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and immune infiltration:
potential biomarkers for
predicting overall survival
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1Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China, 2Guangzhou University
of Chinese Medicine, Guangzhou, Guangdong, China, 3Experimental Center, Shandong University of
Traditional Chinese Medicine, Jinan, China
Background: Stomach adenocarcinoma (STAD), caused by mutations in

stomach cells, is characterized by poor overall survival. Chemotherapy is

commonly administered for stomach cancer patients following surgical

resection. An imbalance in tumor metabolic pathways is connected to tumor

genesis and growth. It has been discovered that glutamine (Gln) metabolism

plays a crucial role in cancer. Metabolic reprogramming is associated with clinical

prognosis in various cancers. However, the role of glutamine metabolism genes

(GlnMgs) in the fight against STAD remains poorly understood.

Methods: GlnMgs were determined in STAD samples from the TCGA and GEO

datasets. The TCGA and GEO databases provide information on stemness indices

(mRNAsi), gene mutations, copy number variations (CNV), tumor mutation

burden (TMB), and clinical characteristics. Lasso regression was performed to

build the prediction model. The relationship between gene expression and Gln

metabolism was investigated using co-expression analysis.

Results: GlnMgs, found to be overexpressed in the high-risk group even in the

absence of any symptomatology, demonstrated strong predictive potential for

STAD outcomes. GSEA highlighted immunological and tumor-related pathways

in the high-risk group. Immune function and m6a gene expression differed

significantly between the low- and high-risk groups. AFP, CST6, CGB5, and

ELANE may be linked to the oncology process in STAD patients. The prognostic

model, CNVs, single nucleotide polymorphism (SNP), and medication sensitivity

all revealed a strong link to the gene.

Conclusion: GlnMgs are connected to the genesis and development of STAD.

These corresponding prognostic models aid in predicting the prognosis of STAD

GlnMgs and immune cell infiltration in the tumor microenvironment (TME) may
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be possible therapeutic targets in STAD. Furthermore, the glutamine metabolism

gene signature presents a credible alternative for predicting STAD outcomes,

suggesting that these GlnMgs could open a new field of study for STAD-focused

therapy Additional trials are needed to validate the results of the current study.
KEYWORDS

STAD, GlnMgs, immunity, m6A and immune checkpoint, drug prediction, CNV, SNP
1 Introduction

Gastric cancer (GC) is the fifth most common cancer and the

third leading cause of cancer-related death worldwide. Stomach

adenocarcinoma (STAD) is the most common histologic form of

GC, and malignant GC accounts for 95 percent of all gastric

tumors (1, 2). Research reported that 90% of STAD cases are

attributable to Helicobacter pylori infection (3). STAD is

considered as a group of unusual disorders that endanger

human health (4), underlining the significance of timely

intervention for STAD (5). Chemotherapy is a classic

management for cancer, but its cytotoxicity and potential side

effects after long-term administration are associated with

multiple adverse reactions, such as gastrointestinal discomfort,

cell damage, and bone marrow suppression (6). Furthermore, the

lack of specific biomarkers for early tumor detection and

preclinical models results in poor STAD prognoses (7, 8).

Therefore, there exists an urgent need to discover new and

accurate biomarkers for the early detection and diagnosis

of STAD.

It is necessary for all living things to absorb nutrients and

perform metabol i sm. Metabol ic reprogramming is a

characteristic of cancer that promotes tumor cell proliferation

and survival. Recent research has shown that oncogenic

transformation causes a well-defined metabolic phenotype in

tumor cells, which alters the tumor environment (TME). TME

is made up of various cell populations in a complex matrix that is

characterized by oxygen and nutrient delivery inefficiencies due

to insufficient or poorly differentiated vasculature (9). To satisfy

energy demands, rapidly growing cancer cells compete with

immune cells for resources needed to display anti-tumor

activities, resulting in an immune suppressive environment.

More crucially, new research suggests that cancer cells can

inhibit anti-tumor immune responses by competing for and

depleting vital resources, or by otherwise lowering the
Gene Ontology; AUC,

s, Immune checkpoint

A, Gene set enrichment

es; TCGA, The Cancer

P, Biological processes;

e Expression Omnibus;

heckpoint-related gene.
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metabolic fitness of tumor-infiltrating immune cells (10).

Through multiple pathways, both the innate and adaptive

immune systems have now established roles in the host defense

against malignancies, resulting in remarkable development of

cancer immunotherapies (11). Indeed, immune cells may detect

numerous signals in their surroundings and activate distinct

immunological processes in response (12).

More and more data suggests that the immune response is

connected with substantial alterations in tissue metabolism, such as

nutritional depletion, increased oxygen use, and the formation of

reactive nitrogen and oxygen intermediates (13). Similarly, several

compounds found in the tumor microenvironment alter immune

cell differentiation and function, suggesting that metabolic

treatments may potentiate the efficacy of immunotherapies (14).

