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ICOS and OX40 tandem
co-stimulation enhances CAR
T-cell cytotoxicity and promotes
T-cell persistence phenotype

Eider Moreno-Cortes1,2, Pedro Franco-Fuquen1,2,
Juan E. Garcia-Robledo1,2, Jose Forero1,2,3, Natalie Booth1,2,4

and Januario E. Castro1,2*

1Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States, 2Cancer
Research and Cellular Therapy Laboratory, Mayo Clinic, Phoenix, AZ, United States, 3Division
of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,
4Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, United States
Chimeric Antigen Receptor (CAR) T-cell therapies have emerged as an effective

and potentially curative immunotherapy for patients with relapsed or refractory

malignancies. Treatment with CD19 CAR T-cells has shown unprecedented

results in hematological malignancies, including heavily refractory leukemia,

lymphoma, and myeloma cases. Despite these encouraging results, CAR T-cell

therapy faces limitations, including the lack of long-term responses in nearly 50-

70% of the treated patients and low efficacy in solid tumors. Among other

reasons, these restrictions are related to the lack of targetable tumor-associated

antigens, limitations on the CAR design and interactions with the tumor

microenvironment (TME), as well as short-term CAR T-cell persistence.

Because of these reasons, we developed and tested a chimeric antigen

receptor (CAR) construct with an anti-ROR1 single-chain variable-fragment

cassette connected to CD3z by second and third-generation intracellular

signaling domains including 4-1BB, CD28/4-1BB, ICOS/4-1BB or ICOS/OX40.

We observed that after several successive tumor-cell in vitro challenges,

ROR1.ICOS.OX40z continued to proliferate, produce pro-inflammatory

cytokines, and induce cytotoxicity against ROR1+ cell lines in vitro with

enhanced potency. Additionally, in vivo ROR1.ICOS.OX40z T-cells showed

anti-lymphoma activity, a long-lasting central memory phenotype, improved

overall survival, and evidence of long-term CAR T-cell persistence. We conclude

that anti-ROR1 CAR T-cells that are activated by ICOS.OX40 tandem co-

stimulation show in vitro and in vivo enhanced targeted cytotoxicity associated

with a phenotype that promotes T-cell persistence.

KEYWORDS

adoptive immunotherapy, chimeric antigen receptor, cell-and tissue-based therapy, T-
cell activation, costimulatory molecules
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1 Introduction

Chimeric antigen receptor (CAR) T-cell therapy has

revolutionized cancer treatment by redirecting the immune system

to specifically target and eliminate cancer cells (1). Despite its success

in treating hematological malignancies, CAR T-cell therapy is not

entirely effective in approximately 50-70% of patients with leukemia,

lymphoma, or myeloma (1–3). Additionally, the results of clinical

trials in solid tumors have been somewhat disappointing (1, 4–6). The

reasons for CAR T-cell therapy’s failure are complex and include the

immunosuppressive effect of the tumor microenvironment (TME)

and the low expansion and short persistence of the immune effector

T-cells (1, 4)

In patients with hematologic malignancies, long-lasting clinical

remissions are associated with robust expansion and persistence of

genetically modified CAR T-cells (7, 8). Lack of CAR T-cell

persistence has been shown consistently in clinical trials as one of

the most critical factors associated with poor overall efficacy (9–11).

Similarly, successful treatment of solid tumor patients requires

vigorous expansion and long term-persistence of CAR T-cells (12).

CAR T-cell persistence depends on various factors, including

the patient/donor immunosuppressed status, laboratory culture

conditions of the engineered T-cells, T-cell exhaustion and

metabolic pathways involved, a disproportionately high ratio of

effector memory vs. central memory T-cells, and host immune

responses (10, 11, 13, 14). However, one of the modifiable variables

that can improve CAR T-cell persistence is the CAR construct

design, particularly the selection and optimization of intracellular

signaling domains (ICD) (15–17). Therefore, substantial research

efforts are centered on the molecular architecture of the CAR

construct as it may significantly impact T-cell expansion,

persistence, and clinical outcomes (18–20).

Most transmembrane CAR modules come from molecules like

CD8 and CD28, essential for T-cell function (21, 22). The CD3z
chain and other costimulatory domains linked in cis are placed in

the intracellular module (23). The T cell receptor CD3z chain and

one or more signaling domains from the costimulatory proteins

CD28, 4-1BB, OX40, CD27, or ICOS typically comprise the ICD

(18). The CARs that are currently FDA approved, and the majority

of products undergoing clinical trial testing use either CD28 or 4-

1BB ICD linked to CD3z (Second generation – 2G CARs) (5, 24).

Novel tandem ICDs composed of three domains, such as CD28 and

4-1BB ICD followed by CD3z (Third generation – 3G CARs), are

gathering significant interest based on impressive preliminary

results (1, 5, 25–29).

