profile of EVs vs. parent cells

using a PC-3 cell line (20). (iii) For urological tumor diagnosis,

urine supplies a noninvasive approach to detect tumor-derived

biomarkers. Among the known forms of miRNA packaging, EV-

enclosed miRNA is thought to overcome urinary impurity

interference and reflect the vital activity of cancer cells. A urine

sample is easier to get than blood, has a larger volume and less

damage, and may truly be “noninvasive”. In addition, prior prostate

massage has been demonstrated to enhance the efficiency of urinary

EV detection (26–28).

Based on deep sequencing analysis of the EV RNA subtypes,

pioneering work has identified mature miRNA as having the

highest proportion, ranging from 29% to 44% of the total EV

RNA, with long noncoding RNA (lncRNA) and mRNA accounting

for most of the remaining EV RNA (29–31). For RNA marker

screening, comparisons have most commonly been made between

different cell lines (for example, androgen-sensitive vs. androgen-

independent; less aggressive vs. aggressive, etc.) or between different

clinical conditions (health control or BPH vs. PCa patients,

localized PCa vs. metastatic PCa, castration-sensitive vs.

castration-resistant PCa, nonrecurrent PCa vs. recurrent PCa,

etc.). Quite all studies demonstrate that such specific cultures or

clinical situations can be related to specific expression patterns, and

EV RNA biomarker specificity increases with the development of
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tumors. Therefore, the diagnostic potential of EV RNA markers has

received extensive attention. Many studies used a comparison

between clinical sample groups to screen EV RNA markers with

significant expression differences. However, the high heterogeneity

among single papers was relevant to sample type, EV separation

method, and specimen size, which concluded that only a few RNAs,

such as miR-141, miR-375, or PCA3, had a common trend and

most were different. In order to gain the whole picture of the

reported PCa RNA biomarkers, we summarized the published

screening studies to show the biomarker types, expression trends,

experimental design, and conclusions, as shown in Table 2. It

should be noted that the samples we used here for comparison

were all derived from patients’ blood or urine and did not contain

cell culture supernatant, although there was also a study comparing

EV miRNA profiles between PCa cell lines (PC-3) and

noncancerous lines (RWPE-1) cultured in vitro (20).

From a clinical perspective, 90% of the studies (19/21) have

focused on the early diagnosis of PCa, which aims to distinguish

PCa patients from BPH or health control. Only two studies have

been designed to predict hormone resistance (30, 33). In fact, this is
Frontiers in Oncology 03
inconsistent with the actual needs of PCa diagnosis and treatment,

such as distinguishing PCa with high metastasis risk and predicting

the progression to CRPC. The main reason for taking the easy way

for screening is the difficulty of collecting accurately grouped

specimens in advanced PCa. One recent study focused on the

differences between different PCa stages. They compared one case

each in the organ-confined PC (OC) group, the extracapsular-

extending PC (EC) group, and the seminal vesicle-invading PC

(SI) group with healthy controls. The selected mRNAs and miRNAs

with the highest change folds were different, indicating the

discrimination potential related to PCa progression (47).

Considering that the sample size was too small, the study was not

included in Table 2.

From a methodological point of view, after the potential EV

RNA markers were screened out through NGS or microarrays, RT-

qPCR was usually adopted for further validation. The final

diagnostic performance was shown in the receiver operating

characteristic curve (ROC) and area under the curve (AUC). In

general, the promising PCa early detection EV miRNA biomarkers

include miR-141, miR-375, and miR-1246 from blood (serum or
FIGURE 1

The biological function of EVs in PCa occurrence and development. (A) PCa-derived EVs mediate epithelial–mesenchymal transition (EMT),
increasing the migration and invasion of noncancerous prostate epithelial cells. (B) PCa-derived EVs triggered fibroblast differentiation to a distinctive
myofibroblast phenotype, resembling stromal cells isolated from PCa tissue, which support angiogenesis in vitro and accelerate tumor growth in
vivo. (C) Cancer-associated fibroblast (CAF)-derived EVs can reprogram the metabolic machinery of PCa, supplying metabolomics for PCa cells and
promoting tumor growth. (D) PCa-derived EVs confer prosurvival signals to alter the phenotype of other PCa cells in their surrounding environment,
including reducing apoptosis, increasing proliferation, inducing migration, and transferring resistance. (E) PCa-derived EVs regulate the bone
microenvironment by affecting osteoblast and osteoclast differentiation, which facilitates PCa cell proliferation and invasion. (F) PCa-derived EVs
promote immune suppression and tumor escape through the downregulation of the cytotoxic response of cellular immunity. (G) Adipose-derived
stromal cell (APS) is known as one of the mesenchymal stem cells (MSCs). APS-derived EVs could inhibit metastatic PCa progression.
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TABLE 1 Summary of mechanism studies investigating EVs’ function on recipient cells.

