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A transcriptional evaluation
of the melanoma and
squamous cell carcinoma
TIL compartment reveals
an unexpected spectrum
of exhausted and
functional T cells
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Introduction: Significant heterogeneity exists within the tumor-infiltrating CD8 T

cell population, and exhausted T cells harbor a subpopulation that may be

replicating and may retain signatures of activation, with potential functional

consequences in tumor progression. Dysfunctional immunity in the tumor

microenvironment is associated with poor cancer outcomes, making

exploration of these exhausted T cell subpopulations critical to the

improvement of therapeutic approaches.

Methods: To investigate mechanisms associated with terminally exhausted T cells,

we sorted and performed transcriptional profiling of CD8+ tumor-infiltrating

lymphocytes (TILs) co-expressing the exhaustion markers PD-1 and TIM-3 from

large-volume melanoma tumors. We additionally performed immunologic

phenotyping and functional validation, including at the single-cell level, to identify

potential mechanisms that underlie their dysfunctional phenotype.

Results: We identified novel dysregulated pathways in CD8+PD-1+TIM-3+ cells that

have not been well studied in TILs; these include bile acid and peroxisome pathway-

relatedmetabolism andmammalian target of rapamycin (mTOR) signaling pathways,

which are highly correlated with immune checkpoint receptor expression.

Discussion: Based on bioinformatic integration of immunophenotypic data and

network analysis, we propose unexpected targets for therapies to rescue the

immune response to tumors in melanoma.
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Introduction

Immune checkpoint inhibition (ICI) has revolutionized the

treatment of many forms of cancer, especially UV-induced skin

cancers like melanoma (1–6). The success of ICI has also escalated

the need for a comprehensive mechanistic understanding of the role

that cellular ICI targets play in oncogenesis and response to treatment.

Furthermore, this successful clinical outcome has prompted a search

for additional checkpoints and negative regulators of T cell function

that can lead to new treatment options for the substantial subset of

patients who are refractory (1–3, 5–7).

Systems biology has revolutionized the comprehensive objective

assessment of the state of T cells in myriad disease models.

Transcriptional analysis via RNASeq has transformed the field of

tumor immunology and facilitated the identification of new

subpopulations within what was previously thought to be a

homogeneous set of immune populations (8, 9). The vast

majority of the literature on melanoma, however, relies on small

biopsies, so it is likely that the data may not represent the full

spectrum of alterations occurring in the immune system in the

tumor microenvironment (TME) (10, 11). An integrated systems

biology approach may yield key transcriptomic biological maps of

the TME (and/or identify gaps) to provide insight into the delicate

balance of regulation within the tumor and in immune cells to

pinpoint therapeutically targetable states within the spectrum of

function. We have a unique biobank of fresh, large-volume tumors

from surgical resections, allowing us to sort down to very specific

individual populations to investigate subset-specific transcriptional

regulation for discovery.

Although many immune cells in the TME express immune

checkpoints, such as programmed cell death-1 (PD-1), it is the

exhausted tumor-infiltrating CD8+ T cell that has been shown to be

a key target for reinvigoration by ICI (12–17). T cell exhaustion is a

dynamic process, associated with progressive loss of effector

function and high expression of inhibitory receptor molecules,

such as PD-1, LAG-3, and TIM-3 (18) (19). Interestingly, in the

last few years, several transcriptomic evaluations of CD8+ TILs have

identified exhausted T cell populations with high levels of activation

(20) and even significant populations that are proliferating (21),

contrasting with reports that these exhausted cells are dysfunctional

(22, 23). Few studies have investigated these TILs, even though they

express the same targets of modern ICI and the efficacy of immune

checkpoint blockade therapy is significantly influenced by

exhausted T cell heterogeneity (24). Recent studies have shown
Abbreviations: Tex/act, exhausted but actively suppressive T cell subpopulation;

TIL, tumor-infiltrating lymphocyte; mTOR, mammalian target of rapamycin; ICR,

immune checkpoint receptor; TME, tumor microenvironment; PD-1,

programmed cell death-1; SCC, squamous cell carcinoma; pCD8,

peripheral CD8 T cell; MEL, melanoma; IO, immunotherapy; RIPA,

radioimmunoprecipitation assay; GEO, Gene Expression Omnibus; PCA,

principal component analysis; UMAP, uniform manifold approximation and

projection; MFI, mean fluorescence intensity; HCC, hepatocellular carcinoma;

GSVA, gene set variation analysis; DEG, differentially expressed gene; PBMC,

peripheral bloodmononuclear cell; scRNAseq, single-cell RNA sequencing; Tim-3,

T cell immunoglobulin and mucin protein 3.
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that T cells can be separated into defined phenotypic and functional

categories. Current models posit that T cells exposed to chronic

high levels of antigen, as in unresolved infection and tumor, contain

populations of “precursor exhausted” cells (Tpex: PD1+, TCF1- and

TIM-3-) and “terminally exhausted” T cells (Tex: PD-1+, TCF1-,

and TIM-3+) (25). While both subpopulations express PD-1, a

canonical marker of T cell exhaustion, Tpex cells have been shown

to display characteristics of both exhausted and memory cells and

proliferate in response to blocking inhibitory receptors,

differentiating into Tex cells (26) (27) (28). We recently showed

that cells with a Tex phenotype (CD8+PD-1+TIM-3+ TILs)

functionally mediate suppression of healthy autologous T cell

proliferation through the production of IL10 and close contact.

Importantly, these cells are a target of modern checkpoint-based

immunotherapy (29, 30). These studies highlight the need to

investigate all exhausted T cell populations. Further research into

the dynamic regulation of and functional interplay between

exhausted T cell subsets and the TME may serve to facilitate

future therapeutic approaches.

We hypothesized that investigation of CD8+PD-1+TIM-3+ T cells

(Tex/act, exhausted but actively suppressive) would yield key

transcriptomic information that can be exploited to identify new

targets for immunotherapy. We strategically sorted and

transcriptomically profiled CD8+PD-1+TIM-3+ TILs from melanoma

and from cutaneous squamous cell carcinoma (SCC) tumors to answer

these questions. We undertook what appears to be the largest unbiased

transcriptomic evaluation (in terms of the number of patients) of this

key cellular ICI target within the TME and identified numerous

differentially regulated biochemical pathways. Of note, these

CD8+PD-1+TIM-3+ T cells are metabolically active TILs and

demonstrate profound upregulation of pathways including bile acid

metabolism, mammalian target of rapamycin (mTOR) signaling, and

peroxisome-related pathways. Given the fact that there is still a large

group of melanoma and other cancer patients who do not derive

benefit from ICI or other therapies, our findings may have broad

application in helping to reach the goal of therapeutic success in

all patients.
Results

Transcriptomic profiling of dysfunctional
CD8+ TILs

Melanoma and SCC have shared etiologies (e.g., both are UV-

induced cutaneous conditions) and similar immune-oncology-

based therapeutic approaches are adopted in treating them, but

these conditions can progress very differently, lending themselves to

the interrogation of CD8 T cell exhaustion and analysis for

common or distinct mechanisms of dysfunction with applications

for the development of improved therapies. CD8+ TILs in

melanoma and SCC share important common features, including

the coordinated expression of immune checkpoint receptors and

the development of resistance to immunotherapy (29, 31, 32), yet

the mechanisms underlying TIL dysfunction in these tumors

remain elusive. To address this, we performed transcriptomic
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profiling on flow-sorted CD8+PD-1+TIM-3+ T cells from