Therapeutic methods that target tumor metabolism and

consequently alter or improve immune cell metabolism to

increase inflammation are therefore particularly promising. Thus,

to enhance immunotherapy, it is critical to target the right

metabolic route to limit tumor metabolism and activate

inflammatory response (15), and glutamine (Gln) metabolism is

an available alternative. One of the best options available is to target

glutamine (Gln) metabolism. Gln is rapidly absorbed by cultivated

tumor cells since it is the most common amino acid in circulation.

Gln is extensively employed in cellular aerobic glycolysis to sustain

TCA flow or as a source of citrate for lipid synthesis in reductive

carboxylation. Furthermore, glutaminolysis enhances proliferative

cell survival by decreasing oxidative stress and preserving the

integrity of the mitochondrial membrane. Gln serves as an energy

source for both tumor and immunological cells.

The utilization of glucose, lipids, and purine in normal cells

differs from cancer cells. Previous findings indicated that gln

metabolism may affect oncogenesis and cancer metastasis (16).

There are presently 172 different types of RNA changes known.

M6A, m1A, M7G, and m5C are the most prevalent chemical

alterations. One of the most common eukaryotic mRNA

modifications is m6A (17). Immune checkpoint inhibitor (ICI)

profiles in STAD patients may aid in diagnosing, analyzing, and

anticipating therapy results (18). The cause and progress of STAD’s

abnormal gene expression and glutamine metabolism are currently

unknown. With the rapid advancement of bioinformatics, several

prior studies have employed effective approaches to evaluate and

discover effective biomarkers in order to give an effective reference

for clinical and future basic research (19).Therefore, exploration of
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the regulation mechanism of glutamine metabolism for STAD

synthesis may provide better guidance for treatment. Figure 1

depicts the current investigation’s framework.
2 Materials and methods

We used the approaches proposed by Zi-Xuan Wu et al.,

2021 (20).
2.1 Datasets and GlnMgs

The TCGA was used to collect STAD gene and clinical data

(21). The GEO was searched for mRNA expression. The R (https://

cran.r-project.org/) and perl (https://github.com/Perl) software

used in this study performed the data analysis.
2.2 DEGs and mutation rates

Perl matched and sorted transcription data to acquire exact

mRNA data by comparisoning with human data. The gene IDs were

transformed into gene names by R4.1.0 (22). To assess a substantial

change in glutamine metabolism genes expression, FDR<0.05 and |
Frontiers in Oncology 03
log2FC|≥1 were utilized by R. The relevance of differentially

expressed GlnMgs was investigated (DEGs).
2.3 Tumor classification based on the DEGs

First, the GlnMgs were classified into two groups: cluster 1 and

cluster 2. Survminer of R was used to explore the survival of GlnMgs

subtypes, and survival was used to evaluate GlnMgs predictive

value. The pheatmap package was used to construct a heatmap

showing the differential expression of GlnMgs in each cluster, and

the relationship between GlnMgs and clinicopathological features

was examined. The Limma package was used to identify differences

in the expression of target genes from the appropriate subtypes and

tissue types. To explore the gene connection between STAD target

genes and GlnMgs, the Limma and corrplot packages of R were

employed. Cbioportal (https://www.cbioportal.org/) was used to

estimate DEG variant frequencies. Steps: Esophagus/Stomach,

Stomach adenocarcinoma (TCGA, Firehose Legacy).
2.4 Cluster DEGs

To assess a substantial change in GlnMgs Cluster DEGs

expression, We chose the Limma package, FDR<0.05 and |

log2FC|≥1 were utilized. These genes are then visualized in

a heatmap.
2.5 GlnMgs prognostic signature

To build a prognostic model we adopted the glmnet and

survival package, GlnMgs signature was constructed using Lasso-

penalized Cox regression and Univariate Cox regression analysis,

stratified by risk score (Coefficient DEGs1 × expression of DEGs1) +

(Coefficient DEGs2 × expression of DEGs2) + … + (Coefficient

DEGsn × expression DEGsn). Each STAD patient’s associated risk

score was further evaluated. Based on the median score, the DEGs

were divided into two subgroups: low-risk (< median number) and

high-risk (≥ median number). The low-risk (50%) and high-risk

(50%) groups were identified in Lasso regression, and the

appropriate plots were generated. Following visualization, the

confidence interval and risk ratio were computed, and the forest

diagram was created by pheatmap package. The survival curves for

the high-risk and low-risk groups were plotted for analysis.