Category EV-generat-
ing cells

Biomolecule
expression
on EVs

Recipient
cells

EV function Reference

PCa-derived EV-mediated
EMT

PCa cells lines:
LNCaP and PC3

ITGA3 ↑ Noncancerous
prostate
epithelial cells
(prEC)

Inhibition of exosomal ITGA3 reduced the migration and
invasion of noncancerous prEC almost completely.

Bijnsdorp
et al. (7)

PCa-derived EV-triggered
fibroblast differentiation

PCa cells TGF-b1 Fibroblasts Prostate cancer exosomes triggered TGFb1-dependent
fibroblast differentiation to a distinctive myofibroblast
phenotype resembling stromal cells isolated from
cancerous prostate tissue; supporting angiogenesis in vitro
and accelerating tumor growth in vivo.

Webber
et al. (8)

CAF-derived EVs could
reprogram PCa metabolic
machinery

CAFs Metabolomics
including amino
acids, lipids, and
tricarboxylic acid
cycle
intermediates

Cancer cells
(PCa,
pancreatic
cancer)

Cancer cells avidly utilized metabolomics delivered by
CAF EVs for central carbon metabolism and promoting
tumor growth under nutrient deprivation or nutrient-
stressed conditions.

Zhao et al.
(9)

Urine samples of
3 PCa patients
and 2 healthy
men

Not applicable Prostate CAFs:
primary
cultures PCF-
54 and PCF-
55 from 2 PCa
tissues

EVs from PCa patients elicited transcriptional changes in
CAFs related to cell division regulation, chromosome
segregation, and chemokine expression, which showed
functional heterogeneity.

Sadovska
et al. (10)

PCa-derived EVs could
confer prosurvival signals to
alter the phenotype of other
PCa cells

PCa cells lines:
DU145

Not applicable PCa cells lines:
LNCaP

PCa-derived exosomes significantly reduce apoptosis,
increase cancer cell proliferation, and induce cell migration
in LNCaP and RWPE-1 cells.

Hosseini-
Beheshti
et al. (11)

PCa cells lines:
DU145 and
22Rv1 docetaxel-
resistant variants
(DU145RD and
22Rv1RD)

MDR-1/P-gp PCa cells lines:
DU145,
22Rv1, and
LNCaP

EVs derived from DU145 and 22Rv1 docetaxel-resistant
variants (DU145RD and 22Rv1RD) conferred docetaxel
resistance to DU145, 22Rv1, and LNCaP cells, which may
be partly due to exosomal MDR-1/P-gp transfer.

Corcoran
et al. (12)

PCa-derived EVs could
regulate the bone
microenvironment by
affecting osteoblast and
osteoclast differentiation to
facilitate bone metastasis

PCa cell NEAT1
(lncRNA)

Human bone
marrow-
derived
mesenchymal
stem cells
(hBMSCs)

PCa cell-derived EVs facilitated the activity of alkaline
phosphatase (ALP) and mineralization of extracellular
matrix and continuously upregulated the levels of RUNX2,
ALP, alpha-1 type 1 collagen, and osteocalcin by regulating
RUNX2 to induce the osteogenic differentiation of
hBMSCs.

Mo et al.
(13)

PCa cell lines:
22Rv1, DU145,
and PC-3

NORAD
(lncRNA)

Bone marrow
stromal cells

NORAD might serve as a competing endogenous RNA
(ceRNA) of miR-541-3p to promote PKM2 expression,
thereby promoting internalization and transfer of PCa EVs
to bone marrow stromal cells, enhancing the development
of bone metastasis in PCa.

Hu et al.
(14)

PCa cell lines:
DU145

AY927529 ↑
(lncRNA)

Bone marrow
stromal cell
line (ST2)

Exosome-mediated lncAY927529 could positively regulate
CXCL14 levels in ST2 cells and promote PCa cell
proliferation and invasion by regulating bone
microenvironment.

