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Peripheral T cell lymphomas (PTCL) are a heterogenous group of mature T cell

lymphomas with an overall poor prognosis. Understanding the molecular

heterogeneity in PTCL subtypes may lead to improved understanding of the

underlying biological mechanisms driving these diseases. Mutations in the

epigenetic regulator TET2 are among the most frequent mutations identified in

PTCL, with the highest frequency in angioimmunoblastic T cell lymphomas and

other nodal T follicular helper (TFH) lymphomas. This review dissects the role of

TET2 in nodal TFH cell lymphomas with a focus on emerging biological insights

into the molecular mechanism promoting lymphomagenesis and the potential

for epigenetic therapies to improve clinical outcomes.
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Introduction

Peripheral T cell lymphomas (PTCL) are a heterogenous group of aggressive

lymphomas derived from mature T cells and account for 10-15% of all non-Hodgkin

lymphomas (1). Among PTCL cases, the World Health Organization (WHO) classification

has recently recognized a distinct entity termed nodal T follicular helper cell (TFH)

lymphomas, which include the subtypes previously termed angioimmunoblastic T cell

lymphoma (AITL), follicular T cell lymphoma and peripheral T cell lymphoma with a TFH

phenotype (2). Nodal TFH lymphomas share phenotypic and gene expression similarities

with normal T follicular helper (TFH) cells (3–5), a CD4+ T cell subset that promotes

germinal center B cell differentiation (6). In the International Peripheral T-cell and Natural

Killer/T-cell Lymphoma study, AITL (at the time the most recognized nodal TFH

lymphoma) accounted for approximately 20% of PTCL cases and thus is the second

most common PTCL subtype after PTCL, not otherwise specified (1). Clinically, nodal

TFH lymphomas typically present at an advanced stage with lymphadenopathy,

hepatosplenomegaly and constitutional symptoms, as well as various autoimmune

manifestations (7–9). PTCLs, including nodal TFH lymphomas, have an overall poor

prognosis with AITL patients having an expected 5-year overall survival of ~30% (1, 10).

Recurrent somatic mutations in multiple epigenetic regulators, including loss-of-function

mutations in TET2, inactivating mutations in DNMT3A and neomorphic mutations in

IDH2, have been strongly associated with nodal TFH lymphomas (11–16). Given the poor
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prognosis of these lymphomas, understanding the underlying

biology is critical to design therapies with improved efficacy.

Given that TET2 is the most commonly mutated epigenetic

regulator in these lymphomas, this review will focus on the

mechanistic role of TET2 in the development and treatment of

nodal TFH lymphomas.
TET2 function

TET2 is a member of the ten-eleven-translocation (TET) family

of Fe2+- and alpha-ketoglutarate-dependent methylcytosine

dioxygenases. These enzymes oxidize 5-methylcytosine (5mC) to

5-hydroxymethylcytosine (5hmC) and subsequent oxidized

methylcytosine intermediates to ultimately generate an

unmodified cytosine (17–19). DNA methylation was long thought

to be a relatively stable epigenetic mark; however, the discovery of

the TET family of enzymes introduced the concept of active DNA

demethylation. TET2 is broadly expressed in hematopoietic cells

and TET2 loss promotes hematopoietic stem cell (HSC) and

myeloid cell expansion in murine models (19–22). Studies of

TET2 function in murine and human hematopoietic cells reveal

that TET2 deletion or loss-of-function mutations, such as those in

nodal TFH lymphomas, lead to altered DNA methylation and

chromatin accessibility at regulatory enhancer regions (23–25),

suggesting functional epigenetic consequences.

In the study of TET2 function in T cells, deletion of TET2 in

mature T cells does not result in any appreciable alteration in late T

cell development or peripheral T cell activation (26). However, in

antigen-specific CD4+ T cells, TET2 loss leads to an increase in TFH

differentiation in a cell-intrinsic manner with hypermethylation at

gene loci associated with helper T cell differentiation (27),

suggesting that TET2 directly represses TFH differentiation by

demethylating key regulatory loci.
TET2 and associated mutations in T
cell lymphomas

Loss-of-function mutations in TET2 were first identified in

myeloid malignancies (28, 29) but soon thereafter recurrent somatic

mutations in TET2 were recognized in approximately 50-70% of

AITL and other TFH-derived lymphomas (11–15). Subsequent

gene sequencing of other T cell leukemias/lymphomas revealed

TET2 mutations at much lower frequencies compared to nodal

TFH lymphomas – including 17% of T-cell prolymphocytic

leukemia cases (30), 14-20% of acute T-cell leukemia/lymphoma

cases (31, 32) and in 4-12% cases of cutaneous T cell lymphoma

and/or Sezary syndrome cases (33–35).