The goal of incorporating different ICDs is to enhance the

complementary features of each domain and generate a CAR

signaling component with improved features. For example, CD28

and 4-1BB induce intracellular signaling through different

pathways. CD28 is a powerful early stimulator, whereas 4-1BB is

more critical in the later activation of cellular expansion phases,

particularly memory T-cells (30). Moreover, experimental studies

have shown that T cells stimulated with tandem CD28 and 4-1BB

ICDs (3G-CARs) have greater intracellular signaling activation,

more potent antitumor activity, and longer in vivo persistence

than T cells stimulated by 2G CARs (31).
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Because CAR construct design is critical for the development of

highly efficient CAR T-cells with optimal expansion and

persistence, particularly for applications in solid tumors (8, 32–

34), we sought to evaluate the novel combination of ICOS

(Inducible T-cell co-stimulator) and OX40 (CD134) used as

tandem ICD in combination with CD3z (3G-design) and studied

their effect in vitro and in vivo. Our model uses CAR T-cells

redirected against ROR1, a promising tumor-associated antigen

(TAA) with a broad expression range in hematological

malignancies and solid tumors (35–39). We selected to study ICD

derived from ICOS and OX40 because of their potential role in CAR

T-cell function and persistence. ICOS and OX40 are costimulatory

molecules involved in the regulation and expression of anti-

apoptotic molecules such as Bcl-2, and Bcl-xL in T-cells, increase

secretion of IL-2, IL-21, and enhance the expression of

costimulatory molecules like CD40-L (CD154) and CD127 that

regulate T cell survival and function (20, 32, 40–44). In addition,

ICOS and OX40 can enhance the expansion of central memory T-

cells and induce Th1 and Th17 polarization required to maintain

long-lived persistent T-cells with the ability to develop immunity

against previously encountered antigens (32, 41, 42).
2 Materials and methods

2.1 Cell lines

The ROR1+ JeKo-1 (Mantle cell lymphoma) and ROR1- K562

(Chronic myelogenous leukemia) Cell lines were initially obtained

from ATCC; cell lines were obtained more than six months before

experiments, and authentication was performed by cell banks

utilizing short tandem repeat profiling. All cell lines were tested

for mycoplasma contamination (MycoAlert Mycoplasma Detection

Kit, LT07-318, Lonza). The number of passages was limited to 10.

These cell lines were transduced with a luciferase-ZsGreen

lentivirus (Addgene) and sorted with FACS Aria II (B.D.

Biosciences) instrument to 100% purity. Cell lines K562 were

used as controls, as indicated in the relevant figures. The cell lines

were maintained in culture with RPMI1640 (Gibco) supplemented

with 10% Fetal bovine serum (Gibco) and 50 U/mL penicillin/

streptomycin (Gibco, Life Technologies, 15070–063). Primary cells

were thawed at least 12 hours before the experiment for all

functional studies and rested at 37°C. The use of recombinant

DNA was approved by the Institutional Biosafety Committee

(IBC HIP00000710.04).
2.2 Vector design

Second-generation and third-generation ROR1 CAR constructs

were synthesized de novo (GenScript). All the constructs consist of a

scFv (single-chain variable fragment) against ROR1 (Clone R12)

linked with an IgG4 hinge (Uniprot P01861, section 99-110) cloned

into a second-generation 4-1BB and third-generation CD28 + 4-

1BB, ICOS + 4-1BB, and ICOS + OX40 costimulated CAR in a

third-generation lentivirus (Table 1). Third-generation Lentiviral
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vectors were generated using transient transfection of the plasmid

into 293T cells obtained from ATCC in the presence of

Lipofectamine 2000 (Invitrogen), VSV-G, RSV-Rev, pMDLg-

pRRE (Adgene).
2.3 CAR-T cell generation

Briefly, peripheral blood mononuclear cells (PBMC) are

isolated from de-identified healthy donor blood apheresis samples

(Vitalant). T-cell isolation from previously isolated PBMCs was

performed using an 8-minutes cell isolation kit immunomagnetic

negative selection (STEMCELL magnetic beads against CD19,

CD16, CD15, CD14, CD34, CD56, CD123, and CD235a),

obtaining a purity after isolation greater than 95% of the T-cell

product. Primary cells were cultured in T-cell medium (TCM)

supplemented with OpTmizer CTS, 1% penicillin-streptomycin-

glutamine (Gibco), and IL-2 at a concentration of 100 U/

mL (PeproTech).

Previously isolated T cells were stimulated using a Dynabeads

CD3/CD28 generated in-house at a 1:3 cell: bead ratio. After 24

hours of stimulation, T cells were transduced with lentiviral

particles at an MOI (multiplicity of infection) of 3.0. Beads were

removed from the T cell expansion using DynaMag-50 (Invitrogen)

on day 6. The expression of CAR was analyzed by flow cytometry on

day 7. CARs were stained with a biotinylated ROR1 protein

followed by a PR-conjugated streptavidin. On day 12, CART-

Cells were harvested and cryopreserved in freezing medium made

from 90% FBS (Gibco) and 10% DMSO (Millipore Sigma) for

planned experiments. The CAR T cells were thawed and left resting

in TCM for at least 12 hours before individual experiments.
2.4 Phenotypic and exhaustion analysis

All experiments were performed on a FACS Symphony (B.D.