To evaluate the accuracy of this model for predicting survival in

STAD, the timeROC package was used to provide a comparable

receiver-operating characteristics (ROC) curve. For the chance

curve bestowed by the risk score, GlnMgs’ risk and survival status

were examined. The nursing independent prognostic study was

carried out to confirm that this model was unaffected by different

clinical factors. The relationship between clinical characteristics and

risk prediction model was determined, similarly relationship

between 2 GlnMgs patients. Analyses of risk and clinical

relationships were distributed. Additionally, Principal component

Analysis (PCA) and T-distributed Neighbor Embedding (T-SNE)
FIGURE 1

Framework based on an integration strategy of GlnMgs. The data of
STAD patients were obtained from TCGA and GEO databases, and
then the GlnMgs were matched to carry out difference analysis and
risk model construction, respectively. TCGA data set was used as
the main body and GEO data was used to verify the model with
good grouping, and GlnMgs related to the prognosis of STAD
patients were obtained. Then, GO, KEGG and GSEA analyses were
performed with multiple databases to obtain the functions related to
GlnMgs. Last, the immune cells, function and RNA changes were
analyzed.
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were investigated by Rtsne and ggplot2 packages. To analyze

whether the prognostic model might properly categorize patients

into two risk teams. By desegregation of the prognosticative signals,

a representation was developed to predict the 1-, 3-, and 5-year OS

of STAD patients.
2.6 Drug sensitivity, CNV and SNP analysis

We used the limma package to match the risk genes and

expression data to predict the potential drugs of hub genes. In

addition, the data of the drugs were obtained from the GDSC

(https://www.cancerrxgene.org/), and then drug susceptibility

analysis was performed using impute and limma packages. The

TCGA offered information on mRNAsi, gene mutations, CNV, and

TMB. CNVS and SNPS were analyzed by chi-square test.
2.7 GO and KEGG analysis

The biological pathways associated with the TCGA DEGs were

then examined using Gene Ontology (GO). Biological processes

(BP), molecular functions (MF), and cellular components (CC)

controlled by the differentially expressed GlnMgs were further

investigated using R software, clusterProfiler, org.Hs.eg.db,

enrichplot, and ggplot2 package based on KEGG data.
2.8 GSEA enrichment analyses

In a range of samples, GSEA (https://www.gsea-msigdb.org/

gsea/index.jsp) was utilized to identify related functions and route

changes. The accompanying score and diagrams were also used to

determine the activities and pathways within the various risk

subcategories that were dynamic. Each sample was labeled ‘H’ or ‘L’.
2.9 The levels of immune activation in
different segments

The analysis of single-sample sequence set enrichment was

utilized (ssGSEA) by GSEABase, GSVA, and limma packages. The

enrichment score of immune cells and immune-related activities in

two groups were examined in each TCGA and GEO cohort.We also

examined the connection between GlnMgs, checkpoints, and

mRNA chemical modifications (m6A, m1A, M7G, and m5C) and

identified m6A, m1A, M7G, and m5C regulators (23) (Table S2).
3 Results

3.1 Datasets and GlnMgs

375 STADs and 32 normal data were registered in the TCGA on

November 15, 2022. The GEO was searched for mRNA expression.

Series: GSE84437. Platform: GPL6947-13512. The GEO was used to
Frontiers in Oncology 04
maintain 433 STAD cases (Table S1A). 79 GlnMgs (MSigDB, http://

www.gseamsigdb.org/gsea/msigdb/index.jsp), were identified

(Table S1B).
3.2 Differentially expressed
GlnMgs; glutamine metabolism
regulatory gene variations

56 DEGs were associated with glutamine metabolism (43

upregulated, 13 downregulated; Table S2) (Figure 2A). A protein-

protein interaction (PPI) network was established to evaluate the

interactions of GlnMgs, as shown in Figure 2B. By lowering the low

required interaction value to 0.7, ALDH18A1, CAD, GLUL,

GLUD1, GAD1, ASS1, and GOT2 were determined as hub genes

(Table S3). Truncating and missense mutations were the most

prevalent forms of mutations (Figure 2C). A total of 8 genes were

over a 5% mutation rate, with ASNS and NOS1 being the

commonly altered (8%). STAD predictive potential was found in

all DEGs detected in both normal and malignant tissues. The

correlation network of all GlnMgs is depicted in Figure 2D.

The relationship between alterations in GlnMgs regulatory

genes (CNV, SNP, and mutation) and clinicopathological

characteristics in patients was investigated. Correlation analysis

revealed ten SNP-driven DEGs (P-value less than 0.05) in the

prognostic model, including ACVR2A, CSMD1, FAT4, KMT2D,

LRP1B, MUC16, PCLO, SYNE1, TP53, and TTN (Figure 3A). The

total average mutation frequency of DEGs in the prognostic model

varied from 11 to 52%, suggesting a possible correlation of STAD

mutations with important gene dysregulation (Figures 3B, C).

Correlation examination of DEG expression in the prognostic

model and CNV revealed several CNV-driven DEGs (Figure 3D).