Furthermore, frequent mutations at isocitrate dehydrogenase 2

arginine 172 (IDH2 R172) have also been identified in AITL and

other TFH-derived lymphomas (16). IDH2 is a mitochondrial

enzyme that typically converts isocitrate to 2-alpha-ketoglutarate

(aKG); however, the R172 mutation promotes abnormal
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oncometabolite production of the R-enantiomer of alpha-

hydroxyglutarate (aHG) (36), which competitively inhibits aKG-

dependent enzymes including the TET family (37). Thus, nodal

TFH-derived lymphomas with IDH2 R172 mutations are predicted

to have repressed TET activity and accordingly IDH2-mutated

AITL exhibits genome-wide DNA hypermethylation compared to

IDH2 wild-type AITL (38).
TET2 role in lymphomagenesis

Despite frequent TET2 mutations in a wide array of T cell

lymphomas, most commonly in nodal TFH lymphomas, it was

initially unclear the degree to which TET2 loss-of-function directly

contributed to lymphomagenesis. TET2 deletion in murine

hematopoietic stem cells (HSCs) altered early and late

hematopoiesis in both myeloid and lymphoid lineages with

eventual development of myeloid malignancies in the mice (14,

21, 22) but only rarely mature lymphoid malignancies (14). A

murine model with a hypomorphic TET2 allele does develop TFH-

like lymphomas but with a prolonged latency (39).

In several sequencing studies of nodal TFH lymphomas

including AITL, multiple TET2 mutations were found in

individual tumor samples implying a strong selective pressure (12,

13, 40). Additionally, in AITL cases, the majority of the cases that

carried a TET2 mutation had a variant allele frequency >10% (12,

38, 40).

Since TET2 mutations were frequently found to co-occur with a

glycine to valine (G17V) inactivating mutation in Rho GTPase

RhoA in 50-70% of AITL cases (12, 40, 41), several groups sought to

dissect the relative contribution of RhoA-G17V mutations and

TET2 loss of function to T cell lymphomagenesis. Adoptive

transfer of wild-type or TET2-deficient T cells retrovirally

transduced to overexpress RhoA-G17V into T-cell deficient

murine hosts resulted in CD4+ T cell expansion, disruption of

peripheral T cell homeostasis and eventually lethal inflammation

but no lymphoma was noted (42). Several other groups generated

transgenic mice expressing the RhoA-G17V mutation in the setting

of TET2 hematopoietic deficiency. In these various murine models,

RhoA-G17V overexpression in T cells promoted TFH proliferation/

expansion (43, 44) and the concomitant expression in the setting of

hematopoietic TET2 deficiency led to the development of TFH

lymphomas with varying penetrance (43–45). On a molecular level,

RhoA-G17V and TET2 loss was found to promote mammalian

target of rapamycin complex 1 (mTORC1) pathway activation (43,

44) and inactivation of forkhead box O1 (FOXO1) signaling (44),

suggesting potential therapeutic targets. Together these data

strongly support a role for RhoA-G17V as a driving mutation in

nodal TFH lymphomas but also speak to the requirement for

concomitant TET2 loss in the hematopoietic compartment to

promote lymphomagenesis. Targeting of downstream pathways,

such as with mTOR inhibitors, may be an attractive therapeutic

target to be tested in nodal TFH lymphomas, though no trials are

currently underway.
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TET2 in clonal hematopoiesis and
tumor microenvironment

Mutations in TET2 are among the three most frequent somatic

mutations in age-related clonal hematopoiesis and are associated

with an increased risk of hematologic cancers as well as all-cause

mortality (46–48). The extent to which TET2 mutations in the

lymphoma microenvironment and responding immune cells

contributes to T cel l lymphomagenesis has not been

fully elucidated.

It has been posited that TET2 mutations noted in nodal TFH

lymphomas largely arise in the setting of clonal hematopoiesis,

which is supported by the fact that TET2 mutations in T cell

lymphoma patients are frequently found to co-occur in the non-

neoplastic B lymphocyte, myeloid and HSC compartments as well

as the neoplastic T cells (14, 49, 50). In patients with AITL, the

majority of patients had TET2 mutations identified in the neoplastic

T cells as well as the myeloid compartment (51). In this case series, 4

of 22 patients with TET2 mutations and available sequencing data

developed myeloid neoplasms approximately 2-4 years following

their lymphoma diagnosis. The myeloid neoplasms all shared

multiple TET2 mutations in the myeloid clone and AITL cells but

also contained additional different mutations that were not shared.