Biosciences), and data obtained were analyzed with FlowJo software
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(version 10.7.1). CAR expression was evaluated using a ROR1

biotinylated protein (ACRO Biosystem) and a streptavidin (PE-

conjugated; B.D. biosciences). T cell profile and characterization

were evaluated using mAb to CD45, CD3, CD4, CD8, CD62L,

CCR7, PD-1, TIM-3, LAG-3, TIGIT, and the corresponding isotype

controls (B.D. Biosciences). The presented results presenting CAR

T cell phenotype data were performed using the following gating

strategy: we excluded the doubles, by side scatter versus forward

scatter, viability using LIVE/DEAD Fixable Aqua Dead Cell Stain

Kit (Invitrogen), followed by the populations CD45+, CD3+, CAR+

Cells (Supplementary Figure 1).
2.5 Multiparametric flow cytometry

Anti-human and anti-mouse antibodies were purchased from

BioLegend, eBioscience, or B.D. Biosciences. BD FACS lyse buffer

(B.D. Biosciences) was used to lyse mouse red blood cells (JeKo-1

xenograft) peripheral blood samples (day −1 and 8 of ROR1 CART-

cell infusion) before staining and flow cytometric analysis. Cells

from in vitro culture (in vitro antigen-specific degranulation/

cytokine production assays and antigen-specific proliferation

assay). Before staining, cells were washed twice in a flow buffer

[PBS supplemented with 1% FBS and 1% sodium azide (Ricca

Chemical)] and stained at room temperature unless specified for the

antibody. For cell number quantitation, Countbright beads

(Invitrogen) were used according to the manufacturer’s

instructions (Invitrogen). In all analyses, the population of

interest was gated based on forward versus side scatter

characteristics, followed by singlet gating, and live cells were

gated following staining with LIVE/DEAD Fixable Aqua Dead

Cell Stain Kit (Invitrogen).

Surface expression of the CAR was detected by staining with a

ROR1 biotinylated protein. In brief, an aliquot of the CAR-T cells

(e.g., 50,000 T cells) was first washed and then resuspended in 50 mL
of a flow buffer. Cells were stained with 1 mL of ROR1 biotinylated

protein and 0.3 mL of LIVE/DEAD Fixable Aqua Dead Cell Stain Kit
TABLE 1 Intracellular Costimulatory domains (ICD).

Costimulatory molecule (ICD) CAR T-cells – Functional benefit

4-1BB (CD137) Stimulates CD8+ central memory T cell generation. Favors CAR T-cell persistence.

CD28 Potent cytotoxic function; IL-2 production; may favor CD4+ T cell expansion

ICOS (CD278) Enhances Th1 and Th17 polarization. Favors CAR T-cell persistence

OX40 (CD134) Suppresses Treg development

3G-Tandem ICDs CAR T-cells – Functional benefit

CD28 + 4-1BB Enhanced antitumor effect and ameliorates proliferative capacity, retention of a memory phenotype, and reduced exhaustion.

CD28 + OX40 Sustained clonal expansion

ICOS + 4-1BB Enhanced antitumor effects and increased persistence in vivo, including solid tumor models.

OX40 + 4-1BB Favors CAR T-cell persistence; may favor CD8+ T cell expansion

ICOS + OX40 Expected enhanced antitumor effect and increased persistence. Abrogates IL10 and Treg development.
Functional T cell function of each intracellular costimulatory domain (ICD) molecule tested in this study with a combinatory effect hypothesis for third generation constructs.
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to exclude dead cells and incubated in the dark for 15 minutes at

room temperature. After incubation, cells are washed by adding 150

mL of a flow buffer and centrifuged at 650 × g for 3 minutes at 4°C.

Then 8 mL of streptavidin-PE and 50 mL of flow buffer were added,

and cells were incubated for 30 minutes at 4°C. After surface

staining, cells are fixed and permeabilized by adding 100 mL of a

fixation medium and incubated for 15 minutes at room

temperature. Cells are then washed with 100 mL of a flow buffer.

Fixed/permeabilized cells were resuspended in 50 mL of a

permeabilizing buffer. Cells were washed and resuspended in 200

mL of a flow buffer and acquired on a flow cytometer. Flow

cytometry was performed on a Symphony (B.D. Biosciences) five-

laser cytometer (Supplementary Table 1). Analyses were performed

using FlowJo X10.0.7r2 software.
2.6 Cytokine release assay

IFN-g and CD107a production were evaluated using flow

cytometry, according to the manufacturer’s instructions. Briefly,

0.5x106 CAR T cells were seeded for (IFN-g 12 hrs, CD107a 4 hrs)

with 5x105 target cells (Jeko-1 or K562). To create stringent testing

conditions similar to physiological environment we tested an E:T

ratio of 1:1, in triplicate wells on 96-well round bottom plates as

reported in previous studies (45–47). Negative and positive controls

were represented by CAR T cells that remained unstimulated

(medium only) or treated with 40 ng/mL of PMA and 4 mg/mL

of ionomycin (Sigma-Aldrich). After the stimulation, the

corresponding antigens were measured using FACS in the Flow

Cytometry core at Mayo Clinic AZ.
2.7 In vitro cytotoxicity and
rechallenging assay

We developed a Luciferase-based rechallenge cytotoxicity assay.

