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Introduction: Tumor purity takes on critical significance to the progression of

solid tumors. The aim of this study was at exploring potential prognostic genes

correlated with tumor purity in hepatocellular carcinoma (HCC) by

bioinformatics analysis.

Methods: The ESTIMATE algorithm was applied for determining the tumor purity

of HCC samples from The Cancer Genome Atlas (TCGA). The tumor purity–

associated genes with differential expression (DEGs) were identified based on

overlap analysis, weighted gene co-expression network analysis (WGCNA), and

differential expression analysis. The prognostic genes were identified in terms of

the prognostic model construction based on the Kaplan–Meier (K–M) survival

analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression

analyses. The expression of the above-described genes was further validated by

the GSE105130 dataset from the Gene Expression Omnibus (GEO) database. We

also characterized the clinical and immunophenotypes of prognostic genes.

Gene set enrichment analysis (GSEA) was carried out for exploring the biological

signaling pathway.

Results: A total of 26 tumor purity–associated DEGs were identified, which were

involved in biological processes such as immune/inflammatory responses and

fatty acid elongation. Ultimately, we identified ADCK3, HK3, and PPT1 as the

prognostic genes for HCC. Moreover, HCC patients exhibiting higher ADCK3

expression and lower HK3 and PPT1 expressions had a better prognosis.

Furthermore, high HK3 and PPT1 expressions and low ADCK3 expression

resulted in high tumor purity, high immune score, high stromal score, and high

ESTIMATE score. GSEA showed that the abovementioned prognostic genes

showed a significant correlation with immune-inflammatory response, tumor

growth, and fatty acid production/degradation.

Discussion: In conclusion, this study identified novel predictive biomarkers

(ADCK3, HK3, and PPT1) and studied the underlying molecular mechanisms of

HCC pathology initially.
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1 Introduction

Hepatocellular carcinoma (HCC) has been confirmed as the most

frequently reported primary liver cancer, that is, the sixth most

common cancer worldwide (1, 2). It is estimated that about 80% of

liver cancer cases are HCC (3–5). HCC was a polygenic disease caused

by the interaction of a variety of tumor-promoting and tumor-

suppressing genes with the tumor microenvironment (TME).

However, its molecular mechanism remains unclear (6, 7). HCC is

subjected to poor prognosis, and the major reason for this drawback

arises from its late presentation and limited therapeutic options (8).

Currently, surgery and chemotherapy are the mainstays of treatment

for HCC, whereas the incidence of HCC continues to rise and is

increasing more rapidly than any other cancer in men and women.

HCC ranks among the top 10 cancers for morbidity and mortality, as

reported by the systematic analysis of the Global Burden of Disease

Study (GBD) (9). Since most HCC patients are diagnosed late, they too

weak to resist the risk of surgery. Accordingly, it is urgent to find new

diagnostic and prognostic markers for HCC, which may help in early

diagnosis and guide treatment decisions for improving patient survival

and quality of life. Tumor purity has been defined as the proportion of

tumor cells in the TME (10), TME is a cell population composed of a

wide variety of cells (e.g., stromal cells, fibroblasts, endothelial cells, and

immune cells), and this cell population takes on critical significance to

tumors’ occurrence and development (11). Moreover, cellular and

molecular components in the TME may exert certain effects on

treatment outcomes (12). Existing research has suggested that tumor

purity may affect co-expression networks, cluster-based classification of

tumor sub-types or molecular classification, and identification of

differentially expressed genes (13). However, tumor purity–associated

markers in HCC have been rarely investigated.

In clinical practice, generally obtained solid tumors constantly

comprise multiple clonal populations of cancer cells and adjacent

normal tissue, stroma, and infiltrating immune cells, with a high

degree of heterogeneity (14). This heterogeneous structure is

capable of complicating or biasing the analysis of various

genomic data. ESTIMATE has been adopted for the assessment of

tumor purity in existing studies using gene expression signatures to

determine the proportion of stromal and immune cells in a tumor

sample (15). Furthermore, the algorithm has been reported as a

robust tumor purity prediction algorithm. A total of 10 tumor

purity prognosis-associated genes were extracted from this study for

the investigation of tumor purity (16).

However, there is no immune-associated prognostic analysis of

tumor purity in liver cancer. This study aims to investigate the

correlation and mechanism between tumor purity and clinical

prognosis in HCC, which devotes to better clarify prognostic

prediction and therapeutic strategies. The analytical method in

this study draws much inspiration from existing research (17).