Li et al. (15)

PCa cell lines:
PC3 and DU145

v-ets
erythroblastosis
virus E26
oncogene
homolog 1

Osteoblasts PCa-EVs enhanced osteoblast differentiation mainly
through the delivery of PCa cell-derived v-ets
erythroblastosis virus E26 oncogene homolog 1, which is
an osteoblast differentiation-related-transcriptional factor.

Itoh et al.
(16)

PCa cell lines:
MDAPCa 2b, C4-
2, PC3, and
LNCaP AI+F

miR-92a-1-5p Osteoclasts miR-92a-1-5p delivered by PCa EVs could downregulate
type I collagen expression by directly targeting COL1A1
and thus promoting osteoclast differentiation and
inhibiting osteoblastogenesis.

Yu et al. (17)

PCa-derived EVs promote
immune escape through

PCa cell lines:
22Rv1, PC-3, and
LNCaP

Not applicable Natural killer
(NK) and CD8
+ T cells

PCa-derived EVs could downregulate NKG2D-mediated
cytotoxic response, which promotes immune suppression
and tumor escape.

Lundholm
et al. (18)

(Continued)
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TABLE 1 Continued

Category EV-generat-
ing cells

Biomolecule
expression
on EVs

Recipient
cells

EV function Reference

downregulating cytotoxic
response

APS-derived EVs could
inhibit metastatic PCa
progression

Adipose-derived
stromal cell
(ASC)

miR-145 Metastatic
PCa cells

ASC-derived EVs could inhibit PC3M-luc2 cell
proliferation and induce apoptosis.

Takahara
et al. (19)
F
rontiers in Oncology
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The ↑ means that the biomolecule expression was increased on EVs.
TABLE 2 Summary of clinical studies investigating EV nucleic acid targets as potential PCa biomarkers.

Targets
evaluated

Body
fluid

sources

Number of
participants

EV isolation
methods

EV target
testing
methods

Diagnostic value/outcome Reference

miR-141 ↑ Serum 20 PCa vs. 20
BPH vs. 20 HC
A follow-up
cohort: 51 PCa
(20 mPCa vs.
30 LPCa)

ExoQuick Exosome
Precipitation
Solution (System
Biosciences,
Mountain View, CA,
USA)

RT-qPCR • Higher levels in serum EVs than in whole serum.
• Higher levels in PCa patients vs. BPH patients (3.85-
fold, p = 0.0007) and healthy controls (4.06-fold, p =
0.0005).
• EV miRNA levels associated with PSA ≥ 10, GS ≥ 8,
and T3/T4 stages.
• Higher levels in LPCa vs. mPCa: AUC = 0.8694,
sensitivity = 80%, specificity = 87.1%.

Li et al. (32)

Differentially
quantified EV
miRNA panels
depending on
different
comparison
groups

Plasma 78 PCa (55
LPCa, 16
mPCa) vs. 28
HC

A filter concentrator
with a 150-kDa
molecular weight
cutoff for MV
extraction, Qiagen
miRNeasy for MV-
RNA extraction

Microarray
(profiling of
742 miRNAs)
RT-qPCR
validation

• All 78 PCa vs. 28 HC: 12 differentially expressed
miRNAs, 11 miRNA increased (miR-107, miR-130b,
miR-141, miR-2110, miR-301a, miR-326, miR-331-3p,
miR-432, miR-484, miR-574-3p, miRr-625), 1
decreased (miR-181a-2)
• 55 nonmetastatic PCa vs. 28 HC: 10 differentially
expressed miRNAs, 9 miRNA increased (miR-107,
miR-141, miR-2110, miR-301a, miR-326, miR-432,
miR-484, miR-574-3p, miR-625), 1 decreased (miR-
181a-2)
•16 mPCa vs. 55 nonmetastatic PCa: 16 differentially
expressed miRNAs, 15 miRNA increased (miR-582-3p,
miR-20a, miR-375, miR-200b, miR-379, miR-513a-5p,
miR-577, miR-23a, miRr-1236, miR-609, miR-17, miR-
619, miR-624, miR-198, miR-130b), 1 decreased (miR-
572)

Bryant et al.
(33)

miR-141 ↑
miR-375 ↑

Serum 47 recurrent
PCa vs. 72
nonrecurrent
PCa

ExoMiR extraction
kit

TaqMan RT-
qPCR (miR-375
and miR-141)

• miR-141 and miR-375 were associated with recurrent
(metastatic) PCa following radical prostatectomy.

