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Genes selection using deep
learning and explainable artificial
intelligence for chronic
lymphocytic leukemia predicting
the need and time to therapy
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Analyzing gene expression profiles (GEP) through artificial intelligence provides

meaningful insight into cancer disease. This study introduces DeepSHAP

Autoencoder Filter for Genes Selection (DSAF-GS), a novel deep learning and

explainable artificial intelligence-based approach for feature selection in

genomics-scale data. DSAF-GS exploits the autoencoder’s reconstruction

capabilities without changing the original feature space, enhancing the

interpretation of the results. Explainable artificial intelligence is then used to

select the informative genes for chronic lymphocytic leukemia prognosis of 217

cases from a GEP database comprising roughly 20,000 genes. The model for

prognosis prediction achieved an accuracy of 86.4%, a sensitivity of 85.0%, and a

specificity of 87.5%. According to the proposed approach, predictions were

strongly influenced by CEACAM19 and PIGP, moderately influenced by MKL1

and GNE, and poorly influenced by other genes. The 10 most influential genes

were selected for further analysis. Among them, FADD, FIBP, FIBP, GNE, IGF1R,

MKL1, PIGP, and SLC39A6 were identified in the Reactome pathway database as

involved in signal transduction, transcription, protein metabolism, immune system,

cell cycle, and apoptosis. Moreover, according to the network model of the 3D

protein-protein interaction (PPI) explored using the NetworkAnalyst tool, FADD,

FIBP, IGF1R, QTRT1, GNE, SLC39A6, and MKL1 appear coupled into a complex

network. Finally, all 10 selected genes showed a predictive power on time to first
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treatment (TTFT) in univariate analyses on a basic prognosticmodel including IGHV

mutational status, del(11q) and del(17p), NOTCH1mutations, b2-microglobulin, Rai

stage, and B-lymphocytosis known to predict TTFT in CLL. However, only IGF1R

[hazard ratio (HR) 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32, 95% CI

0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-24.04, P<0.001) genes

were significantly associated with TTFT in multivariable analyses when combined

with the prognostic factors of the basicmodel, ultimately increasing theHarrell’s c-

index and the explained variation to 78.6% (versus 76.5% of the basic prognostic

model) and 52.6% (versus 42.2% of the basic prognostic model), respectively. Also,

the goodness of model fit was enhanced (c2 = 20.1, P=0.002), indicating its

improved performance above the basic prognosticmodel. In conclusion, DSAF-GS

identified a group of significant genes for CLL prognosis, suggesting future

directions for bio-molecular research.
KEYWORDS

chronic lymphocytic leukemia, gene expression profile, deep learning, explainable
artificial intelligence, feature selection
1 Introduction

A precise prognostic methodology in chronic lymphocytic

leukemia (CLL) patients is critical from the clinical standpoint

since progression to a more advanced disease stage requires therapy

and often implies an adverse prognosis. At first presentation/

diagnosis, over three-quarters of CLL patients are classified as

early/asymptomatic disease phase and not requiring immediate

therapy (1). Although most patients have a low-risk profile as

indicated by the high frequency of the immunoglobulin heavy

chain variable (IGHV) gene mutated (IGHVmut) status (2) and

the low del(17p) occurrence involving the TP53 locus (3), the time

to first treatment (TTFT) is rather heterogeneous, and it can be

partially predicted using combinations of risk-associated

markers, which include staging systems and b2-microglobulin

(b2-M) (2, 4–8).

Despite the proven prognostic power of this approach, the

clinical course of a number of patients does not follow the

pattern predicted, possibly indicating the requirement for

additional prognosticators. In this respect, gene expression

profiles (GEP), that is, the measurement of the activity (the

expression) of all genes of interest to depict a synthetic picture of

cellular function, is exploited to increase the ability to predict the

prognosis of CLL patients (9–11).

Although GEP datasets represent a valuable source of

information in healthcare, being currently used for diagnosis,

prognosis, and precision medicine of hematological malignancies

(12), their analysis results are challenging for three main reasons.

The first one is the course of dimensionality: genomic-scale datasets

typically consist of a very large number of features (genes) and a

relatively small number of samples (patients). The second problem

concerns imbalanced classes: genomics data are often collected from

multiple sources and stratified based on pathologies. In most cases,

there is a significant difference between the number of instances in
02
each class. Finally, sequencing data are typically collected from

multiple sources, different laboratories, and sequencing tools. This

results in noisy datasets which are difficult to analyze (13).

A bioinformatic analysis is necessary to fully realize the

potential of these large-scale sequencing data for prognosis in

hematological malignancies (14–16) and solid tumors (17).

Machine learning (ML) approaches have been widely used to

enhance the performance of diagnostic and predictive models for

different diseases and CLL as well (14–20). Resources and guidelines

for using ML in CLL have been made available (21, 22).

However, most ML prognostic models for CLL fail to consider

numerous variables and do not account for non-linear interactions

between them (22). This limits the accuracy of the models and the

ability to make informed predictions about the disease progression.

Therefore, promising tools such as deep learning (DL) methods, a

subset of ML methods based on artificial neural networks (NNs),

may be used to overcome the aforementioned ML limitations. DL

approaches recognize hidden patterns in large-scale datasets that

are typically difficult to detect with traditional statistical and ML

models. Recent studies propose and evaluate new feature selection

(FS) approaches on genomic-scale datasets for cancer diagnosis and

prognosis (23, 24). Such FS methodologies mainly aim at selecting

the most informative genes, which can characterize classes and

identify groups of patients.