melanoma and SCC (total CD8+/P+/T+ TILs) and compared them

to peripheral CD8+ T cells (pCD8s) from healthy donors. A total of

3,957 genes were differentially expressed (p ≤ 0.05) in total CD8+/

P+/T+ TILs vs. pCD8+ T cells (Figure 1A). Gene set variation
Frontiers in Oncology 03
analysis (GSVA), beginning with gene ontology (GO) molecular

function annotation, identified the corresponding top upregulated

pathways, including chemokine activity and three pathways related

to metabolism: carbohydrate kinase activity, oxidoreductase activity

II, and aspartic-type peptidase activity (Figure 1A). The top
B C

D E

A

FIGURE 1

Melanoma and SCC TILs display a distinct transcriptional profile from CD8+ T cells in the periphery. (A) Heatmap of 3,957 differentially expressed
genes (DEGs) (nominal p < 0.05) in PD-1+ TIM-3+ TILs from melanoma (MEL TILs CD8+/P+/T+) and SCC (SCC TILs CD8+/P+/T+) vs. pCD8 cells. Gene
expression is normalized by z-score, with green indicating higher relative levels of expression and purple indicating lower relative levels of gene
expression. GO molecular function analysis (via GSVA) of DEGs in melanoma and SCC CD8+/P+/T+ TILs (total CD8+/P+/T+ TILs) vs. pCD8s is shown
to the right of the heatmap. Asterisks indicate truncated pathway names; full pathways are as follows: oxidoreductase activity acting on the CH–NH
group of donors (oxidoreductase activity I), oxidoreductase activity acting on the CH–NH2 group of donors with oxygen as acceptor
(oxidoreductase activity II), and hydrolase activity acting on carbon–nitrogen but not peptide bonds in cyclic amidines (hydrolase activity).
(B) Volcano plot of the top 50 up- or downregulated genes in total CD8+/P+/T+ TILs vs. pCD8s. Upregulated genes are shown in red, downregulated
genes are shown in blue, and significant genes of interest to this study are annotated in black. The red dashed line indicates the significance cutoff
(nominal p < 0.05). (C) Volcano plot of Hallmark pathway enrichment in total CD8+/P+/T+ TILs vs. pCD8s. Significant pathways of interest are
annotated; the red dashed line indicates the significance cutoff (nominal p < 0.05). (D) Enrichment map of significantly differentially enriched
Hallmark pathways (nominal p < 0.05) in total CD8+/P+/T+ TILs vs. pCD8s. Node size indicates negative (−)log10(p-value), node color with associated
scale denotes log2 fold change values for enrichment scores, and edge weight represents the Jaccard coefficient between significant sets of genes
in each pathway. (E) Regression of PD-1 (GEOMEAN) surface expression on CD8+ T cells on sample pathway enrichment scores from the Hallmark
database. Pathway enrichment scores are normalized by z-score, with green indicating higher relative levels of enrichment and purple indicating
lower relative levels of enrichment. SCC, squamous cell carcinoma; TILs, tumor-infiltrating lymphocytes; GO, gene ontology; GSVA, gene set
variation analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1200387
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cameron et al. 10.3389/fonc.2023.1200387
downregulated pathways included C2H2 zinc finger domain

binding, p53 binding, rRNA binding, ARF guanyl nucleotide

exchange factory activity, and androgen receptor binding

(Figure 1A). Clear differential expression of genes in total CD8+/

P+/T+ (SCC and MEL) TILs vs. pCD8s indicated upregulation of

immune checkpoint receptors including TIM-3 (HAVCR2), PD-1

(PDCD1), LAG3, and TIGIT (Figure 1B).

Moreover, additional pathway enrichment analysis via gene set

enrichment analysis (GSEA) using the Hallmark database (MSigDB)

identified significant induction of multiple metabolic pathways in total

CD8+/P+/T+ TILs, including glycolysis, xenobiotic metabolism, fatty

acid metabolism, mTORC1 signaling/PI3K AKT MTOR signaling,

adipogenesis, and bile acid metabolism, corroborating our GSVA data

(Figure 1C). We performed an analysis of pathway interactivity (via

shared differentially expressed genes (DEGs) according to Jaccard

similarity coefficient) to provide a broader overview of how the

enriched pathways interact; as expected, this indicated a close

correlation between mTORC1 signaling, PI3K AKT MTOR

signaling, and glycolysis, with a less-direct connection to bile acid

metabolism (via mTORC1 signaling) (Figure 1D). We were especially

intrigued by the significant differential enrichment of bile acid

metabolism, which has not been proposed as a key regulatory

pathway in TIL function. Linear regression analysis of PD-1 (surface

expression determined by flow cytometry) with gene expression

revealed a strong positive correlation between PD-1 protein

expression and upregulation of the bile acid metabolism, peroxisome,

and glycolysis pathways in CD8+ TILs and peripheral blood

mononuclear cells (PBMCs) (Figure 1E). These findings suggest that

CD8+ T cells adopt a unique metabolic program associated with the

latest stages of exhaustion when PD-1 expression is at its highest.

Moreover, core biological pathways that have been previously

shown to be associated with TGF-b attenuation of the tumor

response to immune checkpoint blockade were also significantly

differentially regulated within the dysfunctional CD8+PD-1+TIM-

3+ melanoma and SCC TILs (Supplementary Figure 1A).
Identification of unique metabolic-
associated dysfunctional CD8+ T cell
clusters by UMAP analysis

To objectively investigate additional exhausted T cell

phenotypes and associated metabolic signatures, we integrated the

expression of immune checkpoint receptors (ICRs) and activation

markers with the transcriptional profiles of CD8+ TILs (melanoma

and SCC) and peripheral CD8+ T cells (Figure 2). We used flow

cytometric analysis of a smaller, randomly selected subset of

samples to measure the expression of immune checkpoint

receptors PD-1, TIM-3, TIGIT, BTLA, LAG3, and CD38, which

have all been shown to regulate T cell function (33). Coordinate

expression of multiple ICRs is associated with progressive CD8+

TIL dysfunction; therefore, we used our flow cytometry data to infer

levels of CD8+ TIL exhaustion.