Bryant, et al.
(33)

miR-107 ↑
miR-574-3p ↑

Urine
(thawed
cell
pellets)

118 PCa (70
LPCa, 48
advanced PCa)
vs. 17 HC

mirVana kit
(Ambion)

RT-qPCR
(miR-107, miR-
574-3p, miR-
375, miR-200b,
miR-141)

• PCa vs. HC: miR-107 and miR-574-3p were present
at significantly higher concentrations.
• Both 2 miRs appeared more accurate than PCA3
normalized to urinary PSA (AUC: miR-107 = 0.74;
miR-574-3p = 0.66; PCA3 = 0.61).

Bryant et al.
(33)

miR-1290 ↑
miR-375 ↑

Plasma Training
cohort: 23
CRPC
Validation
cohort: 100
CRPC

ExoQuick Exosome
Precipitation
Solution (System
Biosciences,
Mountain View, CA,
USA)

Training
cohort: RNA
sequencing
Validation
cohort: RT-
qPCR (miR-
1290, miR-
1246, miR-375)

• miRNA levels are significantly associated with poor
overall survival.
• Predictive performance improved via a combination
of ADT failure time and PSA level at the time of CRPC
stage with miRNA levels, with AUC increased from
0.660 to 0.730.

Huang et al.
(30)

(Continued)
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TABLE 2 Continued

Targets
evaluated

Body
fluid

sources

Number of
participants

EV isolation
methods

EV target
testing
methods

Diagnostic value/outcome Reference

miR-1246 ↑ Serum Cohort 1: 8
HC vs. 44 PCa
(primarily
stage IV)
Cohort 2: 21
BPH vs. 25
PCa (stages
IIA–III)

Total EV isolation
reagent (Life
Technologies)

NanoString
nCounter
microRNA
platform
TaqMan RT-
qPCR

• Cohort 1: EVs miR-1246 expression can significantly
discriminate between HC and PCa (AUC = 0.926),
compared with serum PSA with AUC = 0.869.
• Cohort 1 + 2: EVs miR-1246 observed a significant
inverse correlation with PCa pathologic stage,
specifically upregulated in aggressive prostate cancer.
• miR-1246 was downregulated in PCa clinical tissues
and cell lines and was selectively released into EVs.
• Overexpression of miR-1246 in a PCa cell line
significantly inhibited xenograft tumor growth in vivo
and increased apoptosis and decreased proliferation,
invasiveness, and migration in vitro.

Bhagirath
et al. (34)

miR-19b Urine 20 HC vs. 14
PCa

High-speed
centrifugation and
filtration

RT-qPCR
(miR-19b, miR-
25, miR-125b,
miR-205)

• miR-19b distinguished PCa patients and healthy
donors with 100%/93% (total urinary EVs) and 95%/
79% (exosome-enriched fraction) specificity/sensitivity
and a 95%-specificity and 79%-sensitivity respectively.

Bryzgunova,
et al. (35)

miR-196a-5p
↓miR-501-3p ↓

Urine 28 PCa vs. 19
HC

Centrifugation Screening: NGS
Validation: RT-
qPCR

• NGS data showed 5 miRNAs were significantly
decreased in healthy control vs. PCa patients: miR-
196a-5p, miR-34a-5p, miR-143-3p, miR-501-3p, and
miR-92a-1-5p.
• Both miR-196a-5p (AUC = 0.73) and miR-501-3p
levels were decreased in PCa patients (AUC = 0.69).

Rodriguez
et al. (29)

miR-2909 ↑ Urine (90 PCa/60
BCa) vs. 10
BPH vs. 50 HC

Exiqon miRCURY™
exosome isolation kit

RT-qPCR
(miR-2909,
miR-615-3p)

• Urinary EV miR-2909 distinguishes PCa from BCa.
• Urinary EV miR2909 correlates with the severity (GS)
of PCa in all its forms.
• Urinary EV miR-2909 revealed a better diagnostic
potential for PCa than either PSA or miR-615-3p.

Wani et al.
(36)

miR-21 ↑
miR-375 ↑
Let-7C ↑

Urine 60 PCa vs. 10
HC

Differential
centrifugation

RT-qPCR
(miR-21, miR-
141, miR-214,
miR-375, Let-
7C)

• EVs miR-21, miR-375, and Let-7C were significantly
upregulated in PCa vs. HC, but no differences were
found for miR-141.
• A panel combining miR-21 and miR-375 is suggested
to distinguish PCa patients and healthy subjects (AUC
of 0.872).
• Let-7C was significantly correlated with PCa clinical
stage.