Although very powerful, DL models are in general not

immediately interpretable, meaning that it is difficult to

understand the causal relationship between the inputs and their

outcomes. This is an even more severe problem in the

bioinformatics domain, where it is crucial to understand, for

example, in the case of genomics, how the expression of a gene

can affect the progression of oncological patients. In this context,

the adoption of explainable artificial intelligence (XAI) methods has

started to gain momentum for interpretability purposes as well as to

enhance FS (25–27).
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On the other hand, a widely used approach to overcome the

course of dimensionality problem is to perform dimensionality

reduction using autoencoders (AE) (24). While this has been

proven effective, the encoding is typically a non-linear projection

of the variables into a lower-dimensional space, making it difficult

to provide the interpretations of the proper results.

This study introduces DeepSHAP Autoencoder Filter for Genes

Selection (DSAF-GS), a novel DL and XAI-based FS method for

genomics-scale data analysis. Such a method uses AEs for selecting

the most informative genes without any change into the original

features space, hence enhancing the explainability of the results and

still exploiting the representation abilities of AEs. Such selection of

genes is used to design and train a prediction model for diagnosis or

prognosis. Eventually, the Shapely Additive ex-Planation (SHAP)

(28) XAI method is applied to interpret the model results and select

the most meaningful genes for the disease.

In the present paper, the proposed XAI method has been used

to identify those genes whose expression levels are relevant for

predicting the need of therapy in CLL patients from a prospective

cohort of newly diagnosed Binet stage A CLL (O-CLL protocol) (29,

30) who are being monitored under a watch-and-wait strategy. This

innovative approach enabled meaningful insights into CLL

prognosis from genomic data by locating a group of significant

genes to boost the prognostic power of a basic prognostic model.

We point out that while our contribution is fully positioned within

the research in oncology, our XAI method has broader applicability;

in fact, from the bioinformatics and computational genomics point

of view (18–20), an interesting avenue of further research is to assess

its efficacy as a general feature-selection method, for instance, by

considering datasets for which we already have some a priori

semantic information on the most relevant features and by using

classical comparison metrics for predictive models.
2 Materials and methods

2.1 Patients

A total of 224 of 523 newly diagnosed Binet A CLL cases

belonging to the observational O-CLL1 study (clinicaltrials.gov

identifier NCT00917540) were prospectively enrolled from 40

Italian institutions (29, 30) and studied for GEP. All participants

provided written informed consent, and the relevant institutional

review boards approved the study. The inclusion and exclusion

criteria have been previously detailed (29). In particular, cases could

be recruited only within 12 months of diagnosis and if they were

aged <70 years and were Binet stage A. The biologic review

committee confirmed the diagnosis using flow cytometry analysis

and GEP analyses were centralized at Prof Ferrarini’s (Istituto

Studio Tumori, Genoa, Italy) and Prof Neri’s (Fondazione Ca’

Granda, IRCCS, Ospedale Maggiore, Policlinico, Milan) labs,

respectively. Recruitment began in January 2007. According to

the guidelines, treatment was decided uniformly for all

participating centers based on documented progressive and

symptomatic disease.
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2.2 Assessment of biological markers

Cytogenetic abnormalities involving deletions at chromosomes

11q23 and 17p13 were evaluated by FISH in a purified CD19+

population as previously described (31). IGHV gene mutational

status was assessed on cDNA specimens (32). Sequences were

aligned to the IMGT directory and analyzed using IMGT/

VQUEST software. NOTCH1 mutation hotspot was set by next-

generation deep sequencing as previously described (29).
2.3 GEP analysis

GEP experiments were performed as previously described (29,

30). Briefly, total RNA fraction was obtained from CD19+-enriched

B-cell samples (EasySep-Human B cell enrichment kit without

CD43 depletion, Stem Cell Technologies, Voden Medical

Instruments S.p.A, Milan, Italy) using the fully automated

protocol of immunomagnetic cell separation with RoboSepTM

(Stem Cell Technologies). Purified B-cells (CD19+) exceeded 95%

were employed as total RNA sources for GEP analysis.

Preparation of DNA single-stranded sense target, hybridization

to GeneChip® Gene 1.0 ST Array (Affymetrix, Santa Clara, CA),

and scanning of the chips (7G Scanner, Affymetrix) were carried out

according to manufacturer’s protocols. RNA fraction was obtained

from samples using Trizol reagent (Life Technologies, Monza,

Italy). RNA quality was assessed using the Agilent 2100

Bioanalyzer (Agilent Technologies). The raw intensity expression

values were processed by robust multi-array average (RMA)

procedure 19 with the reannotated Chip definition files (CDF)

from BrainArray libraries version 15.0.0 20 available at http://

brainarray.mbni.med.umich.edu, as previously described (22). The

gene and miRNA expression data have been deposited at the

National Center for Biotechnology Information (NCBI) Gene

Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/

geo/) and are accessible through GEO Series accession

number GSE40570.
2.4 O-CLL dataset

For each patient, 19,367 genes profiles were provided. Patients

are labeled according to the occurrence of an event (or not). The

considered outcome was the need for therapy starting or death

[dichotomous, not (event=0) vs yes (event=1)]. From the 217

patients in the final dataset, 120 were labeled as event=0 and 97

as event=1.
2.5 Feature selection

GEP studies generate large, high-dimensional, and unbalanced

datasets, where each sample can have up to thousands of variables.