The target Luciferase+ Jeko-1 and K562 cells were incubated with

effector CAR T-cells transduced with different constructs as

indicated. Each day the E:T ratios were adjusted to generate seven

different E:T ratios per construct. Effector cells remain unchanged

from day one until day five to assess their ability to induce

cytotoxicity during this rechallenge experiment. On the other

hand, fresh new target cells were added as needed to adjust the E:

T ratios. Each day and for each construct, we measured the

cytotoxicity generated by the seven different E:T ratios, and with

these data, we obtained the logarithmic trendline and calculated the

E:T ratio that induced cytotoxicity in 50% of the target cells (EC50).

The EC50 E:T ratio was used as a proxy for each cellular product’s

potency and ability to induce repetitive cytotoxicity and expand

over time (persistence). CAR T-cells transduced with constructs

that induce low EC50 E:T ratios at five days are expected to be fitter

and have a better persistence profile, while those with high EC50 E:

T ratios are more prone to exhaustion. The killing was calculated by
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BLI on a Xenogen IVIS-200 Spectrum camera (catalog no. 124262,

PerkinElmer) as a measure of residual live cells. Ten minutes before

imaging, samples were treated with 1 mL D-luciferin (30 mg/mL,

Gold Biotechnology) per 100 mL sample volume.
2.8 Evaluation of CAR T-cell tonic signaling
(CD3z phosphorylation)

Tonic signaling evaluation using CD3z Pho(Tyr142) on ROR1

CAR constructs was performed. Different CAR T cells were

expanded for 12 days with T cell media +100 U/ml of IL-2. The

samples were electrophoresed using 4-12% Bis-Tris Protein Gel

(Cat.NP0322BOX). Resolved proteins were transferred onto a

nitrocellulose membrane (Cat.IB23001) by iBlot® 2 Dry Blotting

System (Cat. IB21001). The blot was probed with Phospho-CD3z

(Tyr1 42) Polyclonal Antibody (Cat.PA5-37512, 1:1000 dilution)

and Goat anti-Rabbit IgG (H+ L) Supercional™’ Recombinant

Secondary Antibody, HRP (Cat. A27036, 1:20,000) using the

Bright™M FL 1500 (Cat. A44115). Chemiluminescent detection

was performed using SuperSignal™M West Alto Ultimate

Sensitivity Substrate (Cat. A38556). The fact that CD3z was not

present in the untransduced, and fresh T-cells confirms that the

antibody is specific to native CD3z and CAR CD3z on controls.
2.9 In vivo CAR T-cell
cytotoxicity assessment

The Mayo Clinic Hospital Institutional Animal Care and Use

Committee approved all animal experiments. NOD scid gamma

(NSG) mice were purchased from The Jackson Laboratory and

housed in the Mayo Clinic, Arizona vivarium, under specific

pathogen-free conditions in microisolator cages and were

provided ad libitum access to autoclaved food and acidified water.

Male and female, 8 to 12-week-old, non-obese diabetic/severe

combined immunodeficient bearing a targeted mutation in the IL2

receptor gamma chain gene (NSG) mice were purchased from the

Jackson Laboratory (catalog no. 005557) and maintained within the

Mayo Clinic Department of Comparative Medicine under an

Institutional Animal Care and Use Committee–approved protocol

(IACUC A00005886-21). The ROR1+luciferase+ MCL JeKo-1 cell

line was used to establish a systemic ROR1+ tumor model. 5 × 105

cells were resuspended in PBS and injected via the tail vein, 1 week

before T-cell infusion. The tumor burden was assessed weekly by

BLI using a Xenogen IVIS-200 Spectrum camera to confirm the

engraftment of JeKo-1 cells and visual inspection. The mice were

randomized according to the tumor burden assessed by IVIS to

receive 3 × 106 of (i) UTD, (ii) ROR1.BBz, (iii) ROR1.IOz or (iv)

CD19.BBz CAR T-cells (Cells infused were normalized by CAR% of

each group, except for the UTD group). One week after T-cell

infusion, mice were imaged with BLI, as described below. Mice

were euthanized after the completion of the experiment.
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2.10 Statistical analysis

A Student’s t-test was used to compare two value sets, while we

used one-way ANOVA when three groups were involved.

Histograms represent mean values ± standard deviations. P < 0.05,

P < 0.01, or P < 0.001 were indicated by *, ** or ***, respectively. All

statistics were performed using GraphPad Prism version 8.05 for

Windows (GraphPad Software, www.graphpad.com). Statistical tests

are described in detail in the representative figure legends.
3 Results

3.1 scFv optimization and functionality of
ROR1 redirected CAR T-cell

We evaluated and optimized different scFv sequences derived

from anti-ROR1 antibodies using a 2G-CAR construct design with

41BB-z ICD (Figure 1A) (48). First, we studied the effects of the
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cloning position of the variable heavy (VH) and variable light (VL)

domains in the lentiviral plasmid vector and the effects of the

interspace linker (GGGGS)n length in between the VH and VL

domains - (short linker n=5 vs. long linker n=15). Specifically, we

evaluated differences in the CARs’ ability to induce CAR expression

after T-cell transduction, T-cell expansion, cytotoxicity, T-cell

activation, or degranulation.