The model’s medication prediction revealed certain genes with

significant differences (Figure S1). Furthermore, an investigation of

the connection between DEG expression in the prognostic model

indicated that numerous genes were associated with drug

sensitivity. ELANE was shown be closely linked to ABT199,

Hydroxyurea, Nandrolone phenpropiona, Cyclophosphamide,

Carboplatin, and Megestrol acetate, indicating possible drug

routes (Figure S2).
3.3 Tumor categorization using the DEGs

A consensus clustering analysis was performed on all 375 STAD

patients in the TCGA dataset to assess the associations between

GlnMgs expression and STAD. The strongest intragroup

correlation and the weakest intergroup correlation were observed

when the clustering variable (k) was set to 2, indicating that the 375

STAD patients could be classified into two groups based on their

GlnMgs (Figure 4A). A heatmap depicts gene expression and

clinical features (Figure 4B, Table S4). A survival study was

conducted to explore the predictive capacity of GlnMgs using

GlnMgs subtypes, and cluster 2 exhibited a higher survival rate

(P=0.002), Figure 4C. We examined the TCGA clinical data and

found that the survival time of C2 patients was higher before 6
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years, but most of the C2 patients died by 6 years, so the survival

rate of C2 patients was lower after 6 years.
3.4 In the TCGA cohort, a prognostic gene
model was developed

Six significant GlnMgs were observed throughout the univariate

Cox investigation. These GlnMgs (AFP, CST6, CGB5, ELANE,

APOC3, and MPO) were thought to be independent prognostic

markers for STAD (Figure 5A). To create a gene signature, the

absolute minimal shrinkage and selection operator (LASSO), Cox

regression analysis, and optimal value were utilized (Figures 5B, C).

Patients’ risk ratings were shown to be inversely connected to STAD

survival. The bulk of the new GlnMgs discovered herein exhibited a

negative relationship with the risk model, requiring more research

(Figure 5D). The presence of high-risk GlnMgs signatures was

associated with a lower likelihood of survival (P<0.001, Figure 5E).
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For 1, 3, and 5-year survival rates, the AUC predictive value of the

unique GlnMgs signature was 0.763, 0.746, and 0.783, respectively

(Figure 5F). Patients with varying risks were divided into two

groups based on the PCA and t-SNE results (Figures 5G, H). The

hybrid nomogram, which comprised TCGA clinicopathological

data as well as the prognostic signature of the GlnMgs, was stable

and accurate, showing great potential in the treatment of STAD

patients (Figures 5I, J).
3.5 The risk signature is validated externally

A GEO cohort of 433 STAD patients served as the validation

group. Patients’ risk scores were inversely related to STAD survival.

Similarly to the TCGA findings, the bulk of the novel GlnMgs

discovered in this investigation were linked with a negative risk

model (Figure 6A). High-risk PRG signatures were associated with a

lower likelihood of survival (P=0.007). Kaplan-Meier analysis was
A B

D

C

FIGURE 2

Expressions of the 56 GlnMgs and the interactions among them. (A) Heatmap (green: low expression level; red: high expression level) of the genes
participating in autophagy between the normal (N, brilliant blue) and the tumor tissues (T, red). P values were showed as: *P<0.05; **P<0.01;
***P<0.001. (B) PPI network showing the interactions of the genes participating in autophagy (interaction score=0.7). (C) Mutations in GlnMgs. 8
genes over a 5% mutation rate, with ASNS and NOS1 being the most often modified (8%). (D) The correlation network of the genes participating in
autophagy (red line: positive correlation; blue line: negative correlation. The depth of the colors reflects the strength of the relevance).
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used to construct Figure 6B. For 1, 3, and 5-year survival rates, the

AUC predictive value of the unique GlnMgs signature was 0.584,

0.632, and 0.741, respectively (Figure 6C). The vast majority of

STAD patients lived over one years, which might have contributed

to the lower AUC, and the PCA and t-SNE results indicated that

patients with variable risks were effectively divided into two groups

(Figures 6D, E).
3.6 The risk model’s independent
prognostic value

COX analysis in the TCGA cohort revealed that the GlnMgs

signature (HR: 5.945, 95CI:2.039-17.337), Age (HR: 1.035, 95CI:1.016-

1.055), N (HR: 1.260, 95CI:1.065-1.490) were predominantly

independent predictive factors for the OS of STAD patients

(Figures 7A, B). COX analysis in the GEO cohort revealed that Age

(HR: 1.022, 95CI:1.009-1.034), N (HR: 1.544, 95CI:1.315-1.813), T

(HR: 1.596, 95CI:1.252-2.035) were largely independent predictive

factors (Figures 7C, D). In addition, a heatmap of clinical features for

the TCGA cohort was depicted (Figure 7E, Tables S5, 6).
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3.7 Enrichment analysis of GlnMgs