This results in high computational costs and the possibility of

overfitting. Such overfitting may mistake small changes in the
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http://brainarray.mbni.med.umich.edu
http://brainarray.mbni.med.umich.edu
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2023.1198992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morabito et al. 10.3389/fonc.2023.1198992
data as significant differences, leading to misclassification errors.

This study addresses these risks by applying FS techniques to reduce

the dimensionality problem by selecting the most relevant features

and removing noise and redundancy. FS techniques can be filter-

based, wrapper, or embedded (33–35). The integration of multiple

FS techniques is denoted as hybrid FS.

The proposed DSAF-GS approach is a hybrid FS method that

combines filter-based and wrapper techniques to achieve a

representative and meaningful subset of genes. DSAF-GS uses

autoencoders (AE) as wrappers along with statistical filters to

remove redundant genes. An NN is trained on the remaining

genes as an event predictor. Finally, the SHAP XAI method is

used to evaluate the contribution of genes to NN decisions. The

genes with the strongest contribution are selected.
2.6 Neural networks

NNs are ML computational models inspired by the structure

and function of the human brain. They consist of consecutive layers

of interconnected artificial neurons, which process and transmit

information through weighted connections. Training an NN

amounts to providing a dataset of input-output pairs and

identifying, via proper optimization methods, the NN parameters

that minimize some given loss function, usually meant to measure

the distance between the output at hand and the result of the NN

computation on the given input. In a research context, NNs can be

trained on large datasets of genetic data to identify patterns and

predict the effects of genetic mutations on traits of interest (36–38).

These predictions can then be used to understand further the

genetic basis of diseases (38) and other phenotypic traits (39, 40)

and inform the development of personalized medical treatments

(37, 41). In addition, by using NNs and other computational and

experimental methods (e.g. clustering and statistical analysis, such

as F-test or XAI) researchers can gain deeper insights into the

complex interactions between genetics and biology.

Autoencoders (AE) are particular architectures of NNs that

uncover the underlying structure of the data and generate a latent

code for further analysis (42). An AE maps an input to a lower

dimensional representation (latent code). Such code is expected to

have uncorrelated features, being able to reconstruct the original

input data. Therefore, AEs can be used for dimensionality

reduction, denoising, and data generation.
2.7 SHapley additive exPlanation

The black-box nature of NNs often limits the interpretability of

their results. Advances in XAI provide various methods for

interpreting black-box models, offering a clearer understanding of

their predictions. For example, Shapely Additive ex-Planation

(SHAP) is a game theory-based approach for interpreting black-

box models. SHAP determines the importance of a feature by

observing the variations in predictions when the feature is
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included or excluded from the model. It assigns an importance

value, called a SHAP value, to each feature, based on its

contribution to the predictions (28). SHAP values are quantitative

estimates, indicating ‘how’ and ‘how much’ every single gene

contributes to the model decisions, providing insight into the

gene’s role in the event prediction. The SHAP method provides a

way to understand the underlying workings of NNs predictions,

leading to improved insights and better decision-making.

An alternative XAI approach, named LIME (Local Interpretable

Model-Agnostic Explanations) (43), approximates the behavior of

complex models via local interpretable explanations. Such

explanations are obtained by fitting simpler and interpretable

surrogate models with perturbed input data and observing the

resulting changes in the model’s predictions.

While LIME approximates the behavior of complex models

with simpler ones, SHAP provides a more direct and explicit

connection between feature importance and predictions. This

transparency, along with a solid theoretical foundation rooted in

game theory, enhances a deeper understanding of the underlying

mechanisms driving the model’s decisions.
2.8 Proposed algorithm

DSAF-GS consists of the following steps (Figure 1):
1. The pairwise correlation (Pearson) was computed over the

whole set of genes.

2. The resulting correlation matrix was clustered using

hierarchical clustering such that similarly correlated genes

belong to the same cluster.

3. For each cluster, all patient data were retrieved from the

original dataset. An AE is then trained for each cluster

using patients as features and genes as samples. The AEs

selected the most representative gene of the respective

cluster. The most representative gene was the one

associated with the lowest reconstruction error. This step

eliminates redundant genes hence reducing the

dimensionality, still working at the level of the original

feature.

4. Genes selected in the previous step were then ranked with

the F-test. The F-value was computed by considering, for

each gene, the ratio of the variance between and within the

groups (event=0 and event=1). A subset of genes with the

highest F-value was then selected. The final subset size was

empirically selected by considering different subset sizes.

5. A NN was trained to perform binary classification on the

event class, using the previously selected set of genes as

input variables and by considering the standard binary

cross-entropy loss function. A model selection phase

identified the most appropriate architecture of the NN. A

grid-search approach is applied over a hyperparameters

space defined by the number of layers and neurons per

layer. In particular, we considered 2, 3, and 4 layers and 8,
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16, 32, 64, 128, and 256 neurons for the first layer. In every

successive layer, the number of neurons was determined as

half of the number of neurons in the preceding layer. For

each given configuration (layers/neurons), we built the

corresponding NN whose performances were evaluated

using a cross-validation (cv) algorithm, which assesses the

model’s ability to generalize by repeatedly training and

testing on different subsets of the data for multiple

iterations. The hyperparameters configuration is chosen

as the one with the highest average performances

(according to the average binary accuracy) over the cv

iterations; the best model is finally selected as the one with

the best performances among the cv iterations of the

chosen configuration.