We observed that longer linkers induced lower levels of CAR

expression, but these differences were not statistically significant

(Figure 1B). Also, CAR constructs with long linkers, particularly the

VL-long linker-VH (LLH) sequence, induced higher levels of T-cell

expansion, reaching a 25-fold increase at day ten compared to the

other constructs (Figure 1C).

All the ROR1-CAR constructs we tested induced similar

cytotoxicity and IFN-g production levels specifically driven by

ROR1 expression on the target cells (Figure 1D, E). However, the

level of degranulation measured by CD107a expression was higher

on the T-cells transduced with long linker constructs (HLL,

LLH) (Figure 1F).
A

B

D E F

C

FIGURE 1

ScFv optimization. (A) Schematic diagram showing the different anti-ROR1 Sc variants used for testing, including four different permutations of the
fusion proteins Heavy (VH) and light (VL) chains with two different (G4s)3 linkers - Long (L) and short (S). (B) Surface expression of anti-ROR1 specific
CAR protein in primary T cells.16 T cells were transduced with the different constructs using a lentiviral concentrate at a MOl 3.0. Expression was
examined by flow cytometry at 6 days following transduction, using a ROR1-biotin soluble recombinant protein and streptavidin-PE. (C) CAR T cell
expansion curve (D). After 14 days of expansion using a luciferase-based assay the different scFv configurations, the constructs were incubated with
JeKo-1/ROR1+ and K662/ROR1- cells at an ET ratio of 10:1, and the cells were harvested at 24 hours. (E) After 24 hours stimulation with ROR1+
cells IFN- g was measure by FACS. (F) Degranulation assay after 4 hours simulation with ROR1+ cells. Data are plotted as mean ‡ SEM (****, p <
0.00001, **, p < 0.001, and * p= < 0.01).
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3.2 3G ROR1 CAR constructs showed
increased in vitro INF-g secretion, long-
term cytotoxicity, and increased TCM/TEM
persistence-associated phenotype

The above data suggest that the cloning positioning of VH or

VL was not relevant to the CAR T-cell parameters that we

measured, that induced cytotoxicity was similar in all the 2G

constructs regardless of VH-VL domain orientation or linker

length, and that long interspace linkers between VH-VL domains

are critical for the optimal degranulation and expansion of the CAR

T-cells. Because of these findings, we selected the LLH scFv design

to proceed with the 3G-CAR cloning, including the ICOS and OX40

ICD. CARs containing the 4-1BB and CD28 were linked to the
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CD28 TM domain, while CARs with a membrane-proximal ICOS

ICD had the ICOS TM domain (unless otherwise indicated), and all

the CARs constructs used an IgG4 hinge (Figure 2A).

We evaluated three 3G-CAR construct designs [A. ROR1-

ICOS/4-1BB/CD3z (ROR1-IBz); B. ROR1-ICOS/OX40/CD3z
(ROR1-IOz); C. ROR1-CD28/4-1BB/CD3z (ROR1-28Bz)]; and
compared with a 2G-CAR control [ROR1-4-1BB/CD3z (ROR1-

Bz)]. There were no differences in the level of CAR protein

expression after lentivirus transduction of T-cells (Supplementary

Figure 2). 3G-CAR T-cells show a statistically significant slower

expansion growth than 2G-CAR T-cells (Figure 2B). CAR T-cell

persistence was evaluated in vitro using a model of repetitive target

cell challenge developed in our laboratory (49) (Figure 2D). On day

1, all the 3G-CAR constructs showed similar E: T ratios suggesting
B
C

D E

F

A

FIGURE 2

Third generation optimization. (A) Schematic diagram showing the different anti-ROR1 third generation constructs using the orientation light chain
(VL) + long linker (G4s)3 + heavy chain (VH) ScFv using combination of the following co-stimulatory domains ICOS, OX40, 41BB and CD28. (B)
Expansion curve of the different constructs. (C) Western blot of CART cell constructs tonic signaling evaluation after expansion measuring the
phosphorylation of tyr142 CD3z (D). After 14 days of expansion using a luciferase assay base the different second and third generations constructs
were incubated with JeKo-1/ROR1* cells at an ET ratio of 10:1, with different re-challenges using the same E:T ratio of target cells for day 1, 2, 3, 4
and 5. (E) IFN- g expression measured by FACS after 5 days of re-challenge (F). Phenotype of CAR T cells as demonstrated by percentage of central
memory (CD62L+CD45RA-) and effector memory (CD62L-CD45RA- CAR T cells 5 days after ROR1+ target cells stimulation every day. Data are
plotted as mean ‡ SEM (****, p < 0.00001, ***, p < 0.0001, **, p < 0.001, and * p = < 0.01, ns: no statistically significant).
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equal cytotoxic potency, and there was a trend for increased

cytotoxicity with lower E: T ratios for the cells transduced with

the 2G-CAR construct. This trend became statistically significant on

Day 2, and by day 5, the cytotoxicity of 2G-CAR T-cells was lost

with E:T ratios that were very high and comparable with the

untransduced T-cells (UTD). The T-cells transduced with 3G-

constructs behave differently; they showed relatively low

cytotoxicity during the first 48 hr of culture, and gradually the E:

T ratios decreased, and their cytotoxicity was significantly increased

by Day 5 compared with the T cells transduced with the 2G-CAR

construct or UTD cells (Figure 2D). Moreover, after 5 days of in

vitro rechallenge with ROR1+ tumor cell lines, all T cells transduced

with the 3G-constructs secreted significantly higher IFN-g levels

than the 2G-CAR construct and UTD control (Figure 2E).