We employed uniform manifold approximation and projection

(UMAP), a non-linear dimensionality-reduction machine learning

approach, to analyze our multiparametric flow data and objectively
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determine the heterogeneity of CD8+ T cells based on surface

expression of BTLA, CD3, CD8, CD27, CD38, CD45RA, CCR7,

LAG3, PD-1, TIGIT, and TIM-3. UMAP analysis revealed 17

unique clusters, nine of which showed significantly different

frequencies in CD8+ TILs compared to PBMCs (Figure 2A). A

two-way hierarchically clustered heatmap of MFI (geometric mean

fluorescence intensity) based on surface expression shows the

distinct surface signature profiles of the 17 clusters identified by

UMAP analysis (Figure 2B). Notably, the frequencies of

lymphocytes co-expressing multiple immune checkpoints (CD38,

TIGIT, LAG3, PD-1, and TIM-3), the negative regulators of T cell

function, were enriched in CD8+ TILs compared to peripheral cells,

especially in clusters 6, 15, and 16.

Of note, cluster 6 represents what is likely to be the most highly

dysfunctional CD8 population, characterized by relative

upregulation of CD38, TIGIT, PD-1, LAG3, and TIM-3, and is

significantly enriched in the CD8+ TIL population compared to the

peripheral CD8+ T cells (Figures 2B, C). Similar to cluster 6, clusters

10, 15, and 16 have similar ICR expression patterns with increased

coordinate immune checkpoint expression levels (Figure 2B).

Interestingly, cluster 16 is significantly enriched in CD8+ TILs of

both melanoma and SCC with high expression of PD-1 and TIM-3

(Figures 2B, C). Likewise, cluster 15 is also enriched in CD8+ TILs,

but only in melanoma, with moderate immune checkpoint

expression (Figures 2B, C). Our findings indicate that clusters 6,

10, 15, and 16, with upregulation of ICRs, are likely to represent

progressively more exhausted CD8+ T cell clusters (Figure 2B).

We then performed linear regression modeling of gene

expression with frequencies of cells from each flow UMAP cluster

in each donor to identify transcriptomic pathway enrichment that

correlates significantly with frequencies of CD8+ T cell clusters

identified by UMAP. Interestingly, higher frequencies of cells in

cluster 6 were strongly correlated with positive enrichment of the

bile acid metabolism and peroxisome pathways (Figure 2C).

Likewise, cluster 16 frequency was also positively correlated with

enrichment of the peroxisome, oxidative phosphorylation, and

glycolysis pathways (Figure 2C). In summary, our data

demonstrate a significant correlation between the upregulation of

immune checkpoint-expressing dysfunctional CD8+ TILs and

activation of metabolic functions, particularly the bile acid

metabolism, peroxidase, and glycolysis pathways, at the

transcriptomic level. Targeting this metabolic-associated

dysfunctional CD8+ Tex/act cell population could reinvigorate

exhausted CD8+ T cells, thus enhancing immunotherapy

responses in cancer patients.
Upregulation of proliferation- and
metabolic-associated genes in
dysfunctional CD8+ TILs in melanoma

To determine whether these metabolic pathways were

specifically dysregulated in melanoma, we performed differential

gene expression analysis of the melanoma CD8+ TILs versus healthy

peripheral CD8+ T cells, resulting in a distinct gene expression

signature as shown by the heatmap in Figure 3A. A total of 4,280
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genes were differentially expressed in MEL CD8+ TILs versus

peripheral CD8+ T cells, while 2,057 of those genes were

commonly differentially regulated in MEL and SCC TILs (p ≤

0.05, Supplementary Figure 1B). Statistically, the most upregulated

pathways based on GO molecular function annotation (via GSVA)

were the oxidoreductase, structural constituent of muscle, and

carbohydrate-binding pathways (Figure 3A). The top

downregulated pathways included C2H2 zinc finger domain

binding, N-acetyltransferase activity, rRNA binding, peptide N-

acetyltransferase activity, and transcription coactivator activity.

The top 50 differentially regulated genes between MEL TILs and

pCD8s by statistical significance are shown in Figure 3B, and the

ICRs PD-1 (PDCD1), TIM-3 (HAVCR2), CTLA4, and LAG3 were

among these. Also significantly upregulated were FABP5

(epidermal fatty acid binding protein), which can act as an

intracellular receptor that binds to free fatty acids (FFA) in the

cytosol, and Ki-67 (MKI67), indicating enhanced proliferation of

the CD8+ TILs.
Frontiers in Oncology 05
Enrichment of metabolism pathways in
CD8+ TILs in melanoma

To further evaluate the biology underlying differentially

expressed genes found in CD8+ TILs and PBMCs in melanoma,

we performed pathway enrichment analysis of key canonical

pathways. Notably, the peroxisome, bile acid, and fatty acid

metabolism pathways were coordinately regulated in melanoma

TILs compared to pCD8s (Figure 3C). Not only are peroxisome

proliferator-activated receptor (PPAR) pathways associated with

FABP5, which was upregulated at the RNA level in dysfunctional

CD8+ TILs, but they also regulate bile acid synthesis (34–36). Our

data showed strong positive enrichment of bile acid metabolism

pathways in dysfunctional CD8+ T cells from melanoma tumors.

CYP27A1, a key regulatory enzyme of the bile acid metabolism

pathway, was significantly upregulated in the CD8+ T cells of

melanoma TILs as compared to PBMCs (Figure 3A).

Upregulation of additional genes from the bile acid and
B

C

A

FIGURE 2

UMAP analysis and linear regression with immune checkpoint cell surface markers. (A) UMAP dimensional reduction analysis of CD8+ TILs compared
to CD8+ PBMCs reveals 17 unique clusters of coordinate cell surface protein expression. (B) Two-way hierarchically clustered heatmap of the MFI
(geometric mean fluorescence intensity) of surface expression of CD38, TIGIT, PD-1, TIM-3, LAG3, BTLA, CD3, CD8, CD45RA, CD27, and CCR7
within the clusters in the UMAP analysis. Clusters significant for all TILs vs. pCD8s are indicated by red asterisks (2, 3, 5, 6, 8, 9, 15, and 16), for MEL
TILs vs. SCC TILs by blue asterisks (1 and 5), for MEL TILs vs. pCD8s by orange asterisks (9, 15, and 16), and for SCC TILs vs. pCD8s by green asterisks
(5, 9, and 16). Heatmap is z-score transformed with upregulated MFI in red and downregulated MFI in blue. (C) Individual counts per selected cluster
are shown in the box-and-whisker plots (clusters 6, 15, and 16 are notably enriched in all TILs compared to pCD8 cells; p < 0.05, Mann–Whitney
test). Linear regression modeling of each cluster with the RNAseq data reveals enriched pathways that are unique to each cluster. UMAP, uniform
manifold approximation and projection; TILs, tumor-infiltrating lymphocytes; PBMCs, peripheral blood mononuclear cells; MEL, melanoma; SCC,
squamous cell carcinoma.
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peroxisome signaling pathways was also evident in TIL gene and

pathway expression analysis, including upregulation of SOD1,

ACSL5, FADS2, CAT, DHCR24, SLC27A2, and IDH2 in

melanoma TILs compared to pCD8s (Supplementary Figure 2).