2 Materials and methods

2.1 Data source

The Cancer Genome Atlas (TCGA) database provided RNA-

sequencing data (i.e., 50 normal samples and 374 HCC samples). A
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total of 342 HCC samples were obtained after excluding samples

from patients with incomplete clinical and survival information

(Supplementary Table S1). The GSE105130 dataset originated from

the GEO database (18) (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE105130), containing transcriptomic data from

paired 25 HCC patients with tumors and adjacent non-tumors.

Moreover, the Gene Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo/) database provided GSE36376 dataset

with 240 HCC patients and 193 adjacent non-tumor samples. Data

were downloaded from the publicly available database; hence, it was

not applicable for additional ethical approval.
2.2 Differential expression analysis

In accordance with the RNA-sequencing data of 50 normal and

374 HCC samples in the TCGA database, differential expression

analysis was carried out with the use of the R package limma. In

accordance with the HCC versus normal comparison method, genes

satisfying |log2fold change (FC)| > 0.5 and P< 0.05 were considered

differentially expressed genes (DEGs). A volcano plot and a heat

map were employed for demonstrating the distribution and

expression patterns of DEGs.
2.3 Tumor purity and immune landscape

RNA-sequencing data of 374 HCC samples from the TCGA

database were extracted as the basis for this step of the analysis. The

immune score, stroma score, and ESTIMATE score of all TCGA-

HCC samples were assessed using the ESTIMATE algorithm (R

package ESTIMATE) (16). Equation 1 was adopted to estimate the

respective HCC patient’s tumor purity:

Tumor purity

= cos(0:6049872018 + 0:0001467884

� ESTIMATE Score) (1)

The single-sample gene set enrichment analysis (ssGSEA) was

further used to assess the abundance of 24 immune cell species in

the TCGA-HCC (n = 374) cohort, and the result was visualized into

a stacked plot.
2.4 Weighted Gene Co-expression
Network Analysis

Weighted Gene Co-expression Network Analysis (WGCNA)

refers to an analytical method for the analysis of gene expression

patterns of multiple samples, allowing clustering of genes with

similar expression patterns and analysis of correlations between

modules and specific traits or phenotypes (19). For filtering 374

HCC samples, goodSamplesGenes function in R package WGCNA

was employed for the first time, and the samples with TURE results

were introduced into subsequent analyses. Tumor purity and
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immune infiltrating cell abundance were the specific traits of

interest, and they are listed in Supplementary Table S2, with the

aim of identifying tumor purity–associated genes.

Afterward, a scale-free co-expression network was built based

on a soft-threshold parameter b (b was a soft-threshold parameter

that could enhance strong correlations between genes and penalize

weak correlations) using the adjacency matrix (20).

Subsequently, in accordance with the standard of hybrid dynamic

tree cutting algorithm, the minimum number of genes in the respective

gene module was set to 50, and MEDissThres was set to 0.2 to merge

similar modules analyzed using the dynamic cut tree algorithm.

To identify the gene modules that are immune-associated to

tumor purity in HCC, the tumor purity in HCC was defined as the

trait was, and the relationship of the respective module and tumor

purity was analyzed. The module with the maximum absolute value

of the immune correlation coefficient with tumor purity was defined

as a critical module for subsequent analysis, with p< 0.05 as the

threshold with statistical significance, and genes in the vital module

were considered hub genes.
2.5 Identification and enrichment analyses
of tumor purity–associated genes with
differential expression

Common genes between DEGs and hub genes were obtained

through the overlap analysis, which were defined as tumor purity–

associated DEGs. To explore whether there is an interaction

between the tumor purity–associated DEGs, we used the STRING

(https://string-db.org) website to construct a PPI network for them

with a confidence level of 0.4. Subsequently, functional enrichment

analyses were performed on tumor purity–associated DEGs by the

R package clusterProfiler for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG), and p< 0.05 was

regarded as notably enriched.
2.6 Survival analysis

For the assessment of whether tumor purity–associated DEGs

were correlated with patient survival, we performed a K–M analysis

by R-package survival. In brief, patients were divided into high- and

low-expression groups based on whether the expression of the tumor

purity–associated DEGs was greater than the median expression level

of each tumor purity–associated DEG in the TCGA-HCC cohort.