GO enrichment analysis revealed 278 core targets, including BP,

MF, CC. The MF mainly involves amino acid binding

(GO:0016597), carboxylic acid binding (GO:0031406),. The CC

mainly involves mitochondrial matrix (GO:0005759). The BP

mainly involves cellular amino acid metabolic process

(GO:0006520), glutamine family amino acid metabolic process. In

addition, the main signaling pathways were identified by KEGG

enrichment analysis, revealing that the over-expressed genes were

mainly involved in Alanine, aspartate and glutamate metabolism

(hsa00250), Arginine biosynthesis (hsa00220), Biosynthesis of

amino acids (hsa01230) (Figure 8, Table S7).
3.8 Analyses of gene set enrichment

Most GlnMgs prognostic signatures regulated immunological

and tumor-related pathways such as ecm receptor interaction,

complement and coagulation cascades, hedgehog, tgf beta, jak

stat, and chemokine signaling pathway, etc. The top 6 enriched
A

B DC

FIGURE 3

CNV, SNP and mutation analysis. (A) Correlation analysis between the expression of genes in prognostic signatures and SNP. (Correlation analysis
revealed ten SNP-driven DEGs in the prognostic model, including ACVR2A, CSMD1, FAT4, KMT2D, LRP1B, MUC16, PCLO, SYNE1, TP53, and TTN) (B,
C) The mutation distribution of genes in prognostic signatures (The total average mutation frequency of DEGs in the prognostic model varied from
11 to 52%, suggesting that STAD mutations may be related with important gene dysregulation). (D) CNV analysis (Correlation examination of DEG
expression in the prognostic model and CNV revealed several CNV-driven DEGs).
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functions or pathways for each cluster (Figure 9). The “‘hedgehog

signaling pathway” was the most enriched (Tables S8A, B).
3.9 Immune activity levels in different
subgroups are compared

The enrichment scores of 16 types of immune cells and the

activity of 13 immune-related activities in low- and high-risk groups

(ssGSEA) were assessed in two cohorts. Cytokine and chemokine

are key factors for immune cell recruitment and functions. We

annotated and stated the H1 and chemokine with significant

differences. The low-risk category had higher levels of pDCs, Th1

cells, and Th2 cells (Figure 10A). The low-risk group had a higher

rate of APC co inhibition, Inflammation-promoting, MHC class I,T

cell co−inhibition (Figure 10B). In the immunological condition of

the GEO cohort, the low-risk category had higher levels of pDCs,

Th1 cells, and Th2 cells (Figure 10C). The low-risk category had

higher levels of APC co inhibition, Inflammation−promoting, MHC

class I, and T cell co-inhibition (Figure 10D). Given the importance

of checkpoint inhibitor-based immunotherapies, researchers looked

at changes in immune checkpoint expression between the two

groups. TNFRSF14, CD274, and LGALS9 had a greater rate in

the low-risk group, while additional genes revealed significant

differences between the two groups (Figure 10E). Furthermore, in

order to validate the invasion of these immune cells, the

CIBERSORT technology was used to assess whether they were the

same (Figure 11). These cells (Macrophages M1, Mast cells resting,
Frontiers in Oncology 07
T ce l l s CD8, e t c ) showed s ign ifican t d i ff e r ence in

immunoinfiltration in STAD. We also performed other algorisms

to analyze the infiltration of immune cells (Table S9).
3.10 mRNA chemical modifications

In M6a, when GlnMgs expression was examined between the 2

risk groups, HNRNPC, RBM15, and YTHDC2 were substantially

more significant in the low-risk group (Figure 12A). In M1A,

YTHDC1 was substantially more significant in the low-risk group

(Figure 12B). In M7G, EIF3D, CYFIP1, EIF4E, LARP1, NSUN2,

and NCBP1 were substantially more significant in the low-risk

group (Figure 12C). In M5C, NSUN3, DNMT3A, DNMT1, YBX1,

and ALYREF were substantially more significant in the high-risk

group (Figure 12D). There are presently 172 different types of RNA

changes known. Different RNA changes may have certain influence

on the occurrence and development of STAD. Our study predicts

that different RNA changes also have a certain effect on GlnMgs,

which may be the direction of future research. Researchers should

look at M6a, M7G, M5C, M1A, etc.
4 Discussion

The management of STAD is a critical clinical issue due to the

rapid disease progression and dismal prognosis. A lack of potent

tumor-killing initiators and selective tumor-targeting therapeutic
A B

C

FIGURE 4

Tumor categorization based on DEGs associated with glutamine metabolism. (A) The consensus clustering matrix (k=2) was used to divide 375 STAD
patients into two groups. Heatmap (B). The heatmap and clinicopathologic features of the two clusters identified by these DEGs (T, Grade, and Stage
indicate the degree of tumor differentiation. P values were showed as: *P<0.05; **P<0.01; ***P<0.001. (C) Kaplan-Meier OS curves for the two
clusters.
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medications limits the efficiency of precision medicine for STAD

(24). A recent study discovered that alterations to the mechanism of

programmed tumor cell death may enhance STAD’s targeted

therapeutic benefits (25). As a result, early detection and

diagnosis of STAD are critical. Cancer is associated with

metabolic rewiring. Malignant cells shift metabolic pathways in

response to multiple intrinsic and external disadvantages to fuel cell

survival and proliferation (26). Proliferating cancer cells use

glutamine as a key source of energy and building components in

addition to glucose. In fact, certain tumor cells are so reliant on

exogenous glutamine that they have been found to perish in the

absence of it (27).