As shown in Figure 3C, pathway enrichment analysis showed

that the mTORC1 signaling pathway was significantly and
Frontiers in Oncology 06
positively enriched in CD8+ melanoma TILs as compared to

pCD8s. The glycolysis pathway was highly integrated with many

other pathways, particularly the mTORC1 and peroxisome

pathways, which interact with bile acid metabolism (Figure 3D).

Compared to pCD8 T cells from control individuals, the glycolysis

pathway was the most significantly upregulated pathway under
B C

D

E

F

A

FIGURE 3

PD-1+TIM-3+ TILs from melanoma display a distinct transcriptional profile from CD8+ T cells in the periphery. (A) Heatmap of 4,280 differentially
expressed genes (DEGs) (nominal p < 0.05) in TILs from melanoma vs. peripheral CD8 cells. Gene expression is normalized by z-score, with green
indicating higher relative levels of expression and purple indicating lower relative levels of gene expression. Genes of interest are annotated. GO
molecular function analysis (via GSVA) of DEGs in melanoma TILs vs. pCD8s is shown to the right of the heatmap. (B) Top 50 differentially expressed
genes from MEL TILs vs. pCD8s based on p-value (nominal p < 8.93e−9). (C) Heatmap of significant (nominal p < 0.05) Hallmark pathways associated
with pCD8s versus MEL TILs. (D) Enrichment map of significantly differentially enriched Hallmark pathways (nominal p < 0.05) in TILs from melanoma vs.
pCD8s. Node size indicates −log10(p-value), node color with the associated scale denotes log2 fold change values for enrichment scores, and edge
weight represents the Jaccard coefficient between the sets of significant genes in each pathway. (E) Western blot analysis of control pCD8+ T cells (n =
3) and melanoma TILs (n = 3). Protein targets are shown on the right y-axis; b-actin was used as a loading control. (F) Volcano plot of 1,072 differentially
expressed genes (nominal p < 0.05) in patients who have undergone immunotherapy (anti-PD-1). Upregulated genes are shown in red, while
downregulated genes are shown in blue; the top 10 up- and downregulated genes are annotated (red dashed line indicates p-value cutoff (nominal p <
0.05). TILs, tumor-infiltrating lymphocytes; GO, gene ontology; GSVA, gene set variation analysis; MEL, melanoma.
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pathway interaction network analysis in the Hallmark canonical

pathway database in CD8+ TILs from melanoma patients

(Figure 3D). The differential regulation of multiple metabolic

pathways, including bile acid metabolism, mTORC1, and

glycolysis (Figure 3D), may reflect the fact that the CD8+ TIL

cells are hosted in a hypoxic, acidic, and nutrient-depleted TME

where the cellular metabolism has been reprogrammed as an

adaptive mechanism to facilitate their proliferation and survival

in melanoma. Our western blot analysis confirmed increased

expression of CYP27A1, which was upregulated in the bile acid

metabolic pathway, and three additional glycolytic genes (PKM2,

PHGDH, and PCK2) in melanoma CD8+ TILs compared to

PBMCs (Figure 3E).
Identification of immunotherapy signatures

A subset of our cohort of melanoma patients were treated with

anti-PD-1 immunotherapy. There were 1,072 differentially

expressed genes (p ≤ 0.05) in patients receiving therapy (n = 5) as

compared to those who did not receive treatment (n = 8), as

summarized in the volcano plot in Figure 3F. CXCR6 was

upregulated in the melanoma anti-PD-1 immunotherapy

signature, indicating a potential shift toward a proinflammatory

tumor microenvironment, which could lead to subsequent

metastasis. CTTNBP2NL (CTTNBP2 N-terminal-like protein)

was also upregulated; this is known to be associated with

STRIPAK complexes, which have been broadly linked to

metabolism, immune regulation, and cancer tumorigenesis (37).

On the other hand, CD160 and HRH2 (histamine receptor H2)

were downregulated in the anti-PD-1 therapy signature. To identify

common features of immunotherapy treatment across multiple

cancer types, we performed a similar analysis including patients

with SCC and melanoma cancer types and mult ip le

immunotherapy treatments. The comparison of patients receiving

immunotherapy (n = 16) and those who did not (n = 14) revealed

1,118 differentially expressed genes (p ≤ 0.05). CYP27A1 and

ABCA1 were among those genes significantly downregulated in

patients receiving immunotherapy. Consistent with the anti-PD-1

therapy signature, we also saw downregulation of CD160 and

HRH2 (Supplementary Figure 3A). Notably, pathways involved

in fatty acid metabolism, mTORC1 signaling, glycolysis,

and xenobiotic metabolism were all downregulated in the

immunotherapy signature (Supplementary Figure 3B).
mTOR pathway validation

The mTORC1 signaling pathway was highly significantly

enriched in tumors as compared to peripheral blood (Figures 1C,

3C). Using intracellular flow cytometry, we conducted further

analysis to discover that two of the key targets of mTORC1

complex activation, S6 ribosomal protein (target of S6 kinase,

which is a direct target of mTOR phosphorylation) and 4EBP1 (a

direct target of mTOR phosphorylation), were significantly more

phosphorylated in the MEL TILs compared to peripheral CD8 T
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cells, validating our findings at the phosphoprotein level

(Figure 4A). Furthermore, treatment with rapamycin (sirolimus),

which specifically blocks MTORC1 signaling during TCR (anti-

CD3/CD28) stimulation of melanoma TILs, resulted in consistent

downregulation of PD-1 expression, particularly in the

CD8+CD45RA− memory T ce l l s and CD8+CD45RA-

CCR7−CD27− effector memory T cells in the tumors (Figure 4B).

Moreover, to validate the differential enrichment of the mTOR

pathway, we analyzed the single-cell transcriptomes of CD8+ TILs

from a new cohort of metastatic melanoma patients collected prior

to anti-PD-1 immunotherapy. Single-cell analysis of CD8 TILs also

allowed us to compare distinct T cell populations within the tumor

environment. UMAP dimensional reduction of the single-cell RNA

sequencing (scRNAseq) dataset revealed a total of nine clusters

(Figure 4C). We observed distinct clusters of cells with varying

levels of T cell exhaustion. We observed high levels of T cell

exhaustion markers PDCD1 (PD-1), HAVCR2 (TIM3), LAG3,

CXCL13, and TOX in clusters 2, 4, and 8. Cells in these clusters

expressed low levels of genes associated with non-exhausted T cells

(TCF7 (TCF1), CCR7, SELL, and IL7R) (Supplementary Figure 4A).