Foj, et al. (37)

miR-574-3p ↑
miR-141-5p↑
miR-21-5p↑

Urine 35 PCa vs. 35
HC

Lectins,
phytohemagglutinin,
and concanavalin A
(Sigma-Aldrich,
Russia) induce
agglutination of EVs

RT-qPCR • PCa vs. HC: the levels of miR-574-3p, miR-141-5p,
and miR-21-5p were significantly upregulated
associated with PCa.
• miR-574-3p: AUC = 0.85, miR-141-5p: AUC=0.86,
miR-21-5p: AUC=0.65.

Samsonov,
et al. (38)

miR-21 ↓
miR-375 ↓
miR-204 ↑

Urine Training
cohort: 4 HC
vs. 9 PCa
Validation
cohort: 26 HC
vs. 48 PCa

Differential (ultra)
centrifugation

Training
cohort: NGS
Validation
cohort: a
stemloop RT-
PCR

• PCa vs. HC: NGS identified the top 10 PCa
differentially expressed (Log2 fold change > 2) miRNAs
in urinary EVs. Higher levels in PCa: miR-10a-5p,
miR-204-5p, miR-30a-3p; lower levels in PCa: miR-
375, miR-21-5p, miR-141-3p, Let-7C-5p, miR-26b-5p,
miR-101-3p, Let-7b-5p.
• The diagnostic performance of 3 isomiR combination
of miR-21, miR-375, and miR-204 resulted in an AUC
of 0.866, compared to a PSA AUC of 0.707 and the
corresponding 3 mature microRNAs (miRs) AUC of
0.766.

Koppers-Lalic
et al. (31)

miR-145 ↑ Urine 60 PCa vs. 37
BPH vs. 24 HC

Hydrostatic filtration
dialysis (HFD)

qRT-PCR
(miR-572, miR-
1290, miR-141,
miR-145)

• The level of miR-145 in urine EVs was significantly
increased in PCa patients compared with BPH patients.
• The level of miR-145 in urine EVs was significantly
increased when PCa patients with GS ≥ 8 compared
with GS ≤ 7.
• miR-145 in UEVs combined with serum PSA
(AUC = 0.863) could differentiate PCa from BPH
better than PSA alone (AUC= 0.805).

Xu et al.
(39)

(Continued)
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TABLE 2 Continued

Targets
evaluated

Body
fluid

sources

Number of
participants

EV isolation
methods

EV target
testing
methods

Diagnostic value/outcome Reference

5
downregulated
and 26
upregulated
miRNAs

Urine 3 PCa (age 58,
stage 4; age 57,
stage 2a; and
age 54; stage
2b) vs. 3 HC
(ages 53, 60,
and 50)

Nanowires anchored
into a microfluidic
substrate

Microarray
(2,565 human
miRNA probes)

5 downregulated: miR-15a-3p, miR-135b-5p, miR-
520c-3p, miR-4783-5p, miR-7849-3p
26 upregulated miRNAs: miR-4531, miR-28-5p, miR-
103a-2-5p, miR-105-5p, miR-124-3p, miR-151a-5p,
miR-151b, miR-200a-5p, miR-300, miR-424-3p, miR-
519c-5p, miR-551b-5p, miR-617, miR-873-3p, miR-
921, miR-1288-3p, miR-3124-5p, miR-3155a, miR-
3917, miR-4283, miR-4727-3p, miR-5096, miR-5187-
5p, miR-6074, miR-6874-5p, miR-6892-5p

Yasui et al.
(40)

PCA3 lncRNA
↑
ERG mRNA ↑

Urine 106 controls
(Bx Neg) vs 89
PCa (Bx Pos)

Urine Clinical
Sample Concentrator
Kit (Exosome
Diagnostics)

RT-qPCR
computed
EXO106 score
(the sum of
normalized
PCA3 and ERG
RNA levels)

• EXO106 score demonstrated good clinical
performance in predicting biopsy results for both any
PCa (AUC = 0.715) and high-grade PCa (AUC =
0.764).
• The clinical performance was improved with a
combination of EXO106 and SOC (standard of care =
PSA, age, race, or family history) (any PCa: AUC =
0.715; high-grade PCa: AUC = 0.803).