Glutamine is one of the most prevalent nonessential amino

acids (amino acids generated by the human body and hence not

required in the diet) in the circulation, contributing to practically

every biosynthetic pathway in proliferating cells (28). It also

serves as a nitrogen donor in the synthesis of purines and

pyrimidines, as well as a precursor in the production of protein
Frontiers in Oncology 08
and glutathione. Cancer cells can use glutaminolysis to continue

the manufacture of numerous important chemicals because

glutamine-derived -KG feeds the TCA cycle (29). Various

studies have found that Gln metabolism failure is closely linked

to cancer development, and Gln metabolism-targeting

medications have been authorized for multiple cancers. As

cancer evolves from premalignant lesions to clinically apparent

tumors to metastatic malignancies, metabolic demands and

phenotypes may also arise. Gln metabolism is garnering

attention as a fascinating regulatory node that typically changes

in multiple clinical situations. Gln, as the most prevalent non-

essential amino acid in circulation, participates in various cellular

metabolic activities (30). Glutaminase is an enzyme that

deaminates gln to form glutamate, which is a critical

intermediate metabol i te with numerous biosynthet ic

applications in the cell (31). A few recent studies have

highlighted the role of GlnMgs in various aging-related

illnesses. For instance, Dai et al. investigated the potential roles
A B D
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FIGURE 5

The development of a risk signature in the TCGA cohort. Construction of risk signature in the TCGA cohort. (A) A Univariate Cox regression analysis
of OS for each glutamine metabolism-related gene, with P<0.05 for 6 genes. (B) Lasso regression of the 6 OS-related genes. (C) Cross-validation for
tuning the parameter selection in the Lasso regression. (D) The survival status for each patient (low-risk population: on the left side of the dotted
line; high-risk population: on the right side of the dotted line). (E) Kaplan-Meier curves for the OS of patients in the high- and low-risk groups. (F)
The AUC of the prediction of 1, 3, 5-year survival rate of STAD. (G) PCA plot for LUADs based on the risk score. (G) A PCA plot based on the risk
score for STADs. (H) A t-SNE plot based on the risk score for STADs. (I, J) Nomogram plot based on the Clinical relevance for STADs (The more lines
clustered in the upper left corner, the higher the density of patients here; The error bar is represent the confidence interval of each OS).
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of Gln-metabolism related genes in hepatocellular carcinoma

(32), and Liu et al. discovered a Gln-metabolism signature for

lung adenocarcinoma prognosis (33). In addition to cancer, the

importance of Gln-metabolism in non-cancerous illnesses has

received growing attention, such as asthma, pulmonary fibrosis,
Frontiers in Oncology 09
and chronic obstructive pulmonary disease. However, the present

focus mostly focuses on cancer. The physiological importance of

Gln metabolism in STAD development is unknown. Researchers

must establish prognostic indications of STAD to identify the

high-risk group and reduce the risk of relapse and progression.
A B

D E
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FIGURE 6

The risk model was validated in the GEO cohort. (A) Each patient’s chance of survival (low-risk population: on the left side of the dotted line; high-
risk population: on the right side of the dotted line). (B) Kaplan-Meier curves for patients in the high- and low-risk groups’ overall survival. (C) The
AUC for predicting the 1-, 3-, and 5-year survival rates of STAD. (D) A PCA plot based on the risk score for STAD. (E) A t-SNE plot based on the risk
score for STAD.
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FIGURE 7

Cox regression analysis, both univariate and multivariate. (A) TCGA cohort multivariate analysis. (B) TCGA cohort univariate analysis (signature and
Age were predominantly independent predictive factors). (C) GEO cohort multivariate analysis. (D) GEO cohort univariate analysis. (E) Heatmap
(green: low expression; red: high expression) illustrating the relationships between clinicopathologic characteristics and risk groups.
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In the present study, 56 DEGs linked with Gln metabolism were

discovered and classified into two STAD groups. Previous study

indicated that 6 prognostic GlnMgs were expressed differentially in

individuals at risk, and certain GlnMgs were overexpressed in the

high-risk group, indicating that GlnMgs were closely associated to

STAD prognosis (P<0.05). Furthermore, the role of GlnMgs in

STAD was investigated, and survival analysis was used to evaluate

GlnMgs’ prognostic value. Patients who received low-risk GlnMgs

exhibited better survival outcomes. Furthermore, in the high-risk

group, AFP, CST6, CGB5, and ELANE were significantly expressed,

indicating their potential roles as cancer-promoting genes in the

development of STAD. These findings provide some directions for

future research. Nonetheless, concrete evidence of their role in the

synthesis of important transcription factors associated with

pyroptosis regulation, such as PD-L1, GSDMB, and ROS-NLRP3

(34–36), is lacking, which necessitates further investigation.