Cluster 8 demonstrated positive enrichment of the mTORC1 and

PI3K/AKT/MTOR signaling pathways at the single-cell resolution,

validating our bulkseq findings (Figure 4D). Violin plots of several

genes associated with cluster 8 (PHGDH, E2F1, PSMA4, BUB1,

CDK2, MKI67, IDH2, and FABP5) are shown in Figure 4E (mTOR

related) and Supplementary Figure 4B, all of which were also

differentially regulated in our bulk RNAseq signature of

dysfunctional CD8+ TILs. We also confirmed PHGDH expression

at the protein level (Figure 3E). Cluster 4 also displayed an

exhausted T cell phenotype as well as enrichment of key

metabolic pathways, including peroxisome, cholesterol

homeostasis, and fatty acid metabolism (Supplementary

Figure 4C). These results support our transcriptional analysis of

flow-sorted MEL and SCC CD8+PD-1+TIM-3+ TILs and pCD8s

(Figure 1) as well as our findings comparing MEL CD8+ TILs and

pCD8s (Figure 3). Overall, our data suggest that CD8+ TIL

exhaustion is associated with dysregulation of multiple pathways

that warrant further investigation, including peroxisome, bile

acid, and fatty acid metabolism, cholesterol homeostasis, and

mTORC1 signaling.
Discussion

Our highly focused transcriptomic profiling of dysfunctional

CD8+PD-1+TIM-3+ TILs in human melanoma and SCC has

identified several seemingly disparate and independent metabolic

pathways that are differentially regulated in CD8+ Tex/act cells in

the tumor microenvironment. Notably, we show that bile acid and

peroxisome, along with mTOR pathways, are enriched in

dysfunctional CD8+ Tex cells. Our findings reveal potential

metabolic pathways that can be targeted to reinvigorate the

dysfunctional immune system observed in melanoma and SCC-

derived CD8+PD-1+TIM-3+ TILs.

Although reports have recently emerged showing the potential

immunomodulatory effects of bile acids on the immune response, to
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the best of our knowledge, ours is the first report of bile acid

metabolism pathway dysregulation in tumor-infiltrating

lymphocytes in cancer (38–40). One of the key regulatory

enzymes of the bile acid metabolism pathway is CYP27, a

cytochrome P450 enzyme encoded by the CYP27A1 gene (41).
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CYP27 metabolizes cholesterol into 27-hydroxycholesterol (27HC)

through a hydroxylation reaction. Current evidence indicates that

27HC can exert modulatory effects on the immune system and act

as a selective estrogen receptor modulator (SERM) (42, 43).

Strikingly, 27HC stimulates the proliferation of mouse melanoma
B
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E

A

FIGURE 4

Dysregulation of the mTOR pathway at the phosphoprotein and single-cell transcriptomic level. (A) Intracellular flow cytometry of two phosphorylated
targets, S6 ribosomal protein and 4EBP1, demonstrates significantly higher levels in CD8+ TILs of melanoma compared to peripheral CD8+ T cells. *p =
0.01, **p = 0.04 by Welch’s t-test. (B) PD-1 expression is downregulated with rapamycin treatment (25 nM) during CD3/CD28 stimulation (72 h) in
melanoma TILs. CD8+CD45RA-CCR7−CD27− effector memory T cells are shown on the left (*p = 0.05, paired t-test), and CD8+CD45RA− memory T cell
trends are shown on the right (n.s.). (C) scRNAseq of CD8+ TILs in melanoma, visualized with UMAP dimensional reduction analysis, indicates nine
unique clusters. (D) Pathway analysis of cluster 8 at single-cell resolution indicates 18 significantly enriched pathways (nominal p < 0.05) with positive
enrichment of mTOR-related pathways, such as mTORC1 and PI3K-AKT-MTOR (shown in orange text). (E) Violin plots of expression of selected MTOR-
related genes (PHGDH, E2F1, PSMA4, BUB1, and CDK2) in the scRNAseq clusters. mTOR, mammalian target of rapamycin; TILs, tumor-infiltrating
lymphocytes; scRNAseq, single-cell RNA sequencing; UMAP, uniform manifold approximation and projection.
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cells by activating estrogen receptor alpha (ERa) and triggering the

AKT and MAPK pathways (44). Compelling research into potential

therapeutic strategies targeting bile acid metabolism can be found in

breast cancer research (45, 46). For example, pharmacologic

inhibition of CYP27A1 improves the efficacy of anti-PD-1

treatment and decreases metastatic breast cancer growth in

mice (47).

The observation of dysregulated bile acid metabolism in

melanoma and SCC TILs is also interesting given the

considerable amount of data highlighting the relationship

between antitumor immune response and the microbiome (48–

50). The liver produces primary bile acids, which are then modified

by gut microbes into a wide range of compounds with roles in gut

metabolism, cell signaling, and microbe composition. Perturbations

in the microbial ecosystem have been linked to immune evasion,

carcinogenesis, and chronic inflammation and can affect the efficacy

of cancer immunotherapies, including ICI (51). While most studies

have focused on the gut microbiome and its connection to immune

surveillance dysregulation, the interplay between cancer cells,

immune cells, and the microbiota is also relevant in the tumor

microenvironment (52, 53). Notably, it has been observed that

numerous tumor types, including melanoma, have distinct

microbial signatures. The abundance of specific intratumor

bacteria in melanoma has been linked to CD8+ T cell infiltration

and patient survival (54). Additionally, patient immunotherapy

response has been linked to metabolic functions encoded by a

unique pattern of intratumor bacteria (55). An intriguing possibility

is that dysregulation of the bile acid metabolism pathway in CD8+

TILs is interconnected with tumor microbiome dysbiosis in the

TME and may influence the anticancer immune response. It is

plausible that manipulating the tumor-associated microbiome may

also influence tumor immunity and patient response to immune

therapy, as has been demonstrated in the case of the gut

microbiome (48, 56, 57). Further investigation is needed to

explore the interdependence of the tumor microbiome, tumor

metabolic reprogramming, and CD8+ T cell dysfunction.

Upregulation of bile acid-related genes in tumor-infiltrating

CD8+ T cells correlates with T cell dysfunction activity and may also

be related to the differential regulation of metabolic-related

pathways, such as mTORC1. Connections between bile acid and

mTOR pathway activation have been reported. Yamada et al.

showed that secondary bile acids activate the mTOR pathway via

FXR signaling (58). The bile acid activation of mTOR signaling may

be caused by the upregulation of DGKH (diacylglyerol kinase), an

enzyme that converts diacylglycerol to phosphatidic acid, which

directly activates mTOR (59). DGKH was significantly upregulated

in tumor-infiltrating CD8+ T cells in melanoma and SCC in

our study.