6. SHAP XAI method was used to explain the chosen NN

classifier for the CLL event. SHAP evaluates the importance

of each gene on the predictions by providing information

on how such genes affect the prognosis.
tiers in Oncology 05
2.9 Implementation

The DSAF-GS algorithm has been implemented using the Python

(v3.8.11) programming language. NNs have been implemented using

the Tensorflow (v2.6.0) framework and the Keras library. XAI

analysis was performed using the SHAP (28) library.

For GEP analysis, 500 clusters were identified (step 2). Each AE

architecture (step 3) consisted of five layers with the following

number of neurons: 217, 43, 21, 43, and 217, respectively; relu was

used as activation function and Adam as optimizer with a learning

rate of 0.01; Mean Absolute Error was used as reconstruction loss,

and each AE was trained for 1000 epochs. Out of the 500 genes

selected by the AEs (one for each cluster), different subset sizes were

used to train the NN event predictor. The F-test (step 4) was used to

select a subset of genes of size 5, 10, 50, 100, and 300 (Table 1).

Different NNs were trained (step 5) for each gene subset. The best

model for GEP takes in 50 genes as input and consists of 4 layers of

46, 22, 12, and 1 neuron, respectively.
FIGURE 1

The pipeline proposed for selecting a subset of genes relevant to predict CLL events. The input data is used to compute the genes pairwise
correlation matrix (step 1), and the correlation matrix is clustered (step 2) to group similarly correlated genes. The clusters are then mapped to the
original input data and transposed. AEs are trained for each cluster to select the most representative gene, reducing dimensionality (step 3). The
genes are ranked with F-test, selecting a subset with the highest F-value (step 4). A neural network is trained with a selected set of genes to perform
binary classification of the CLL patients (event=0 and event=1) (step 5). The best NNs architecture is determined through model selection, and the
SHAP XAI method explains each gene’s importance in the predictions (step 6).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1198992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morabito et al. 10.3389/fonc.2023.1198992
During grid-search (step 5), Adam was used as an optimizer

with a learning rate of 0.001, and relu was used as an activation

function. A total of 10 cv iterations have been performed for each

configuration by randomly splitting the data into a training set and

test set (90% and 10% of the whole dataset, respectively). While the

training set has been enriched with synthetic samples (by using

SMOTE) (44) to guarantee a balanced training of the NN, the test

set only comprised real data samples. While the computation of

SHAP values was found to be inefficient for NNmodels, the authors

(36) demonstrated that Shapley values could be calculated through

a weighted linear least square regression with a shapely kernel. Such

a method was adopted for computing SHAP values (step 6) using a

subsample of 100 patients. Note training and test sets are different

parts of the same O-CLL dataset. Indeed, we are not aware of any

further public dataset having the clinical and genomic information

required by our method and that can be used as a validation set, by

fitting our needs and the prospective nature of our study.
2.10 Statistical analysis

TTFT was calculated during the watch and wait period from the

date of the diagnosis to the date of therapy start or last follow-up. The

prognostic impact of predictors was investigated by univariable and

multiple Cox regression analysis. Data were expressed as hazard ratio

(HR) and 95% confidence intervals (CIs). The predictive accuracy of

the prognostic models was quantified by calculating Harrell’s c-index

(HC-index), ranging from 0.5 to 1.0, and the explained variation on

the outcome (i.e., an index combining calibration and discrimination)

(45). The improvement of model fitting due to the inclusion of

specific genes was assessed by the log-likelihood ratio statistics. The

receiver operator curves (ROC) Figure 2B illustrate the model

performance by plotting the actual positive rate (sensitivity) versus

the false positive rate (1 - specificity). A value of P <.05 was

considered significant for all statistical calculations. Data analysis

was performed by SPSS for Windows v.21, IBM, Chicago, Illinois,

USA, and by Stata 16, StataCorp, Texas, USA.
2.11 Pathway and gene network analysis

Pathway analysis was performed using the Reactome Pathway

Analysis tool (reactome.org) to group genes into specific pathways.
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Reactome analysis with statistical hypergeometric distribution test

determines whether certain pathways are over-represented in the

submitted data. This test produces a probability score, which is

corrected for false discovery rate using the Benjamani-Hochberg

method (46, 47).

Gene network was constructed with the free NetworkAnalyst

tool (48) using IMEx Interactome [Literature-curated

comprehensive data from InnateDB (49)].
3 Results

3.1 Gene selection by explainable
artificial intelligence

Of the 224 enrolled patients, 217 were used for the analysis.

The remaining 7 were removed for defective gene profiles.

The performance of the best model on the test set is reported

in Table 1. The results are shown according to the number of

genes used as independent variables (first column). The best

model accuracy is 86.36%, achieved using 50 genes as

predictors, with a sensitivity and specificity of 85% and 87.5%,

respectively. The second column reports the 95% CIs computed

using the model accuracy’s mean and standard deviation over the

cv iterations.

The model sensitivity and specificity are reported in Figures 2A,

B, in terms of a confusion matrix and ROC curve, respectively.

Despite the three false positives and three false negatives, the model

is capable of detecting the underlying patterns in the data, as shown

by the overall performance. Figure 2B shows that the models have

an area under the curve (AUC) of 0.91.