We observed that these genes are associated with STAD and

Gln metabolism. Serum tumor markers are also important in cancer
Frontiers in Oncology 10
diagnosis. In clinical practice, alpha-fetoprotein (AFP), a

glycoprotein, is a highly specific tumor marker for the detection

of gastric cancer (37), serum indicators are available to predict the

prognosis of gastric adenocarcinomas (38), and serum alpha-

fetoprotein is one of the most extensively researched indicators

(sAFP). Subsequent research discovered that STAD with GAED

and yolk-sac tumor-like cancer exhibited comparable features (39).

Successive investigations revealed that irrespective of pathological

morphology, instances of positive AFP immunohistochemistry or

increased sAFP had a suggestive risk of progression, which was

termed “AFP-producing gastric adenocarcinoma (40)”. Yamazawa

et al. revealed that AFP, GPC3, and SALL4 immunohistochemistry

(A/G/S-IHC) results had comparable effects when additional

immunohistochemical markers were used. Patients with an

expression of AFP, GPC3, or SALL4 presented a poor prognosis

and were predisposed to develop liver metastases, independent of

morphology (41). Aside from its role in liver cancer diagnostics,

AFP is considered a target for liver cancer immunotherapy. The
A

B

FIGURE 8

For GlnMgs, GO, and KEGG analyses were performed. GO and KEGG analyses for genes participating in autophagy. (A) Bubble graph for GO
enrichment (the bigger bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value:
the adjusted p-value); The GO circle shows the scatter map of the logFC of the specified gene. (B) Barplot graph for KEGG pathways (the longer bar
means the more genes enriched, and the increasing depth of red means the differences were more obvious); The KEGG circle shows the scatter
map of the logFC of the specified gene. The higher the Z-score value indicated, the higher expression of the enriched pathway.
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immunogenicity and immunological response of AFP might be

improved in vitro. The AFP-modified immune cell vaccination or

peptide vaccine demonstrated specific antitumor immunity against

AFP-positive tumor cells, laying a solid basis for liver cancer

immunotherapy (42). CST6 protein and peptides limit bone

metastases in breast cancer by reducing CTSB activity and

osteoclastogenesis (43). Through bioinformatics, both Ji and Yang
Frontiers in Oncology 11
identified CGB5 as an effective biomarker for STAD (44, 45). These

investigations corroborate and reinforce our findings since these

four GlnMgs were linked to the development of STAD. The OS and

ROC analyses of the GSE84437 KM curves suggested that a

signature associated with Gln metabolism might be a promising

prognostic predictor. Nevertheless, research on the gene alterations

associated with Gln metabolism is sporadically done. As a result,
FIGURE 9

GlnMgs gene set enrichment studies. The top six enriched functions or pathways of each cluster were provided to illustrate the distinction between
related activities or pathways in various samples. The ‘nod like receptor signaling pathway’ was the most enriched. FDR q-value and FWER p-value
were both <0.05.
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more research is needed to investigate the mechanism of GlnMgs

changes and to validate the present findings.

According to KEGG analysis, the genes were predominantly

engaged in the Alanine, aspartate and glutamate metabolism,

Arginine biosynthesis, Arginine and proline metabolism. As a

result, Gln metabolism plays an important role in STAD. The
Frontiers in Oncology 12
hedgehog signaling pathway was considered the most highly

enriched route in GSEA. The hedgehog signaling pathway

included the Smo and Gli1 genes, and their overexpression might

result in STAD. The level of expression is proportional to the stage

and severity of STAD (46). Furthermore, it has been reported that

Hedgehog-interactingprotein (HHIP) could inhibit the growth and
A B
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C

FIGURE 10

The ssGSEA scores are compared. (A + B) Comparison of the enrichment scores of 16 kinds of immune cells and 13 immune-related pathways in the
TCGA cohort between the low-risk (green box) and high-risk (red box) groups. (C + D) In the GEO cohort, tumor immunity was compared between
the low-risk (blue box) and high-risk (red box) groups. P values were shown as follows: ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001. (E)
Immune checkpoint.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1201297
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1201297
proliferation of STAD cell lines by inhibiting Hedgehog signal

transduction, implying that HHIP might provide a viable

biological marker for STAD and a new approach to STAD

treatment by targeting the drug target of HHIP formation (47).

Overactivation of the hedgehog pathway is associated with the onset

and development of STAD, and particular targeted therapy

targeting this pathway might be an effective new approach for

therapeutic treatment of STAD (48). Accordingly, GlnMgs may

alter STAD cell migration and proliferation through modifying the

nod-like receptor signaling pathway, and a great body of evidence

has also revealed that Gln metabolism affects the survival of

STAD patients.

The linkage of Gln metabolism alteration with the impact of

tumor immunotherapy was explored based on the relationship

between Gln metabolism change and immune cell infiltration in
Frontiers in Oncology 13
STAD (49). Patients with a low risk showed dramatically enhanced

immune cells and activity, demonstrating promising treatment

benefits of anti-PD-1/L1 immunotherapy. Low-risk expression is

highest in immune cells at both high and low risk, according to

ssGSEA. As a result of completely parsing the TME landscape

heterogeneity and complexity, we found several various tumor

immune phenotypes, which may also give benefits to guide and

forecast immunotherapy responsiveness. The current study

successfully predicted the survival of STAD patients. According to

the GlnMg’s prognostic model, an increase in the risk score is

associated with an increase in death and the high-risk ratio. GlnMgs

may serve as a useful biomarkers for predicting STAD prognoses.