Donovan
et al. (41)

PCA3 lncRNA
↑
ERG mRNA ↑

Urine Training
cohort: 255
patients with
PSA (2 to 20
ng/ml) and
biopsy
outcomes
Validation
cohort: 519
patients with
PSA (2 to 20
ng/ml) and
prognostic
score

Urine Clinical
Sample Concentrator
Kit (ExoDx Prostate
IntelliScore)

Urine exosome
gene expression
assay (the
ExoDx Prostate
IntelliScore
urine exosome
assay): RT-
qPCR

• Training cohort: gene expression assay in
combination with SOC (AUC = 0.77) significantly
improved performance SOC alone (AUC=0.66) for
predicting high-grade PCa (HGPCa, GS ≥ 7) from low-
grade PCa (GS = 6) and benign disease.
• Validation cohort: compared with the Prostate
Cancer Prevention Trial Risk Calculator (PCPTRC)
(AUC = 0.62) and PSA alone (AUC = 0.55), Gene
Expression Assay (AUC = 0.71) demonstrated
improved performance.
• Using a predefined cut point, 27% of biopsies would
have been avoided, missing only 5% of patients with
dominant pattern 4 high-risk GS7 disease.

McKiernan
et al. (42)

TMPRSS2:ERG
mRNA ↑

Urine
(urine
collected
prior to
RP)

21 PCa:
urinary EVs vs.
corresponding
prostatectomy
tissue from the
same patients
39 PCa (Bx
Pos) vs. 47
controls (Bx
Neg)

Filtration: a 100-k
MWCO filtration
concentrator
(Millipore)

RT-qPCR
(mRNA of
TMPRSS2:ERG,
BIRC5, ERG,
PCA3, and
TMPRSS2)

• Urinary EVs had a sensitivity: of 81% (13/16),
specificity: of 80% (4/5), and an overall accuracy: of
81% (17/21) for non-invasive detection of TMPRSS2:
ERG vs RP tissue.
• The rate of TMPRSS2: ERG exoRNA detection was
found to increase with age and the expression level
correlated with Bx Pos status.
• TMPRSS2: ERG: AUC = 0.744, AR: AUC = 0.558,
BIRC5: AUC = 0.674, ERG: AUC = 0.785, PCA3: AUC
= 0.681.

Motamedinia
et al. (43)

PCA3 lncRNA
↑
ERG mRNA ↑
KLK3 mRNA
↑

Urine
(after
DRE)

15 PCa (Bx
Pos) vs. 14
controls (Bx
Neg)

Filtration through a
100-kDa filter
(Vivaspin®)

RT-qPCR • The biomarker levels were highest in whole urine and
significantly higher after DRE in all substrates (whole
urine, cell pellet, and EVs).
• In the EVs substrate of urine, no significant
differences were found in PCA3, ERG, and KLK3
between Bx Pos and Bx Neg PCa patients.

Hendriks
et al. (44)

PCA3 lncRNA
↑
ERG mRNA ↑
KLK3 mRNA
↑

Urine
(after
DRE)

12 HC vs. 14
GS = 6 PCa vs.
26 GS ≥ 7 PCa

Ultrafiltration TaqMan qPCR • EVs RNA were richer than RNA from cell pellets in
urine.
• PCa vs. HC: In comparison to HC, both of the GS6
and GS7+ PCa groups had significantly higher
expression of PCA3, while only the GS7+ group had
significantly higher expression of ERG (no difference
between the 2 GS groups).
• No significant difference in KLK3 expression between
any of the groups.

Pellegrini
et al. (27)

lncRNA-p21 ↑ Urine
(after
DRE)

30 PCa vs. 49
BPH

Urine Exosome RNA
Isolation Kit
(Norgen Biotek,
Canada)

RT-qPCR
(lncRNA-GAS5
and lncRNA-
p21)

• lncRNA-p21 showed significantly higher levels in PCa
vs. BPH (AUC = 0.663).
• lncRNA-GAS5 showed no difference
• EV lncRNA levels showed no correlation with the
clinical stage (GS).

Isin et al. (45)

(Continued)
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plasma) and miR-141, miR-375, Let-7C, miR-2909, miR-145, miR-

21, miR-574-3p, miR-19b, miR-196a-5p, and miR-501-3p from

urine. With better sampling potential than blood, urinary EVs

have a broader RNA biomarker spectrum with mRNA of ERG,

TMPRSS2:ERG genes (27, 41–44), and lncRNA PCA3 and p21 (27,

41, 42, 44, 45). However, up to now, no higher-level evidence

has been found in studies on PCa EV RNA markers in either blood

or urine samples, such as meta-analysis, which is also the premise

for further clinical transformation. After all, the ultimate goal

of tumor biomarker screening is not just for research, but for

clinical detection.