The K–M curve of each expression group of each tumor purity–

associated DEGs was plotted and compared. The survival difference

between high- and low-expression groups with P< 0.05 was

considered as a gene notably correlated with OS in HCC patients.
2.7 Least Absolute Shrinkage and Selection
Operator algorithm

Based on the 342 TCGA-HCC cases with complete survival and

clinical information, gene notably correlated with OS obtained in
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the previous step were introduced into Least Absolute Shrinkage

and Selection Operator (LASSO) algorithm with the parameters

“famil” to “binomial” and “type. measure” to “class,” to select strong

correlation features and obtain prognostic genes when the cross-

validation error was the lowest.

To evaluate the prognostic value of the risk model, the risk score

of each HCC sample was firstly calculated according to the

expressions of prognostic genes and the risk coefficient obtained

by LASSO with the formula: risk score. Then, the HCC samples

were divided into high- and low-risk groups based on the optimal

threshold of the risk score calculated by the surv cutpoint function

of the R package survminer. Subsequently, a K–M survival

difference analysis was employed on the high- and low-risk groups.
2.8 Establishment of a nomogram

The prognostic genes were further enrolled in developing a

nomogram using rms and survival packages to predict the survival

rate of patients with HCC, and riskRegression and survival packages

were applied to plot calibration curve and quantified data of each

risk group.
2.9 Clinical and immunological phenotypes
of prognostic genes

First, clinical characteristics, covering T-phase (T1–T4), N-

phase (N0 and N1), M-phase (M0 and M1), and PHASE (phase

I–phase IV) were extracted from the 342 HCC samples. Then, the

expression of each model gene was compared between subgroups of

each clinical characteristic. To analyze the correlation between the

expression of prognostic genes and the clinical characteristics of

HCC, we compared the differences in the expression of three

prognostic genes according to the clinical characteristics of

different groups.

Moreover, based on the median expression value of the

respective model gene, the HCC samples were separated into

high- and low-expression groups of the respective model gene.

Subsequently, CD8.T.cells, stromal scores, ESTIMATE scores, and

tumor purity were compared between high and low expression

groups of each model gene.

Moreover, the Pearson correlation of each model gene with the

immune score, stromal score, ESTIMATE score, CD8.T.cells, and

tumor purity was determined.
2.10 Single-gene gene set
enrichment analysis

To investigate the relevant pathways and biological functions of

the prognostic genes, the prognostic genes served as target genes,

and the correlation coefficients between all genes in HCC samples

and the expression levels of target genes were considered the sorting

standards in terms of GSEA, which was performed by

clusterProfiler with the selection standards of adjusted p< 0.05.
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2.11 Validation of expression levels of
prognostic genes

To further verify the expression levels of the prognostic genes,

the expression of each model gene was compared between normal

and HCC samples in TCGA cohort and GSE105130 dataset

respectively. Furthermore, human hepatic stellate cell line LX-2,

as well as three human HCC cell lines HepG2, SK-HeP-1, and Huh-

1 were purchased from Procell Life Science and Technology Co.,

Ltd. (Wuhan, China). Total RNA from the above four cell lines

(logarithmic phage) was segmented via the TRIzol Reagent based

on the producer’s indications (Ambion, TX, USA). For the next

processes, the inverse transcription of RNA into cDNA was done

via the SweScript-First-strand-cDNA-synthesis-kit (Servicebio,

Wuhan, China) and qPCR was completed through the 2× SYBR

Green qPCR Master Mix depending on the manuals’ indications

(Servicebio, Wuhan, China). The detailed information of primers

synthesized by Beijing Tsingke Biotech Co., Ltd. (Beijing, China) is

listed in Table 1. The relative expression of the respective prognostic

gene was uniformized by GAPDH. The student’s t-test was carried

out to compute the P-values between two groups. The P-value< 0.05

(two-tailed) was delimited as statistically significant.
2.12 Statistical analysis

All statistical analyses were carried out using R software

(version 3.5.2) and the relevant software packages. The specific

statistical methods were stated in the relevant sections. Without

special remarks, P< 0.05 was considered with statistical significance.
3 Results

3.1 Identification of the hepatocellular
carcinoma–associated genes with
differential expression

Differential expression analysis was conducted for 50 normal

and 374 HCC samples in the TCGA database using the R package

limma. Based on |log2 FC| > 0.5 and P< 0.05, a total of 6251 DEGs
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were identified, of which 848 were upregulated and 5,403 were

downregulated in HCC samples in comparison with normal

samples (Figure 1; Supplementary Table S3).
3.2 Analysis of tumor purity and immune
infiltrating cell co-expression network