Together these data support myeloid neoplasms arising from early

clonal TET2-mutated hematopoietic stem cells but with divergent

evolution from the neoplastic AITL cells.

The presence of TET2-mutated immune cells in AITL patients

led to the question if TET2 mutations alter tumor immunity to

promote T cell lymphomagenesis. TET2 is known to have

pleiotropic functions in different immune cells known to play a

role in tumor immunity, including macrophages/monocytes, CD4+

helper T cells, T regulatory cells, CD8+ T cells and B cells (52). In

myeloid cells, TET2 represses inflammatory gene expression (53)

with increased IL-6, IL-1b and arginase 1 in TET2-deficient

macrophages (54, 55). In a murine melanoma model, TET2

deletion in myeloid cells resulted in reduced tumor burden and

increased tumor-infiltrating T cells suggesting that TET2 promotes

a myeloid immunosuppressive program in the tumor

microenvironment (56). In CD4+ T cells, TET2 inhibits cytokine

production, including IFNg, IL-17 and IL-10 (57), cytokines which

can have both immunostimulatory and immunosuppressive roles.

Furthermore, TET2 (in combination with either TET1 or TET3)

dampens regulatory T cell immunosuppressive function (58, 59),

which are a critical cellular subset known to suppress anti-tumor

responses (60). In CD8+ T cells, TET2 represses memory

differentiation following infection (26), though less is known

about the role of TET2 deficiency in CD8+ T cell anti-tumor

immunity and T cell exhaustion. Given these pleotropic roles

TET2 may play in the tumor microenvironment, it is important

to carefully analyze the tumor-intrinsic versus microenvironmental

roles TET2 loss-of-function mutations play in promoting nodal

TFH lymphomas.

A recent elegant study dissected T cell-intrinsic versus -extrinsic

role of TET2 in lymphomagenesis using murine models with either

hematopoietic or T cell specific loss of TET2 crossed to RhoA-G17V
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accelerated the development of TFH lymphomas compared to

either a wild-type hematopoietic compartment or TET2 deletion

solely in T cells. To test which immune compartment contributed to

TFH lymphomagenesis, the authors co-transplanted tumor cells

with a variety of immune lineages into immunodeficient mice and

monitored tumor development. Only when B cells were co-

transplanted did donor-derived tumors develop suggesting that

TET2 loss in B cells supported TFH lymphomagenesis.

Subsequent analysis revealed clonal expansion of TET2-deficient

germinal center B cells in the tumor-bearing mice, unique

mutations in core histones developed in murine clonal B cells and

that inhibition of CD40-CD40L interactions prolonged survival in

mice. Correlative studies in human AITL samples demonstrated an

expansion of germinal center B cells in involved lymph nodes and

unique mutations (some also in core histone genes) in the tumor-

associated B cells and plasma cells. These data strongly support a

cooperating role for TET2-mutated B cells in the immune

microenvironment to promote nodal TFH lymphoma

development. Targeting these interactions could provide a novel

therapeutic avenue in nodal TFH lymphoma patients, although it

remains unclear if this mechanism occurs outside of TET2-mutated

clonal hematopoiesis.
Treatment and prognosis implications

Since AITL and other nodal TFH lymphomas have an overall

poor prognosis with currently available treatments (1, 10), novel

therapeutic approaches are needed to improve patient outcomes.

TET2 mutations have been noted to be associated with adverse

clinical parameters (13, 62) but not associated with a change in

overall survival (13). Given the frequency of TET2 and other

epigenetic mutations (ie, DNMT3A) that occur in the majority of

nodal TFH lymphomas, there is great interest in utilizing epigenetic

therapies to target underlying biological mechanism in hopes to

improve response rates and survival. PTCL has been shown to be

uniquely responsive to one type of epigenetic therapy, specifically

histone deacetylase (HDAC) inhibitors, with three HDAC

inhibitors approved for systemic PTCL: romidepson, belinostat

and chidamide (in China). In the phase II trial of romidepsin in

relapsed/refractory PTCL, patients with relapsed/refractory AITL

had an overall response rate of 33% compared to 25% of the overall

cohort with two-thirds of the AITL responders achieving a

complete remission (63). Similarly, in the phase II registration

study of belinostat in relapsed/refractory PTCL, patients with

AITL seemed to have improved response rates (45%) compared

to response rate (26%) of the overall trial population (64). A more

recent retrospective, multicenter study comparing HDAC inhibitor

responses in TFH versus non-TFH PTCL patients found a

significantly improved overall response rate in nodal TFH vs.

non-TFH lymphomas (56.5% versus 29.4%) (65). Together these

data support the idea that nodal TFH lymphomas may be more

sensitive to epigenetic modulation than non-TFH lymphomas

(summarized in Table 1), whether this sensitivity correlates with
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the presence of epigenetic alterations due to TET2 mutations

remains unknown.