Figure 3A shows a waterfall plot of absolute mean SHAP

values, reporting the average importance of each gene in the

model, evaluated using SHAP. Genes are reported in order of

importance. For example, the model was strongly influenced by

CEACAM19 and PIGP (+0.09 and +0.08), moderately influenced

by MKL1 (alias of MRTFA gene) and GNE (+0.04), and poorly

influenced by others (<0.03).

Moreover, as shown in Figure 3B, higher values of the gene

CEACAM19 are associated with positive SHAP values, meaning

that they will increase the prediction towards the occurrence of the

event. Moreover, lower values of the variable are associated with

negative SHAP values, meaning that they will decrease the

prediction towards the absence of an event. Conversely, for the

PIGP gene lower values are associated with positive SHAP values,

increasing the prediction towards the event’s occurrence. PIGP

higher values are associated with negative SHAP values, meaning

they will decrease the forecast towards no event occurrence.
3.2 Pathways and networks overview based
on Reactome database of the top 10 genes

The description and chromosome localization of the top

ten genes are described in Table 2. Eight of the top ten genes

(i.e., FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, SLC39A6)
TABLE 1 Models’ accuracy in the binary classification of CLL event (i.e.,
therapy need or death).

Number of genes Best accuracy (%) 95% Confidence
Interval

5 79.54 70.88-77.74

10 84.09 72.60-78.30

50 86.36 65.60-75.30

100 79.54 65.82-72.36

300 75.00 66.36-70.90
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selected by the NN algorithm were found in the Reactome

pathway database, showing involvement in various pathways

such as signal transduction, gene expression (transcription),

prote in metabol i sm, immune system, ce l l cyc le and

apoptosis (Figure 4).
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Interestingly, seven (i.e., FADD, FIBP, IGF1R, QTRT1, GNE,

SLC39A6, MKL1) of the top 10 genes appear to be connected into a

complex network as shown in Figure 5 by the network model of the

3D protein-protein interaction (PPI) explored using the

NetworkAnalyst tool (48).
BA

FIGURE 3

SHAP values were computed for the best model. (A) Waterfall plot of absolute mean SHAP values (average absolute importance of each gene in the
model), (B) Beeswarm plot of SHAP values (shows how and how much each gene influences the predictions).
BA

FIGURE 2

(A) Confusion matrix of model performance on the test set in predicting the event or non-event of new patients. Black squares refer to wrongly
classified patients (false positives and false negatives), while colored squares refer to well-classified patients (true positives and true negatives).
(B) ROC curves for the model. The graph plot sensitivity against specificity at various threshold settings. The classifier performs better as the curve
approaches the upper left corner. An AUC value of 0.91 for GEP predictions indicates the solid overall performance of the model.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1198992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morabito et al. 10.3389/fonc.2023.1198992
3.3 Multivariate analysis of the
top 10 genes

The top 10 genes selected by the NN models were chosen to

estimate their prognostic influence on noticeable clinical and

biomolecular variables (named basic prognostic model) consisting

of IGHV mutational status, del(11q) and del(17p), NOTCH1
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mutation, b2-M, Rai stage, and B-lymphocytosis. Table 3 shows

their prediction power on TTFT in univariable analysis.

As expected, all ten top genes showed a predictive power on

TTFT in univariable analyses (Figure 6). Specifically, for COL28A1

(HR 0.32, 95% CI 0.12-0.82, P=0.018), FADD (HR 0.21, 95% CI 0.07-

0.62, P=0.005), and PIGP (HR 0.39, 95% CI 0.15-0.98, P=0.047) high

expression was associated with a reduced risk to be treated, while the
TABLE 2 Description and localization of the top ten genes derived from SHAP analysis.

Gene name Chromosome Gene start (bp) Gene end (bp) Gene description

CEACAM19 19 44662278 44684359
CEA cell adhesion molecule 19

[Source:HGNC Symbol;Acc:HGNC:31951]

PIGP 21 37062846 37073170
Phosphatidylinositol glycan anchor biosynthesis class P

[Source:HGNC Symbol;Acc:HGNC:3046]

FADD 11 70203296 70207390
Fas associated via death domain

[Source:HGNC Symbol;Acc:HGNC:3573]

FIBP 11 65883740 65888531
FGF1 intracellular binding protein

[Source:HGNC Symbol;Acc:HGNC:3705]

IGF1R 15 98648539 98964530
insulin like growth factor 1 receptor

[Source:HGNC Symbol;Acc:HGNC:5465]

COL28A1 7 7356203 7535873
Collagen type XXVIII alpha 1 chain

[Source:HGNC Symbol;Acc:HGNC:22442]

QTRT1 19 10701430 10713437
Queuine tRNA-ribosyltransferase catalytic subunit 1

[Source:HGNC Symbol;Acc:HGNC:23797]

MKL1 (MRTFA) 22 40410281 40636719
Myocardin related transcription factor A
[Source:HGNC Symbol;Acc:HGNC:14334]

GNE 9 36214441 36277042
Glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase

[Source:HGNC Symbol;Acc:HGNC:23657]