Notably, based on data from a single study, PCa is the cancer

type that is at the forefront of clinical transformation. In 2016,

Exosome Diagnostics company passed FDA approval and launched

the first PCa EV diagnostic product ExoDx® Prostate (IntelIScore),

which was certificated to have a good clinical performance (AUC =

0.77). It is also one of the only two available commercial EV kits for

tumor detection until now. The other is the EV blood test kit ExoDx

Lung (ALK) for detecting EML-4-ALK mutations in patients with

nonsmall cell lung cancer (NSCLC). ExoDx® Prostate is based on

urinary EVs and provides a score by detecting the transcripts

(mRNA) of PCA3 and TMPRSS2:ERG genes binding with

standard of care (SOC = PSA, age, race, and family history of

PCa). This method could help determine whether a prostate biopsy

is needed by assessing the risk for high-grade (GS ≥ 7) and more

aggressive PCa and has proven that 27% of biopsies would have

been avoided (42). This study finally achieved the first completely

noninvasive, nondigital rectal examination (DRE), urine-based

liquid biopsy test of Exosome Diagnostics Company, which is a

landmark for EV clinical diagnosis transformation.
4 EV DNA biomarker in PCa

At present, the research on EV nucleic acid biomarkers is

mainly focused on EV RNA, while the research on EV DNA is

just starting. Since 2014, some studies have gradually characterized

the properties of EV DNA. First, how the DNA is extracted

determines which part of the DNA on the EVs is studied. EV

DNA consists of two parts, including those that adhere to the

outside of the EV (external DNA) and those that are wrapped inside

the EV (internal DNA). In order to better characterize the internal

DNA, which is relatively impervious to external interference, EVs

were pretreated with DNase and RNase to digest the external EV
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DNA before lysis with Triton X (48). Second, the focus is on how to

characterize DNA traits. Thakur et al. demonstrated the double-

stranded structure of EV DNA visually for the first time through

enzyme digestion and atomic force microscopy. Gel electrophoresis

further confirmed the molecular weight difference between EV

DNA and genomic DNA (gDNA) in melanoma, which were

mainly concentrated at 250 bp~2.5 kb and 2.5~10 kb,

respectively. Despite being highly fragmented, EV DNA has been

shown, without specific fragments, to be highly enriched or

consumed compared with gDNA by high-throughput whole-

genome sequencing (22, 49). Quantitative analysis showed that

EV DNA could be detected in all tumor types, including PCa (22RV

cell line), at a concentration ranging from 0 to 10 ng/µg of EV

protein (22). Thirdly, the mechanism by which EVs transmit

dsDNA is still controversial. It is currently considered that cells

can maintain homeostasis by excreting harmful DNA through EVs

(48). In addition to being a method of excretion of waste, other

studies confirmed that EVs horizontally transfer genes between cells

and can educate downstream cells. It has been reported that tumor

EVs carry oncogene sequences such as c-Myc to transmit the

genetic information of “mutation and amplification” to normal

cells (50).

As PCa biomarkers, EV DNA is gradually showing some

diagnostic potential, which is deployed relatively earlier and more

mature than the other tumors. However, relevant studies are still

relatively few, and there are still many gaps. PCa EV subpopulations

carry different gDNA fragments (51) with large PCa EVs (1–10 µm)

carrying most DNA (23), which indicates that the DNA molecules

are selectively and cell-dependently packed into specific EV

subtypes. EV DNA derived from LNCaP and PC-3 cells was

sequenced to detect PCa-related mutations of MLH1, PTEN, and

TP53 genes. A frameshift mutation (delAA) in codon 6 of the PTEN

gene and a point mutation (C>G) in codon 215 of the TP53 gene

was detected, the same as in their parental tumor cells (51). The

above results showed that EV DNA has the same potential as

circulating tumor DNA (ctDNA) to detect tumor-specific genetic

mutations, which prompts its potential as an alternative target for

gDNA from tumor tissue or cells.
5 Conclusion and perspectives

Based on body fluid specimens like blood, liquid biopsy can

overcome tissue heterogeneity and the difficulty of sampling, which
TABLE 2 Continued