Given TET2’s function in active DNA demethylation, questions

naturally arise about the role of hypomethylating agents (HMAs) in

nodal TFH lymphomas. Several case reports and case series suggest

some clinical efficacy of single agent HMAs (5-azacitidine or

decitabine) in TET2-mutated angioimmunoblastic T cell

lymphoma (66–69). Preclinical studies have suggested synergy

between HMAs and HDAC inhibitors in T cell lymphomas (70,

71) providing a biologic rationale for combined epigenetic targeted

therapy in PTCL patients. A multicenter phase II trial examining

the combination of oral 5-azacitidine and romidepsin in treatment

naïve and relapsed/refractory PTCL patients found that patients

with a TFH phenotype had higher overall response rate (80%) and

complete response (60%) compared to the overall response rate

(25%) and complete remission rate (12.5%) among patients with

other subtypes (72). In this early-phase study, there were no

statistical differences in response rates between patients with wild-

type or mutated TET2 but this was limited by small sample size.

Together these data suggest that duel epigenetic targeting therapies

may be particularly effective in nodal TFH lymphomas.

Since patients with relapsed/refractory AITL have progressively

shorter remissions with each subsequent line of therapy (73), the

best chance to cure patients likely lies in improving first-line

therapies. Based on the emerging understanding of the underlying

biology and the role of epigenetic targeted therapies in nodal TFH

lymphomas, several studies have been undertaken to combine

epigenetic therapy with standard front-line chemotherapy

(CHOP, cyclophosphamide, doxorubicin, vincristine and

prednisone). A randomized phase III trial compared to

romidepsin plus CHOP to CHOP alone in treatment naïve

patients with PTCL. Unfortunately, there were no differences in

response rates, progression free survival or overall survival and

there were more treatment-related adverse advents in the Ro-

CHOP arm (74). However, in an exploratory analysis, PTCL

patients with a TFH phenotype had improved progression free

survival after Ro-CHOP compared CHOP suggesting that nodal

TFH lymphomas may derive a unique benefit and clinical trials

should be further focused on PTCL subsets. Clinical trials focused

on nodal TFH PTCL populations are examining the efficacy of

combining azaci t id ine (NCT03542266) or chidamide

(NCT03853044) with frontline CHOP. Recently published results

of the phase II trial of oral azacitidine plus CHOP in 20 evaluable
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PTCL patients demonstrated a complete response in 88.2% of

PTCL-TFH patients and 2-year progression free survival of 69.2%

in PTCL-TFH patients. Notably, TET2 mutations were significantly

associated with complete response rates and overall survival (75).

The oral azacitidine plus CHOP combination is being tested in an

ongoing randomized phase II trial in previously untreated patients

with CD30-negative PTCL (NCT04803201).
Conclusions

From the initial identification of TET2 mutations in AITL and

other nodal TFH lymphomas just over twenty years ago, significant

strides have been made to advance the understanding of TET2’s role

in the pathogenesis of these lymphomas. Namely, TET2 loss of

function in the lymphoma microenvironment, which arises in the

setting of clonal hematopoiesis, likely play a critical role in

supporting TFH transformation and AITL development.

Additionally, emerging clinical evidence suggests that epigenetic

targeted therapies may improve response rates and survival in

patients with nodal TFH lymphomas. Using the evolving

scientific knowledge about the underlying biology of these rare

lymphomas, future clinical trials may need to tailor trial

populations to discern true efficacy of these therapies.
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TABLE 1 Response rates in epigenetic therapies in relapsed/refractory nodal TFH lymphomas versus overall PTCL.

Study Type Disease
Status

Overall TFH/AITL

Number ORR Number ORR

Romidepsin (54) Phase II R/R 130 25% 27 33%

Belinostat (55) Phase II R/R 129 26% 22 45.5%

HDAC inhibitor (56) Retrospective R/R 127 45.6% 76 56.5%

Aza/Romidepsin (63) Phase II Tx Naïve & R/R 23 61% 15 80%
ORR, overall response rate; R/R, relapsed/refractory; Tx, treatment.
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