SLC39A6 18 36108531 36129385
Solute carrier family 39 member 6

[Source:HGNC Symbol;Acc:HGNC:18607]
FIGURE 4

Pathways overview based on the Reactome database of the top 10 genes identified by the (SHAP) XAI method. A genome-wide overview of the
results of pathway analysis is shown. Reactome pathways are arranged in a hierarchy. The center of each of the circular “bursts” is the root of one
top-level pathway, for example, Cell Cycle. Each step away from the center represents the next lower level in the pathway hierarchy. The color code
denotes the over-representation of that pathway in the input dataset. The closer the color is to yellow, the more significant the over-represented
pathway is; light grey indicates pathways that are not significantly over-represented.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1198992
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Morabito et al. 10.3389/fonc.2023.1198992
remaining genes showed an inverse prognostic association with

therapy need. However, CEACAM19 (HR 2.44, 95% CI 0.84-7.14,

P=0.10), PIGP (HR 0.57, 95% CI 0.19-1.72, P=0.32), FADD (HR 0.45,

95% CI 0.12-1.64, P=0.22), FIBP (HR 1.95, 95% CI 0.96-3.96,

P=0.06), MKL1 (HR 2.31, 95% CI 0.73-7.34, P=0.15), GNE (HR

1.86, 95% CI 0.82-4.26, P=0.14) and SLC39A6 (HR 1.44, 95% CI 0.64-

3.22, P=0.37) lost their independent predictive power when analyzed

with variables belonging to the basic prognostic model. Conversely,

IGF1R (HR 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32,

95% CI 0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-

24.04, P<0.001) genes were significantly associated with TTFT in

multivariable analyses (Table 4). When these three significant genes

were evaluated in a final multivariable model, including the basic

prognostic variables, COL28A1, along with B-lymphocytosis, lost its

significance, while IGF1R and QTRT1 maintained their prognostic

independence (Table 4).
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The basic prognostic model provided an HC-index of 76.5%

and an explained variation to predict the TTFT of 42.2%. When the

three significant genes (i.e., IGF1R, COL28A1, and QTRT1) were

jointly considered in the final multivariable model, the HC-index

and the explained variation significantly increased to 78.6% and

52.6%, respectively, along with an improvement of the goodness of

model fit (c2 = 20.1, P=0.002). In a more parsimonious model, only

including IGF1R and QTRT1 (i.e., the two genes that remained

significantly associated with the TTFT in the final model) and

excluding CLO28A1, the HC-index (78.2%) and the explained

variation (52.4%) retained a better performance as compared with

the basic prognostic model, with a concomitant rise in the goodness

of the model fit (c2 = 18.8, P=0.001).
4 Discussion

The considerable innovations in genomics engendering a vast

and miscellaneous bulk of information from sizable cohorts of

patients and the concurrent computer science knowledge

improvements have guided the growing use of AI and, more

specifically, of ML approaches that acquire knowledge from

available data, devising variable selections without pre-setting

programming (50). Well-defined examples of the ML approach in

the analysis of hematological malignancies are the association of

BCL6 and PDL1/2 rearrangements in primary testicular diffuse

large B-cell lymphoma (DLBCL) with central nervous system

relapse (51); the involvement of six prognosis-related long non-

coding genes in acute myeloid leukemia (AML) patients (52); or the

relevance of tumor mutation burden for the DLBCL overall survival

prognostication (53) are. In CLL, the ML algorithm identified six

hub genes as possible biomarkers to improve the diagnosis (14).

Moreover, baseline clinical data added to the international

prognostic index for CLL (CLL-IPI) variables demonstrated

improved predictive performance over CLL-IPI, using a range of

ML boosting algorithms to identify the individual risk of death,

treatment, infection, and a combination of them (16). In contrast,

no additional improvement was observed when comprising

recurrent genetic mutation information (16). Moreover, an ML

algorithm called CLL Treatment Infection Model (CLL-TIM) was
TABLE 3 Univariable Cox analyses for time to first treatment of several well-known clinical and biomolecular variables belonging to the basic
prognostic model.

HR LL 95%CIs UL 95%CIs P-value

IGHV unmutated 5.35 3.95 7.26 <.001

del(11q) 5.31 3.51 8.04 <.001

del(17p) 5.20 2.42 11.17 <.001

NOTCH1 mutated 2.51 1.74 3.61 <.001

b2-M abnormal (level/cutoff…) 2.21 1.56 3.14 <.001

Rai stage I-II 1.92 1.39 2.65 <.001

B-Lymphocytes (≥5×109/L) 2.15 1.48 3.12 <.001
b2-M, b2-microglobulina; IGHV, immunoglobulin heavy chain gene rearrangement; LL, lower limit; UL, upper limit; Cis, confidence intervals.
FIGURE 5

The PPI networks created by FADD, FIBP, IGF1R, QTRT1, GNE,
SLC39A6, and MRTFA genes. Node size and color correspond to the
number of connected edges; gene name is displayed only for nodes
with ≥ 4 edges, and the closer the color is to red, the bigger the
node size is.
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applied to recognize patients at high risk of infection and/or

treatment based on CLL-IPI variables and routine clinical data (17).

However, differently from our prospective study, the CLL-IPI

score system only included 32% of Binet stage A patients and, more

importantly, 4% of IGHV mutated cases, thereby rendering it less

representative of the real-world setting and may lower the TTFT’s
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predictive efficacy. In contrast, the Brno-Barcelona cohort (54) had

a significantly higher proportion of early-stage/low-risk Binet A

(83%) and IGHV mutated cases (43%), as did the German CLL

study group which also developed a predictive model for newly

diagnosed Binet stage A patients (55), with roughly 71% of the

population having an IGHV mutation status.