Our results are consistent with the hypothesis that

transcriptional reprogramming is likely to play a role in driving

the changes in cellular metabolism in dysfunctional CD8+ TILs in

melanoma. TOX, a transcription factor that drives CD8 T cells

toward an exhausted state, is upregulated in SCC and melanoma

TILs when compared to pCD8s (Figures 1B, 3A) (60), indicating

that targeting TOX along with PD-1 could offset T cell

exhaustion. Two key metabolic genes, PKM2 and PHGDH, are
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upregulated in melanoma TILs compared to healthy pCD8s

(Figures 1B, 3A, E). PKM2 (pyruvate kinase M1/2) expression,

which controls glycolysis, has been found to be associated with

tumor progression and poor survival rates in a small pilot study

of metastatic melanoma patients (61). PHGDH (D-3-

phosphoglycerate dehydrogenase) is overexpressed in multiple

cancers, correlates with tumor growth, and has been shown to be

increased in 40% of melanoma samples (62, 63). scRNAseq and

UMAP analysis indicated that PHGDH, along with CDK2, E2F1,

BUB1, and PSMA4, was associated with increased mTOR-related

signaling in cluster 8 (Figures 4C-E). CDK2, E2F1, and BUB1

(mitotic checkpoint serine/threonine-protein kinase BUB1) are

involved in cell cycle progression, and targeting them could prove

to be a viable therapeutic strategy. Inhibition of CDK2 in melanoma

cell lines has been shown to overcome their resistance to BRAF and

Hsp90 inhibitors (64), while BUB1 has been identified as a novel

target downstream of SIRT1 in melanoma (65). E2F1 is

overexpressed in melanoma, and its inhibition initiates cell cycle

arrest and apoptosis, as well as increasing the sensitivity of the

melanoma cells to BRAF inhibitors (66). Finally, PSMA4 is

upregulated in OT1 CD8+ T cells following transient and

continuous Ag-independent stimulation (67).

Metabolic reprogramming is a hallmark of T cell exhaustion,

driven by chronic antigen stimulation, hypoxia, and high levels of

reactive oxygen species (68). As described in the Introduction,

current models of T cell exhaustion have described two main

subsets of exhausted T cells: “precursor exhausted” cells (Tpex,

PD-1+, TCF1+, and TIM-3−) and “terminally exhausted” T cells

(Tex, PD1+, TCF1−, and TIM-3+). Tpex cells mainly use

mitochondrial fatty acid oxidation and oxidative phosphorylation

(OXPHOS) for energy. In contrast, Tex cells rely more on glycolytic

metabolism, as they have decreased mitochondrial membrane

potential, which hinders their ability to utilize OXPHOS. Thus, T

cell metabolic states are dynamic and change throughout the

process of T cell exhaustion (69) (70) (71). Previously, we also

showed that OXPHOS and glycolysis are upregulated in a subset of

exhausted T cells (72). Consistent with these studies, our flow

cytometric UMAP analysis (Figure 2) revealed clusters

representative of different T cell populations with distinct

metabolic characteristics . Dimension reduction of our

multiparametric flow cytometry data from peripheral CD8 T cells

and CD8+ TILs clearly demonstrated that the frequency of cells in

clusters that expressed the highest levels of coordinate immune

checkpoint receptor expression was significantly positively

correlated with the enrichment of key metabolic pathways,

including glycolysis, OXPHOS, peroxisome, fatty acid

metabolism, and bile acid metabolism. We propose that TIL

clusters 15, 16, and 6 are enriched for CD8+ Tex/act cells and

may identify progressive levels of immune exhaustion/dysfunction

in the CD8 compartment, with coordinate expression of ICR to

maximal levels in cluster 6, whose frequency has significant

correlation with enrichment of the bile acid metabolism pathway.

These results highlight the dynamic nature of T cell differentiation

from progenitor to terminal exhaustion, an important

consideration in the development of strategies to intervene in and

reverse certain stages of exhaustion in T cells.
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These data were further supported by our scRNAseq analysis of

melanoma CD8 TILs, in which we observed defined clusters of T

cells associated with varying levels of T cell exhaustion markers.

Notably, clusters 4 and 8 expressed high levels of the exhaustion

markers (PDCD1, HAVCR2, LAG3, CXCL13, and TOX) and were

associated with the upregulation of many of the metabolic pathways

identified in our other analyses, including mTORC1 signaling

(cluster 8) and peroxisome, fatty acid metabolism, and cholesterol

homeostasis (cluster 4).

In the subset of our patients who received anti-PD-1

immunotherapy (Figure 3F), we observed upregulation of CXCR6

and CTTNBP2NL and downregulation of CD160 and HRH2.

CXCR6, C-X-C chemokine receptor type 6, is known to be

preferentially expressed on CD8+PD-1high exhausted T cells in

hepatocellular carcinoma (HCC) and is hypothesized to play a

role in recruiting CD8+ T cells into the tumor microenvironment

(73). Overexpression of CTTNBP2NL and subsequent STRIPAK

complexes could fuel the exhausted CD8+ T cells, thus suppressing

immunotherapy effects and promoting tumor progression. These

overexpressed refractory gene profiles open new avenues for novel

immunotherapy targets. CD160, a degranulation marker, was

downregulated in our immune failure signature. Its expression

has been demonstrated to be downregulated with repeated

antigen stimulation, while PD-1 and LAG3 remained high and

TIM-3 increased further in T cells from a murine breast cancer

model (74). Furthermore, in CD8+ T cells from individuals with

HIV, CD160 and PD-1 co-expression represent a subset of

exhausted T cells both functionally and transcriptionally (75).

Therefore, downregulation of CD160 may indicate dysfunctional

TILs that either are no longer degranulating or lack continued TCR

engagement. Finally, downregulation of HRH2 (histamine receptor

H2) could be indicative of tumor metastasis in the context of

immune failure, as a balance of histamine with its receptor is

necessary to either stimulate or suppress the growth of melanoma

(76). Downregulation of HRH2 and CD160 was also observed in the

combined immunotherapy signature (Supplementary Figure 3),

along with downregulation of the fatty acid metabolism,

glycolysis, and mTORC1 signaling pathways. Our data suggest

that these pathways are commonly upregulated in exhausted T

cells; therefore, they may represent unique therapeutic targets.

While we did not investigate whether altered metabolic

dysregulation can be predictive of anti-PD-1 immunotherapy

response, there is evidence that metabolic signaling pathways can

serve as candidate biomarkers for ICI therapy efficacy, notably from

a study linking increased oxidative metabolism in tumors to

decreased likelihood of response to anti-PD-1 immunotherapy in

melanoma patients (77). Melanoma patients who responded to

anti-PD-1 exhibited increased glycolysis, fatty acid metabolism, and

tryptophan and branched-chain amino acid metabolism in their

PBMCs, indicative of enhanced mitochondrial function during

periods of stress. In the same patients, CD8+ cells had high levels

of SLC2A14 and LDHC (78). Additionally, urological cancer

patients who responded to nivolumab had higher levels of long-

chain fatty acids in serum compared to non-responders (79). Our

results indicate that dysregulation of the peroxisome and bile acid
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metabolism and mTOR signaling pathways may also serve as

candidate predictors of immunotherapy response.