In addition, we studied the phenotypic changes of T cells

transduced with different constructs, particularly the T-cell

central memory (TCM) and effector memory (TEM) phenotype

ratio (TCM/TEM) that has been associated with CAR T-cell

persistence (50). After 12 days of in vitro expansion, all the

constructs that we tested exhibited at least a threefold increase in

CD4 and CD8 T-cell central memory (TCM) compared with effector

memory (TEM) phenotype (Supplementary Table 3). However, this

elevated “baseline” TCM predominance changed after the cells were

evaluated using our five days in vitro rechallenge assay with ROR1+

tumor cell lines. For example, the 3G ROR1-IOz CAR T-cells

continue to express the highest CD4+ TCM levels, with CD8+ TCM

comparable to the Bz and IBz cells and higher than the 28Bz ones.

Regarding the TEM phenotype, the ROR1-IOz CAR T-cells showed

the lowest percentage of TEM cells (CD4+ and CD8+). The calculated

TCM/TEM ratios showed a > 4-fold increase in CD4+ T-cells

transduced with the ROR1-IOz CAR compared to the other

constructs. There were no substantial differences in the TCM/TEM

ratios among CD8+ T cells transduced with any of the constructs

(Figure 2F; Supplementary Table 3).
3.3 3G ROR1-IOz CAR T-cells showed low
levels of CD3z tonic signaling

We evaluated the tonic signaling of the T cells transduced with

different CAR constructs before engagement with the specific target

antigen (Figure 2C). CAR T cells were expanded for 12 days using T

cell media +100 U/ml of IL-2. The baseline CD3z CAR chimeric

and the native CD3z proteins were evaluated for tyrosine

phosphorylation (Ty142) by Western blot using specific

monoclonal antibodies. This basal CD3z signaling helped us to

evaluate the tonic phosphorylation of the ICD and potential

correlations with cytotoxicity, expansion, and phenotype. CAR T-

cells transduced with the 3G ROR1-IOz showed the lowest

phospho-CD3z-Ty142 adjusted expression ratios suggesting that

this construct induced the lowest ICD tonic signaling activation. On

the other hand, T-cells transduced with the 2G ROR1-Bz showed

the highest CD3z-Ty142 phosphorylation. Higher phospho-CD3z-
Ty142 tonic signaling correlated with CAR constructs that induced

rapid expansion, cytotoxicity, and exhaustion (Figure 2;

Supplementary Figure 4).
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3.4 3G-ROR1-IOz CAR T-cells induce
enhanced activity and increased survival in
an in vivo lymphoma mouse model

We used the Jeko-1 (ROR1+) NHL model in NOD-SCID mice

for in vivo testing (51). The 3G-ROR1-IOz construct was selected

for these experiments based on the previous results that suggested

that this construct could induce better T-cell fitness with a favorable

persistent phenotype. We compared the activity in vivo of T cells

transduced with the 3G-ROR1-IOz construct vs. T cells expressing

the 2G-ROR1-Bz and CD19-Bz constructs (Figure 3A). All of the

Jeko-1 tumor-bearing mice were injected with anti-CD19 CAR T-

cells, and the 3G-ROR1-IOz showed excellent response with no

clinical evidence of progression (Supplementary Figure 3). Three

mice injected with the 2G-ROR1-Bz showed progression and

required euthanasia. As expected, the mice treated with

untransduced T-cells (UTD) had rapid progression, and all of

them died or required euthanasia by Day 28 post-T-cell injection

(Figure 3B). Kaplan-Meier survival analysis showed that all the mice

injected with ROR1-IOz and CD19-Bz CAR T-cells survived the

80-day observation study. The median Overall Survival (mOS) of

the mice treated with UTD T-cells or ROR1-Bz CAR T-cells was 20

and 65 days, respectively P< 0.05 (Figure 3C). The treated mice

developed xenogenic graft-versus-host disease (GVHD), as

previously reported on extended CAR T-cell in vivo experiments

by various groups (52). However, the clinical GVHDmanifestations

observed in the mice receiving the 2G-ROR1-Bz T-cells were the

most severe.