Herein, we selected the top 10 genes (CEACAM19, PIGP,

FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, and SLC39A6)

from a GEP dataset of 217 CLL cases comprising roughly 20,000

genes using a novel deep ML-based approach to estimate how much

every single gene had a role in predicting the therapy need

occurrence. The GEP model was strongly influenced by

CEACAM19 and PIGP (SHAP value +0.09 and +0.08) in making

decisions, moderately influenced by MKL1 and GNE (SHAP value

+0.04), and poorly influenced by the others (SHAP value <0.03).

IGF1R, COL28A1, andQTRT1moderately influenced quite the GEP

model (SHAP value +0.05).

Some variables, namely Rai stage, IGHVmutational status, b2-M,

and 17(p) and 11(q) deletions previously validated in the CLL-IPI

score system (5, 56) and by our group (57, 58), were used as a basic

risk model in predicting TTFT. We found that IGF1R, COL28A1, and

QTRT1 genes maintained their own independent prognostic value in
TABLE 4 Cox multivariable analyses for time to first treatment (TTFT).

Model 1 HR LL 95% CI UL 95% CI P-value

IGHV unmutated 2.03 1.12 3.70 0.02

del(11q) 3.92 1.77 8.69 <.001

del(17p) 11.86 2.51 56.02 0.002

NOTCH1 mutated 2.07 1.11 3.86 0.021

b2-M abnormal 2.10 1.33 3.31 0.001

Rai stage I-II 1.63 1.00 2.68 0.05

B-Lymphocytes ≥5×109/L 1.75 0.88 3.48 0.112

IGF1R gene 1.41 1.08 1.84 0.013

Model 2

IGHV unmutated 2.78 1.58 4.89 <.001

del(11q) 2.88 1.34 6.20 0.007

del(17p) 7.28 1.60 33.10 0.01

NOTCH1 mutated 2.26 1.20 4.22 0.011

b2-M abnormal 2.04 1.300 3.20 0.002

Rai stage I-II 1.70 1.04 2.78 0.035

B-Lymphocytes ≥5×109/L 1.42 0.72 2.80 0.313

COL28A1 gene 0.32 0.10 0.97 0.045

Model 3

IGHV unmutated 2.465 1.40 4.34 0.002

del(11q) 2.42 1.12 5.21 0.024

del(17p) 6.78 1.48 31.15 0.014

(Continued)
FIGURE 6

Forest plot of Cox univariable analysis for time to TTFT according to
the top 10 genes selected by the NN algorithm.
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predicting the time-to-event when tested in a multivariable model,

including the variables of the basic prognostic model. However, in a

final multivariable model, in which the three genes (IGF1R,

COL28A1, and QTRT1) were tested all together with the prognostic

variables of the basic model IGF1R and QTRT1, but not COL28A,

maintained their predictive independence on TTFT. Notably, the

presence of these genes in the model significantly increased the

prognostic accuracy of a basic risk model. In this regard, the HC-

index and the explained variation significantly increased from 76.5%

in the basic model to more than 78% and from 42.2% to roughly 52%

in the IGF1R/QTRT1-gene model, respectively. These data indicate

that the IGF1R/QTRT1-gene model retained a better performance

than the basic prognostic model.

IGF1R encoding the insulin-like growth factor 1 receptor

(IGFR1) is not only implicated in numerous cellular bio-

functional processes, i.e., growth, proliferation, differentiation,

and apoptosis (59), but also it plays a critical role in cancer

development, progression, and metastasis (60). Moreover, IGF1R

is involved in CLL (61–63) and overexpressed in various CLL cell

subsets. Its inhibition induced apoptosis and efficiently reduced

CLL growth in an Em-TCL1 transgenic murine model (62).

Moreover, IGF1R seems to be a direct target of sorafenib since

the latter decreased its expression and phosphorylation by offsetting

the insulin-like growth factor-1 binding to CLL cells and ultimately

dropping the in vitro IGF1R kinase activity (62). Finally, we

previously demonstrated the IGF1R gene expression as an

independent prognostic factor related to TTFT in our O-CLL

prospective cohort after a shorter follow-up (63).
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Unlike the IGF1R gene, QTRT1 encoding the queuine tRNA-

ribosyltransferase 1, a key enzyme involved in the post-

transcriptional modification of tRNAs (64), has never been

implicated in the pathogenesis or prognosis of CLL. Conversely, a

significant increase in QTRT1 expression and a striking down-

regulation in its methylation was also found in lung cancer (65).

Furthermore, it was discovered to be a risk factor for the disease

onset and progression and adversely associated with survival

outcomes (65).

Among various CLL prognostic models involving genes

(66–69), Herold et al. (11) provided evidence of the association

between overall survival and TTFT and the expression of 8 genes in

CLL cells (PS.8 score). For TTFT, PS.8 showed an improved

prognostic effect than the single parameters and even to a

combined FISH and IGVH status model, which, in turn, failed to

i n c r e a s e t h e p e r f o rmanc e o f t h e PS . 8 s co r e i n a

multivariable analysis.

Huang et coll (70). showed that high NRIP1, BCL11B, and SIRT1

expressions were associated with more prolonged survival, while high

expression of CDKN2A and SREBF2 with a poor prognosis (70).

However, a substantial fraction of patients in the dataset chosen by

the authors was not analyzed at the diagnosis/first presentation but at

the time of progressive disease or relapse (70). Conversely, patients of

our O-CLL cohort were prospectively followed-up, and all the

biomolecular analyses were performed at the disease onset.