Our current systems biology analysis of human melanoma was

conducted in an unbiased fashion to fully interrogate dysfunctional

CD8+PD-1+TIM-3+ TIL (sorted) transcriptomic profiles, allowing

for the identification of novel and unexpected signaling pathways

that may reveal enhancement targets in more recent immune

checkpoint blockade therapies. Taken together, our findings

indicate that mTOR, bile acid metabolism, and peroxisome

metabolic pathways are coordinately dysregulated and highly

upregulated in the CD8+ TILs of melanoma and SCC patients,

impacting the capacity of the host immune system to suppress and

eradicate tumor cells. Unraveling of the complex metabolic

reprogramming that occurs during T cell exhaustion will pave the

way for tailored therapeutic approaches that effectively target

unique metabolic subsets of exhausted T cells. This has the

potential to reinvigorate resistance to immune checkpoint therapy

failure, thus improving clinical efficacy. Our results provide a new

platform and public resource for data mining and for the

development of novel treatment modalities to further improve

current immunotherapy advancement.
Methods

Patient selection and demographics

Samples were obtained at the Cleveland Clinic under a protocol

approved by the Cleveland Clinic’s institutional review board, and

written informed consent was obtained from each patient. Peripheral

blood lymphocytes (PBLs) and tumor specimens were obtained from

patients with cutaneous melanoma (MEL, n = 23), SCC (n = 8), and

control individuals without skin disease (n = 8), as previously described

(29). Of the MEL patients, 60.9% were male, with a mean age of 58.3

( ± 15.8); three patients presented with a primary tumor, while 20

patients had metastatic disease. Fourteen of the MEL patients received

some type of immunotherapy (IO); out of these patients, eight received

anti-PD-1/PD-L1 directed IO (either pembrolizumab or nivolumab).

Of the SCC patients, 85.7% were male, with a mean age of 73 ( ± 7.9);

three patients presented with a primary tumor, while five patients had

metastatic disease. Age was unknown for one SCC patient. Tissue for

scRNAseq libraries was obtained from patients with cutaneous

melanoma (n = 8), of whom 37.5% were male, with a mean age of

60 ( ± 12.7). Two patients presented with a primary tumor, while six

patients had metastatic disease. All tumor specimens came

from different individuals. Clinical data are summarized in

Supplementary Table 1.
Isolation of TILs and PBLs

After surgical resection, tumor specimens were washed with

antibiotic-containing media and minced with crossed scalpels

under sterile conditions. Tissue was dissociated via enzymatic

digestion using 1,500 U/ml collagenase IV (Gibco, Grand Island,
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NY, USA/Life Technologies, Carlsbad, CA, USA), 1,000 U/ml

hyaluronidase (Sigma, St. Louis, MO, USA), and 0.05 mU/ml

DNase IV (Gibco) in Roswell Park Memorial Institute (RPMI)

medium for 1 h at 37°C followed by mechanical agitation.

Centrifugation over a Ficoll–Hypaque gradient was used to

separate debris from the single-cell suspension. Finally, cells were

cryopreserved in 10% dimethyl sulfoxide (DMSO) + bovine serum.

Similarly, peripheral blood mononuclear cells were purified from

buffy coats by centrifugation over a Ficoll–Hypaque gradient,

followed by cryopreservation.
Flow cytometric analysis

Flow cytometric analysis of immune checkpoint receptor and

activation marker expression and T cell memory subset distribution

was carried out as follows. For memory subset phenotyping and

assessment of negative regulator and ligand expression, a cocktail of

the following monoclonal antibodies was used: anti-CD3 Alexa700

(BD, San Jose, CA, USA), anti-CD4 Q.605 (Invitrogen, Carlsbad,

CA, USA), anti-CD8 PerCP (BioLegend, San Diego, CA, USA),

anti-CD45RA BV650 (BioLegend), anti-CD27 APC-eFluor 780

(eBioscience, San Diego, CA, USA), anti-CCR7 PE-CF594 (BD),

anti-CD14 V500 (BD), anti-CD19 BV510 (BioLegend), Live/Dead

Amcyan (Invitrogen), anti-BTLA (BD), anti-TIM3 BV421

(BioLegend), anti-PD-1 PE-Cy7 (BioLegend), anti-CTLA-4 APC

(BD), anti-TIGIT PE (eBioscience), and anti-LAG3 FITC (Novus,

Centennial, CO, USA). After washing, cells were resuspended in

staining buffer and sorted on an ARIA-SORP. The following

antibodies were used for intracellular flow cytometry to assess the

phosphorylation of mTOR targets: anti-S6 (S235/S236) V450 (BD)

and anti-p4E-BP1 (T36/46) PE (BD). For the rapamycin assay, cells

were stimulated for 3 days with CD3/CD28 beads and then treated

with 25 nM of rapamycin overnight. Cells were stained and

analyzed for PD-1 surface expression. The following antibodies

were used to identify memory T cells and effector memory T cells:

anti-CD8 BV711 (BD), anti-CD45RA BV650 (BioLegend), anti-

CCR7 FITC (R&D Systems, Minneapolis, MN, USA), and anti-

CD27 APC eFluor 780 (eBioscience). Data were analyzed using

FlowJo software (TreeStar) and our custom pipeline for

dimensionality reduction.
Western blotting

Isolated CD8 cells (50,000) from TILs were lysed in 50 ml of
radioimmunoprecipitation assay (RIPA) buffer (150 mM of NaCl, 1

mM of EDTA, 0.5% Triton X-100, 0.5% deoxycholic acid, 0.5%

sodium dodecyl sulfate (SDS), and 100 mM of Tris (pH 7.5)

containing protease and phosphatase inhibitors). An equal sample

volume (100 ml) was used for reducing gel electrophoresis (4%–

12%), followed by immunodetection with antibodies toward

CYP27A1 (Abcam, Cambridge, UK), Actin (Abcam), PHGDH

(Cell Signaling, Danvers, MA, USA), PKM2 (Cell Signaling), and

PCK2 (Cell Signaling). Three biological replicates were performed.
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Bulk RNAseq and bioinformatic analysis

RNA was purified from CD8 T cells using RNeasy Micro Kits

(Qiagen, Hilden, Germany), followed by low-input RNASeq library

generation using Takara SMART-Seq v4 Ultra Low/Nextera XT

with Nextera Index v2 Set A. Paired-end sequencing reactions were

run on an Illumina NextSeq 550 High Output platform (25M total

reads per sample). Raw demultiplexed fastq paired-end read files

were trimmed of adapters and filtered using the program skewer to

remove reads with an average Phred quality score of less than 30, or

trimmed to a length of less than 36 (80). Trimmed reads were then

aligned using the HISAT2 aligner to the Homo sapiens NCBI

reference genome assembly version GRCh38 and sorted using

SAMtools (81, 82). Aligned reads were counted and assigned to

gene meta-features using the program featureCounts as part of the

Subread package (83). These count files were imported into the R

programming environment and were assessed for quality control,

normalized, and analyzed via the limma-trend method (84) for

differential gene expression testing as well as regression modeling

and GSVA (85). Statistical power was guided by the detection of a

twofold gene expression change in ≥8 samples per group at a

minimum power of 80% at p = 0.05, assuming a sequencing

depth between 5× and 8× and a coefficient of variation of 0.4

(commonly used for human studies) (86). Linear regression

modeling was performed using the limma framework. RNAseq

data supporting this study have been deposited in the Gene

Expression Omnibus (GEO) public database with the accession

number pending.
scRNAseq library preparation and
data processing

All cells were resuspended in Dulbecco’s phosphate-buffered

saline (DPBS) with 0.04% bovine serum albumin (BSA) and

immediately processed for scRNAseq, as follows. Cell count and

viability were determined using trypan blue on a Countess FL II,

and approximately 12,000 cells were loaded for capture onto the

Chromium System using the v2 single-cell reagent kit according to

the manufacturer’s protocol (10X Genomics, Pleasanton, CA, USA).