We measured circulating anti-ROR1 CAR T-cells in peripheral

blood samples collected weekly from Day 0 to Day 70, and we did

not observe differences in the median number of cells identified by

flow cytometry. For example, median CAR T-cells on Day 70 were

9.8 and 14.8 CAR T cells/ml of blood on ROR1-IOz and ROR1-Bz,
respectively (Figure 4A). We analyze TCM, TEM phenotypic profiles

(Day 7, Day 28, and Day 70), and exhaustion markers (Day 70)

u s ing the same sampl e s . The ce l l s wer e ga t ed on

CD45+CD3+CAR+CD4+ for this specific analysis. At Day 70, the

circulating CAR T-cells from mice treated with the ROR1-IOz
construct showed a significantly higher number of TCM and lower

number of TEM cells than ROR1-Bz (Figure 4B). In addition, the

CAR T-cells from the group of mice treated with the 3G-ROR1-IOz
T-cells, have low expression of exhaustion markers, including PD1,

LAG3, TIGIT, and TIM-3 (Figure 4C). CD8+ T-cells expressing

central memory phenotype corresponded to 82% of the total

population by Day 70 in the mice treated with 3G-ROR1-IOz
CAR T-cells compared to only 12% on those receiving the 2G-

ROR1-Bz similar distribution observed in the 2G-CD19-

Bz (Figure 5).
4 Discussion

CAR T-cells’ proliferation, expansion, and persistence correlate

directly with the clinical response to B cell malignancies (6, 53, 54).

Unfortunately, these optimal CAR T-cell characteristics have not
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been observed in clinical trials of patients with solid tumors (1, 4–6).

Therefore, a deeper understanding of the factors that enhance

proliferation, expansion, and persistence will be of significant

importance in improving the treatment outcomes of cancer

patients treated with CAR T-cell therapies.
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Multiple strategies have been investigated to increase the

persistence of CAR T-cells, specifically cells with a TCM

phenotype. Some of those include patient vaccination to enhance

tumor-reactive clones and perform a selection of those prior to ex

vivo manipulation, optimization of CAR T-cell culture conditions,
B C

A

FIGURE 3

ROR1-10z CAR T cells show a long-term durable response and improve overall survival in the mouse model. (A) 1 week after the injection of 5 × 105

JeKo-1, mice were randomized into 4 groups: (1) UTD, (2) ROR1-Bz CART cells, (3) ROR1-10z CART cells or (4) CD19-Bz CART cells. (B) Tumor
burden was assessed by using BLI (5 mice per group/4 mice per group in UTD). (C) Kaplan-Meier survival curves of the ROR1 mouse models treated
with UTD, ROR1-Bz, ROR1-10z or CD19-Bz CART cells. Data are plotted as mean ‡ SEM (* p = < 0.01).
B

C

A

FIGURE 4

ROR1-10z Signaling Domain Leads to Enrichment of Tm Subset, whereas ROR1-B7 Promotes Tem Population. (A) Circulating CAR T-cells at day 70
measured by Flow cytometry gating on CD45*CD3*CAR* (B). Relative change of Tem and Tem cell subsets in ROR1-Bz and ROR1-10z CAR T cell
cultures. Absolute numbers of live cells were calculated for each population at the specified time points. The graphs show relative fold change of
Tm or Tem in ROR1-10z CAR T cells normalized to ROR1-Bz CAR T cells. (C) T cell population at day 70 gated on CD3+CAR+ T cells with exhaustion
markers on both groups ROR1-Bz and ROR1-10z Representative plots (from at least 10 mice). Numbers shown are percentages of cells detected in
each gate. Absolute number of CART cells per microliter was calculated with counting beads (mean and standard error of the mean). Data are
plotted as mean ‡ SEM (**, p< 0.001, and *, p= <0.01).
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carefully monitoring electrolyte, amino acids, carbohydrates, and

cytokines content with the goal to increase T-cell naïve (TN) and

TCM (55–59), modification of metabolic pathways of the CAR T-

cells that reduced the glycolytic activity and increase fatty acid

oxidation (FAO). This step is critical for TCM generation (60) or

direct engineering of the CAR using modifications, particularly in

the ICD regions, to enhance cytotoxicity and persistence (15–17, 21,

61, 62). In the work presented here, we have evaluated this latter

strategy by studying the activity of ICOS and OX40 by creating a

novel tandem ICD that could have broad applications in CAR T-

cell design.

We selected ROR1 as the molecular target of our experiments

because ROR1 is a TAA expressed in a wide variety of cancers (35–

39); therefore, any optimization derived from our work will have a

broad range of applications. In our initial experiments, we observed

that the positional sequence of VH-VL domains of the scFv did not

have a significant impact on the level of CAR expression but appears

to play a role in facilitating CAR T-cell expansion, mainly when the

VH domain follows the VL domain with a long linker G4S(3) (LLH
Frontiers in Oncology 09
5’-3’ cloning sequence). Similarly, our data show that a long linker

increased degranulation evaluated with the expression of CD107a.

Our observations are consistent with previous reports describing

the importance of VH and VL positional cloning and other

elements like peptide and non-peptide linkers associated with the

scFv design. The orientation of the domains and the spatial/

tridimensional configuration facilitated by the spacer linker can

impact the stability, specificity, and activity of the scFv molecule

(63–66). Whether or not these “rules” are universal or if it is

required to optimize each scFv for specific applications

individually is something that needs to be clarified in future studies.