Moreover, both Herold’s (11) and Huang’s (70) studies did not

consider, unlike our study, unavailable risk factors included in the

CLL-IPI score, somewhat misinterpreting the final results.
TABLE 4 Continued

Model 1 HR LL 95% CI UL 95% CI P-value

NOTCH1 mutated 2.22 1.19 4.13 0.012

b2-M abnormal 1.79 1.13 2.85 0.013

Rai stage I-II 1.93 1.17 3.18 0.01

B-Lymphocytes ≥5×109/L 1.60 0.81 3.17 0.177

QTRT1 gene 7.73 2.48 24.04 <.001

Final Model

IGHV unmutated 1.93 1.06 3.50 0.031

del(11q) 3.10 1.39 6.92 0.006

del(17p) 8.44 1.75 40.75 0.008

NOTCH1 mutated 2.21 1.17 4.14 0.014

b2-M abnormal 1.97 1.23 3.15 0.005

Rai stage I-II 1.71 1.03 2.83 0.038

B-Lymphocytes ≥5×109/L 1.85 0.91 3.74 0.088

IGF1R 1.38 1.07 1.79 0.014

COL28A1 0.52 0.16 1.67 0.273

QTRT1 6.70 2.12 21.21 0.001
In models 1-3, the basic prognostic model variables were included in the multiple models with every single gene. The results of the analyses in which the specific gene was independently
associated with TTFT are reported. In the final model, the three significant genes were integrated into the multivariable analysis with the markers of the basic prognostic model.
b2-M, b2-microglobulin; LL, lower limit, UL, upper limit; CIs, confidence intervals.
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Two recently published articles represent interesting innovations

in CLL’s gene-oriented prognosis (71, 72). Liang X et al., following the

super-enhancer (SE) new hypothesis, generated a prognostic score to

predict the time-to-therapy-need in CLL by the expression levels of

nine SE-associated genes (71). Yet, since several data suggest the high

dependency of CLL cells on microenvironment support, Abrisqueta

and coll (72). described the prediction power of a signature for

predicting progression based on the analysis of two hundred genes

linked to microenvironment signaling by the NanoString approach.

This novel approach established a 15 genes-based signature that

predicted disease outcome independently of the IGHV mutational

status, the CLL-IPI, and the International Prognostic Score for Early-

stage (IPS-E) CLL score (72). Notably, the nanoString platform,

overcoming GEP methodological drawbacks and reproducibility,

could represent the future, facilitating its use in clinical settings.

Notably, several pathways involved in cancer and hematopoietic

malignancies development were identified by Reactome analysis of

the top ten genes analyzed in this study, including Interferon alpha/

beta signaling (73–75), caspases and Rho GTPase activity (76), GHR

signaling pathway (77–79), Integrin signaling (80), non-receptor

Tyrosine Kinases activity (81), and FGF/FGFR pathways (82).

Moreover, among the top ten genes, FIBP was found to be

overexpressed in a specific group of CLL patients affected by a

large loss at the 13q14 locus (83); as previously noted also, IGF1R

was identified as overexpressed in various CLL subsets, suggesting a

contribution to CLL pathology (63, 81, 84, 85). Finally, seven of the

top 10 genes (which appeared to be connected in a complex PPI

network) are, in turn, interconnected through the UBC gene,

encoding for Polyubiquitin C, which represents one of the sources

of ubiquitin in human cells. Polyubiquitin C plays a crucial role in

maintaining cellular ubiquitin levels, especially during the stress

response. The process of ubiquitination has been associated with

protein degradation, DNA repair, cell cycle regulation, kinase

modification, endocytosis, and regulation of other cell signaling

pathways (86). Interestingly, Zhang et al. (87), through

bioinformatic analysis of gene expression profiles in CLL cells,

identified the UBC gene as the key node in the PPI network of genes

up-regulated in B cells co-stimulated with immobilized anti-IgM

with respect to untreated cells, revealing the proteasome pathway as

the most significant in this network.

Finally, it should be emphasized that this preliminary study

lacks a validation cohort. To the best of our knowledge, we are not

aware of any further public dataset fitting the prospective nature of

our study as well as the clinical and genomic information required

to answer our aims. Specifically, the GEO dataset (GSE39671) (88)

does not have the characteristics required to run the method

presented in this article but the characteristics are instead

collected in the ICGC CLL dataset (89, 90). However, in the

latter, sampling was completed within a year, as in our study, in

approximately 26% of Binet A untreated CLL cases. In contrast, the

median sampling time for the remaining cases of the ICGC CLL

cohort was approximately 5 years (IQR 2.6-9.1), a bias that might

invalidate the analysis’ conclusions. Moreover, information on the

Rai stage system is lacking and the Binet stage information at

sampling is not available.
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5 Conclusions

A novel deep ML-based approach was proposed in the current

analysis, exploiting the reconstruction capabilities of AEs and XAI

to select the most informative genes for predicting the therapy need

event. This study’s strengths lie in the use of an original ML method

and the prospective nature of our study. The results, although

preliminary, evidenced the effectiveness of this approach in

identifying genes with independent predictive power, suggesting a

set of meaningful genes for further investigation. Finally, it should

be emphasized that this pilot study requires external validation

using a different prospective cohort of patients with similar

characteristics. Finally, it should be emphasized that this pilot

study requires external validation using a different prospective

cohort of patients with similar characteristics.
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