Following capture and lysis, cDNA was synthesized and amplified

(12 cycles) as per the manufacturer’s protocol (10X Genomics). The

amplified cDNA from each channel of the Chromium System was

used to construct an Illumina sequencing library and was sequenced

on an Illumina HiSeq 2500 with 150-cycle sequencing (asymmetric

reads per 10X Genomics). Illumina basecall files (*.bcl) were

converted to FASTQs using CellRanger v3.0, which uses bcl2fastq

v2.17.1.14. FASTQ files were then aligned to the GRCh38 human

reference genome and transcriptome using the CellRanger v3.0

software pipeline with default parameters, as reported previously

(87); this demultiplexes the samples, generates a gene-versus-cell

expression matrix based on the barcodes, and assigns UMIs that

enable determination of the individual cell from which the RNA

molecule originated. Overall, an estimated total of 71,238 cells

were analyzed.
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scRNAseq bioinformatic analysis

Bioinformatic analysis of cells based on whole transcriptomes

was performed using the R package Seurat (version 3.0) (88). The

dimensionality of gene–barcode matrices was first reduced to 18

principal components using principal component analysis (PCA).

PCA-reduced data were further reduced to two-dimensional space

using the UMAP method and visualized. Graph-based clustering of

cells was conducted in the PCA space; a sparse nearest-neighbor

graph of the cells was built first, and Louvain modularity

optimization was then applied. The number of nearest neighbors

was logarithmic in accordance with the number of cells. In the last

step, repeated cycles of hierarchical clustering and merging of

cluster pairs that had no significant differential expression was

performed, until no more cluster pairs could merge. Differential

gene expression analyses of each cluster were conducted using the

Wilcoxon rank sum test. The log2 fold-change in expression of a

certain gene (UMIs) in one cluster vs. all other clusters, and the

corresponding adjusted p-values, were calculated for each cluster,

with pathway enrichment scores generated using the GSEA

method (89).
Statistics

Unless otherwise indicated, the Student’s t-test was used, with p

≤ 0.05 chosen as the level of significance, and analyses were

performed using GraphPad Prism 8.
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SUPPLEMENTARY FIGURE 1

Characterization of dysfunctional CD8+ T cells in total TILs and PBMC. (A)
Venn analysis identified genes that are common and unique in total
(melanoma and SCC) CD8+PD-1+TIM-3+ TILs (nominal p ≤ 0.05). 2,057

genes were commonly differentially regulated in both total CD8+/P+/T+ TIL
and peripheral CD8+ T cells, while 2,223 and 789 were unique to melanoma

and SCC CD8+/P+/T+ TILs, respectively, in comparison to healthy peripheral
CD8+ T cells. (B) Core biological pathways associated with TGF-b attenuation

of the tumor response to immune checkpoint blockade were significantly

differentially regulated within the dysfunctional CD8+/P+/T+ melanoma and
SCC TILs, as shown by the two-way heatmap. Pathways and genes (noted on

the right y-axis) include those involved in FGFR3 signaling (TP63), CD8 T cell
effector function (GZMA, GZMB, PRF1 and CXCL10), immune checkpoint

receptors and their ligands (PDCD1LG2, CTLA4, PD-1, LAG3, TIM-3, and
TIGIT), cell cycle (MKI67, CCNE1, BUB1, BUB1B, CCNB2, CDC25C, CDK2,

MCM4, and MCM6), DNA damage response (BRCA2, ERCC2, FANCA, and

RAD51c), and TGF-b response signature genes (ACTA2 and COL4A1). HLA-B
and TGFB1 genes were uniquely downregulated in the CD8+ TIL as compared

to PBMC. All p ≤ 0.05.
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SUPPLEMENTARY FIGURE 2

Hallmark pathway enrichment in melanoma TILs. Top 20 differentially
enriched pathways between melanoma TILs and pCD8s with associated

top 50 shared differentially expressed genes. Pathways and genes were

selected based on a nominal p ≤ 0.05 and the number of genes in
common between pathways. Heatmap values show the logFC values for

each gene between melanoma TILs and pCD8s, while their column
annotations denote p values. Row annotations denote the logFC values of

pathway enrichment scores between the two groups.

SUPPLEMENTARY FIGURE 3

Identification of transcriptomic signatures common to broad immunotherapy
treatments. (A) Top 50 differentially expressed genes p ≤ 0.05 by logFC

between CD8 TIL immunotherapy and no immunotherapy in melanoma and
SCC patients. Immunotherapy type, clinical outcome, and cancer type are

denoted in the legend on the left. Immunotherapy – NO: no immunotherapy,
IPI.PEMBRO: ipilimumab + pembrolizumab, IPI.NIVO: ipilimumab +

nivolumab, IPI: ipilimumab, IO: immunotherapy, NIVO: nivolumab,

PEMBRO: pembrolizumab. Outcome – NED: no evidence of disease.
Frontiers in Oncology 13
Cancer type – SCC: squamous cell carcinoma, CUT MEL: cutaneous
melanoma, MUC MEL: mucosal melanoma. (B) Hallmark pathways

downregulated in CD8 TILs in patients treated with immunotherapy.

SUPPLEMENTARY FIGURE 4

Characterization of CD8 TILs at the single-cell level. (A) Log2 sum expression

of selected genes is shown across UMAP clusters from . PDCD1, HAVCR2,
LAG3, CXCL13, and TOX were used as markers of exhausted CD8 T cells.

TCF1, CCR7, SELL and IL7R were used as markers of non-exhausted CD8 T
cells. (B) Expression pattern of individual genes of interest (MKI67, IDH2,

FABP5) across UMAP clusters. (C) KEGG and Hallmark pathways enriched
(nominal <0.05) in cluster 4. Pathways of interest are highlighted in red. NES:

normalized enrichment score.

SUPPLEMENTARY TABLE 1

Clinical information associated with tumor specimens. Information on tumor
cancer type (cutaneous or mucosal melanoma, primary or metastatic),

immunotherapy treatment, and patient outcomes.
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