Targets
evaluated

Body
fluid

sources

Number of
participants

EV isolation
methods

EV target
testing
methods

Diagnostic value/outcome Reference

SChLAP1 ↑ Plasma s 30 HC vs. 46
BPH vs. 34
PCa

Total Exosome
Isolation Reagent
(from plasma)
(Invitrogen,
Carlsbad, CA, USA)

RT-qPCR • SChLAP1 expression was significantly higher in the
PCa group than in the controls (AUC = 0.8697).
• The AUC of the combination of SAP30L-AS1 and
SChLAP1 was 0.9224.
• AUC for SChLAP1 combined with PSA was 0.9516.

Wang et al.
(46)
↑: The expression was increased in PCa.
↓: The expression was decreased in PCa.
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have great potential for use as noninvasive diagnostic biomarkers

compared with traditional tissue biopsy. As one of the three targets

of liquid biopsy, EVs have some obvious advantages. On the one

hand, the collection of blood and urine to obtain EVs is easily

available and minimally invasive, which helps facilitate repeated

sampling and achieve dynamic and real-time monitoring of

molecular changes in tumors. On the other hand, the accuracy of

tumor detection could be improved by analyzing tumor-derived

EVs or even selecting specific subtypes of tumor-derived EVs to

increase analytical sensitivity and specificity. More recent efforts

have demonstrated that tumor-derived EVs have the potential to be

used as a reliable source of cancer-related diagnostic biomarkers. In

particular, the nucleic acid component is stable and easy to detect

and seems to be the most promising biomarker for EVs. Since EV

miRNA was first reported in 2007, publications about EV RNA

biomarkers have grown exponentially. Apart from miRNA, other

EV nucleic acid molecules, such as oncogenic mRNA (including

fusion genes and splice variant transcripts), lncRNA, and dsDNA

(including cancer-driven mutation genes), also attract lots of

attention. The richness of the contents, the stability of the double-

layer membrane structure, and the diversity of detection methods of

EVs make them have unique advantages in tumor diagnosis.

Researchers have found that EVs in biofluids contain a group of

proteomic and genetic signatures of cancer, thus presenting an

enormous opportunity in terms of cancer diagnosis. However, this

is technically challenging due to the lack of effective and standard

methods for enriching tumor-derived EVs from total EVs

distinguish from EVs secreted by normal cells or specific-size EVs

from total tumor-derived EVs (isolate large vesicles to extract DNA).

Therefore, obtaining high purity and selected EVs is necessary

before further exploration of their molecular mechanism and

function. So far, many EV isolation and purification approaches

have been reported, including ultracentrifugation (UC), filtration,

chemical precipitation, affinity-binding beads, and microfluidics

techniques. The choice of EV isolation method depends on the

sample source, molecule to be detected, and downstream detection

methods. UC and density gradient ultracentrifugation (DG-UC)

have always been regarded as the most common approaches used to

isolate total EVs. However, sequential centrifugation is time-

consuming (90 min times two rounds) and instrument-

demanding, and it has the problem of co-purification of non-EV-

related proteins (protein aggregates and lipoproteins). In recent

years, immunocapture using antibodies to target tumor-specific

proteins on EV surface (e.g., PSMA or EpCAM for PCa (46)) has

been optimized and has emerged as a viable choice for EV

purification. In addition, the separation method of EVs should be

simplified for clinical application practice.
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In addition to the concerns over isolation approaches, there are

further uncertainties over protocol standardization and how to

define the preanalytical and analytical variables that impact

outcome measures. It remains unclear how to translate omics

techniques and omics information into early PCa diagnosis and

prognosis forecasting. Large-scale clinical translation has not yet

been carried out, and the majority of EV biomarker papers now

only discuss the sensitivity, specificity, or AUC of the diagnostic

model. However, it should be noted that if EVs are to be introduced

into clinical laboratories as tumor markers, comprehensive

verification work must be conducted to generate enough data that

can define the test’s performance. The information for a mature kit

should be applied, such as sample type, sampling method,

anticoagulant, transportation and storage conditions, and analysis

parameters including accuracy, sensitivity, specificity, linearity,

lower detection limit, measurement uncertainty, etc. However,

due to the need for large-scale and rigorous performance

verification before clinical application, this process is time-

consuming and costly. Therefore, there is still a long but

promising journey between these novel EV biomarkers and their

clinical translation for routine diagnostic use.
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