Using the LLH cloning sequence as the CAR scaffold design, we

tested the activity of ICD that included ICOS and OX40. Our data

show that 3G CAR construct designs with two domains linked to

the CD3z motif tend to grow slower, but at the same time, they

exhibit higher levels of targeted cytotoxicity for more extended

periods, as demonstrated in our five days repeat challenge

stimulation. The 2G CAR construct we used as a control, ROR1-

Bz, induced high levels of T-cell cytotoxicity but after three days,
FIGURE 5

ROR1-IOZ Signaling Domain Leads to Enrichment of Tm Subset, whereas ROR1-B7 Promotes Tem Population. Representative plots (from at least 5
mice) of cell-surface expression of CD62L and CD45RA on CAR T-cells at specified time points during in vivo expansion. Cells shown have been
pre-gated for live CD3+CD8+CAR+ T cells. Numbers shown are percentages of cells detected in each gate.
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that activity decreased significantly and, by day five, was

comparable with the untransduced (UTD) cells. The rapid decay

of the cytotoxic activity of the 2G-CAR construct was most likely

due to the initial ICD medicated overactivation, followed by a

gradual increase in the expression of exhaustion markers, as shown

previously (67–69). We placed ICOS upstream in the CAR

sequence, close to the membrane, as it has been demonstrated

that this is critical for optimal signaling of this ICD (20). In our

experiments, the 3G CAR construct using CD28 and 4-1BB

together (ROR1-28Bz) showed a mixed cytotoxic profile with

potent cytotoxicity early and maintained until the end of the five

days of incubation. However, T-cells transduced with the ROR1-

IOz construct showed an uniform immunological fitness profile

with high levels of persistent cytotoxicity associated with high IFN-g
production, TCM polarization, particularly in CD4+ T-cells and a

high TCM/TEM ratio. Our study focused primarily on the specific T-

cell phenotypic profiles induced by CAR ICDs and their correlation

with cytotoxicity, cytokine production, persistence, and central

memory phenotype. Another potential explanation for these

findings could be the ICD-induced tonic signaling (69, 70).

Recent studies have shown that optimal tonic signaling correlates

with CAR T cell expansion, performance, and exhaustion profile

(71). CAR construct tonic signaling provides a basal activation level

necessary for an efficient engagement with the antigen expressed in

the target cell (71). In addition, CAR tonic signaling contributes to

maintaining CAR-T cell viability, promoting memory-like

properties, and enhancing their overall antitumor activity (72).

ICOS (Inducible T cell co-stimulator) and OX40 (TNFRSF4 –

CD134) are costimulatory receptors that play a crucial role in

developing central memory T cells and their persistence. Central

memory T cells are a subpopulation essential for rapid and effective

responses to subsequent infections or tumoral challenges (50, 73).

ICOS and OX40 help to enhance T cells’ activation, expansion, and

survival, leading to the development of a strong and durable

memory T cell response and TCM long-term protective immunity

pool (20). In addition, the activation of ICOS and OX40 can

enhance cytokine production and effector function, further

increasing the effectiveness of T-cell responses and inducing a

Th1, Th17 T-cell polarization (32). OX40 can enhance Tregs

activation in autoimmune disease, and this is a potential adverse

event that will need to be assessed in future clinical development of

constructs bearing the OX40 ICD (74, 75). On the other hand, the

activation of OX40 can trigger additional anti-tumoral signaling

promoting Bcl-xL and Bcl-2 expression, essential for long-term T-

cell survival (76) and elimination of the tumor suppressive activity

of regulatory FOXP3+CD25+CD4+ T cells (77).

We observed the effect of the ICOS-OX40 combination in vivo.

Jeko-1 tumor-bearing mice showed a significant response after

injection of ROR1-IOz CAR T-cells. They showed rapid tumor

responses, the best O.S. superior to 2G-CAR ROR1-Bz. We

excluded the possibility that the antitumor effect of the ROR1

CARs resulted from their allogeneic effect because the UTD cells

did not show any evident effects on tumor growth. Assessment of T
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cell phenotype at the end of the study on Day 70 showed that

ROR1-IOz CAR T-cells have an elevated TCM/TEM ratio,

progressive accumulation of TCM, and lower expression of

exhaustion markers. In addition, we observed that the initial

expansion process of the T-cells induced elevated TCM/TEM ratios

before in vivo or in vitro testing, regardless of transduction with

CAR constructs (Supplementary Figure 2). This suggests that the

initial phenotypic characteristics of the product did not influence

the TCM polarization observed over time after the CAR T-cells

encountered the target. We understand that NSG mouse model

does not provide any information related with the tumor

microenvironment due to the lack of immune system but can

serve as suitable model for CAR T antitumor activity studies (78,

79). These data strongly indicate that the ICD modifications of the

ROR1-IOz CAR construct confer a T-cell immunological fitness

profile that favors cellular persistence (43, 50, 80). Our findings

provide guidance for the synthetic design and optimization of CAR

T-cells with enhanced persistence, which is a desirable characteristic

of highly effective immune effector cells for cellular therapy.

Moreover, we proved evidence that ICOS and OX40 assembled in

a 3G-CAR T-cell configuration induces phenotypic changes that

favor TCM phenotype and enhance in vivo and in vitro redirected

cytotoxicity. The novel combination of tandem ICD ICOS-OX40-

CD3z described here, represents an alternative for broad

applications in CAR design and cellular immunotherapy.
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