Recent research has discovered a link between various cell death

mechanisms and anticancer immunity (50). Over the last decade,

immune checkpoint inhibitors (ICIs) have ameliorated cancer
FIGURE 11

The CIBERSORT scores are validated.
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treatment. In ICI-resistant cancers, activation of proptosis, ferroptosis,

and necroptosis results in synergistically improved anticancer

efficiency (51). Insulin involvement in immune checkpoint

regulation boosts PD-L1 expression in pancreatic ductal

adenocarcinoma cells through a variety of pathways in the three cell

lines studied, including increased InsR-A expression in A818-6 cells

and modification of the adaptor protein Gab1 in BxPc3 cells (52). In

patients with bladder urothelial carcinoma, Kyrollis Attalla discovered

TIM-3 and TIGIT as viable targets for monotherapy or in conjunction

with other immune checkpoint inhibitors. Amicroscopic examination

of the association between ICI, m6a, and Gln metabolism was carried

out, and the findings suggested a link between GlnMgs alterations and

the beginning and development of STAD.

The relationship between Gln metabolism and STAD has been

marginally explored. Currently, some papers have used bioinformatics

analysis to show a relationship between Gln metabolism and cancer

(53–56). DEG analysis was used by Liu et al. to identify differentially

expressed genes (DEGs) in the Gln metabolic signaling pathway. They

discovered EPHB2 maybe a key gene that are substantially expressed

in lung cancer. Ying et al. created a novel Hepatocellular Carcinoma

prediction model that integrates 7 GlnMgs, including SLC1A5,
Frontiers in Oncology 14
GAPDH, SLC38A1, SLC38A7, FTCD, MTHFS, and GOT2 might

be utilized to predict prognosis in HCC. Despite this, there are

currently few GlnMgs and cancer prognostic models. The technique

adopted in this study is new when compared to prior studies. To

begin, GlnMgs in the TCGA database are updated on a regular basis.

We have made further changes to earlier articles. Second, TCGA data

were employed as the primary analysis, with GEO data being included

into the common pattern for model validation. Finally, GO and KEGG

analyses were done, as well as a GSEA analysis. The findings of the two

investigates coincided, increasing trust. Fourth, we used several

databases to measure immune cells and functions to boost the

reliability of the results. Finally, there is almost no prediction model

for GlnMgs that gives specific recommendations for future metabolic

research or therapy based on metabolic interference STAD.

Although this study gives some context, it also has certain

drawbacks. First, the new study built on previous research by using

more GlnMgs data from the TCGA database, which is updated on a

regular basis. Second, TCGA data were utilized as the major source

of analysis, with GEO data used to validate the model using the

common pattern. The conclusions were corroborated by the GO

and KEGG analyses, as well as the GSEA study. Fourth, in order to
A B

DC

FIGURE 12

mRNA chemical modifications. (A) m6A (HNRNPC, RBM15, and YTHDC2 were substantially more significant in the low-risk group). (B) m1A (YTHDC1
was substantially more significant in the low-risk group). (C) m7G (EIF3D, CYFIP1, EIF4E, LARP1, NSUN2, and NCBP1 were substantially more
significant in the low-risk group). (D) m5C (NSUN3, DNMT3A, DNMT1, YBX1, and ALYREF were substantially more significant in the high-risk group). P
values were showed as: *P<0.05; **P<0.01; ***P<0.001.
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strengthen the credibility of the results, different databases were

used to assess immune cells and function. The following are the

study’s difficulties. This risk model relies primarily on publicly

available databases. Furthermore, protein expression may differ

from RNA expression, requiring further testing in a larger data set.
5 Conclusions

We discovered four anticipated GlnMgs regulatory patterns for

STAD, as well as transcriptome and immune infiltration

characteristics. The current study identified the functions of

GlnMgs regulators and accounted for the underlying causes of

differential clinical outcomes and immunotherapy responses in

different GlnMgs regulatory patterns. A detailed investigation of

individual GlnMgs regulation patterns will facilitate to create the

tailored immunotherapy regimens for STAD patients and provide a

better understanding of STAD immune-cell characterization.

Furthermore, the goal of this study is to discover and

thoroughly profile the gene signatures of GlnMgs-related

regulators in STAD. The multiple GlnMgs changing patterns

contributed significantly to the TME’s diversity and complexity. A

prediction method based on the GlnMgs signature was also created,

which demonstrates good potential to predict the clinical course of

STAD. Our findings suggest that GlnMgs are excellent prognostic

markers that may provide viable new treatment options and

immunotherapy for the clinical management of STAD.
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