The expression profiles of 374 HCC samples from the TCGA

database were selected as the basis for WGCNA. The tumor purity

and immune-infiltrating cell content of all TCGA-HCC samples

obtained were available in Supplementary Figure S1, and they

would serve as the phenotype of interest for this study. The

similarity of TCGA-HCC samples was detected using the

goodSamplesGenes function (Figure 2A). A total of nine modules

were obtained by WGCNA (Figure 2B). Subsequently, we examined

the correlation of tumor purity and immune-infiltrating cells with the

respective module. As indicated by the results, the light-yellow

module was the highest correlated with tumor purity (cor = 0.89,

P = 2e- 147) and also exhibited a moderate to the strong relationship

with a variety of immune infiltrating cells (e.g., T cells, macrophages,

Th 1 cells, aDC, cytotoxic cells, etc.) (Figure 2C), and the 420 genes in

the light-yellow module were regarded as hub genes (Figure 2D).
3.3 Identification and enrichment analysis
of the tumor purity–associated genes with
differential expression

Overlap analysis revealed a total of 26 common genes

(Supplementary Table S4) were found between DEGs and hub

genes as shown in Figure 3A, and they were defined as the tumor

purity–associated DEGs. Moreover, the 26 tumor purity–associated

DEGs enriched 10 GO terms and nine KEGG pathways. For

instance, in the BP group, they were mainly involved in

neutrophil activation, degranulation, and their mediated

immunity, and granulocyte migration; in the CC category, the

“tertiary granule,” “ficolin- 1-rich granule,” “ficolin-1-rich granule

membrane,” and “tertiary granule membrane” were notably

enriched; in the MF group, the above-described genes were

closely correlated with “RAGE receptor binding” (Figure 3B).

According to KEGG pathway enrichment analysis (Figure 3C),

the abovementioned tumor purity–associated DEGs were involved

in immune/inflammatory responses (“NF-kappa B signaling

pathway,” “Primary immunodeficiency,” and “Cytokine–cytokine

receptor interaction”) and metabolism (“Galactose metabolism,”

“Fructose and mannose metabolism,” and “starch and sucrose

metabolism”)-associated pathways, “salmonella infection,” and

“biosynthesis of nucleotide sugars”; moreover, surprisingly, “fatty

acid elongation” pathway also appeared notably enriched. Recently,

it was reported that fatty acid extension from C16 to C18 can

promote hepatic lipid accumulation and inflammation thereby

promoting liver disease (21–23). The above evidence suggested

that the above-described tumor purity–associated DEGs may

affect the immune and inflammatory responses of patients by
TABLE 1 The detailed information of primers for qPCR.

Primer name Primer sequence

PPT1 For GAGGACGTGGAGAACAGCTT

PPT Rev GGCATCGAGGGAGTCCAAAA

HK3 For TGAGGTTGGGCTAGTTGTAGACAC

HK3 Rev TGAGCACCAGGATTCAGGGA

ADCK3 For CAGCCAGGAGATTCGGAACG

ADCK3 Rev TATGGATTTCGCCCGCACA

GAPDH For CGAAGGTGGAGTCAACGGATTT

GAPDH Rev ATGGGTGGAATCATATTGGAAC
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regulating fatty acid elongation and thus play an important role in

HCC progression.
3.4 Identification of tumor purity–
associated prognostic genes

We performed a K–M survival analysis designed to assess the

correlation of changes in expression of 26 tumor purity–associated

DEGs with OS in TCGA-HCC patients (n = 342). As indicated by

the results, the expression of CD300A, FPR1, HK3, PPT1, and

RGS10 was inversely correlated with patient survival, and high

expression of the above-described genes was notably related to short

survival time; patients with high ADCK3 and DCAF8 expression

had notably better OS than those in the low-expression group

(Figure 4A). The expression changes of the remaining 19 genes

could not notably differentiate the clinical outcomes of HCC

patients (Supplementary Figure S3). Subsequently, we included

the seven genes mentioned above that were notably correlated

with HCC prognosis to the LASSO regression analysis.
Frontiers in Oncology 05
Ultimately, ADCK3, HK3, and PPT1 were identified as

prognostic genes based on l min = 0.0373 (Figure 4B). In

addition, based on Equation 2:

Risk Score = (� 0:01588)� expression ADCK3

+ 0:183293� expression PPT1 + 0:09556

� expression HK3 (2)

The optimal threshold of 5.65, and the cut point of maximally

selected rank statistics = 0.73, the HCC samples were divided into

high- (n = 178) and low-risk (n = 187) groups. Furthermore, the

survival analysis result illustrated that the OS of low-risk group was

notably higher than high-risk group (p = 0.00011) (Figure 4C).

Next, the expression levels of three key prognostic genes were

compared between HCC samples and controls in the TCGA-HCC

cohort and GEO150130. In both datasets, HCC tissues had lower

HK3 expression and higher PPT1 and ADCK3 expressions than

paired adjacent non-tumor tissues (Figures 4D–E). To further

validate the prognostic gene expression trends experimentally, we

utilized cell lines and qRT-PCR technique. As indicated by the
B

A

FIGURE 1

Identification of differentially expressed genes (DEGs). (A) Volcano plot of DEG (HCC vs. normal). (B) Heatmaps of DEGs (HCC vs. normal).
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results, in agreement with the results of the public database tissue,

PPT1 and ADCK3 expression was upregulated in three

hepatocellular carcinoma cell lines (Huh-1, HepG2, and SK-HeP-

1) in comparison with normal hepatocytes LX-2 (Supplementary

Figure S4). However, probably due to differences in cell lines and

tissues, the expression trend of HK3 in cell lines was opposite to that

in tissues (Supplementary Figure S4). The expression levels of three

key prognostic genes were also validated in the GSE36376 dataset
Frontiers in Oncology 06
and achieved a consistent result (Supplementary Figure S5A). The

AUC values of the prognostic model at 1, 2, 3, 4, and 5 years reached

0.68, 0.64, 0.60, 0.60, and 0.59, respectively (Supplementary

Figure S5B).

Furthermore, we analyzed the correlation of the three

prognostic genes exhibiting the clinical characteristics (TNM

phase and phase) of TCGA-HCC samples. As indicated by the

results, only PPT1 was notably correlated with the phase (P =
A

B

DC

FIGURE 2

Weighted gene co-expression network analysis. (A) Sample and trait tree diagram. (B) Clustering Module Tree diagram. (C) Heatmap of correlations
between modules and clinical traits. (D) A scatter plot of the gene significance (GS) versus the Module Membership (MM) in light-yellow module.
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0.0033) and T-phase (P = 0.0014). In the phase subgroup, the

expression level of PPT1 gradually increased in patients at

phase I to phase III but decreased in patients at phase IV. In the

T-phase subgroup, PPT1 expression increased with increasing

the tumor size and depth of infiltration (Supplementary

Figure S6).
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3.5 Development of a nomogram

To evaluate the role played by the prognostic model, a

nomogram was developed with an optimal concordance index

(C-index, 0.61353) for the prediction of the survival time of HCC

patients at 1, 3, and 5 years (Figure 5A). The calibration diagram
A

B

C

FIGURE 3

Identification and enrichment analysis of the differentially expressed tumor purity–associated genes (tumor purity–associated DEGs). (A) Venn
diagrams of DEGs and hub genes within the light-yellow module. (B) GO enrichment analysis. (C) KEGG enrichment analysis.
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was plotted, closer to the ideal curve, suggesting the perfect stability

of the nomogram (Figure 5B). The above results demonstrated that

the nomogram based on three prognostic genes could supply a high

value for predicting the prognosis of patients with HCC.
3.6 Correlation of prognostic genes
with immunophenotypes

We evaluated the immunophenotype of three prognostic genes.

As indicated by the results, ADCK3, HK3, and PPT1 were notably

correlated with tumor purity, immune score, stromal score, and

ESTIMATE score (Figure 6). High HK3 and PPT1 expression and

low ADCK3 expression resulted in high tumor purity, high immune
Frontiers in Oncology 08
score (Figure 6A), high immune score (Figure 6B), high stromal score

(Figure 6C), and high ESTIMATE score (Figure 6D). Scatter plots of

the correlations between the abovementioned prognostic genes and

tumor environment scores were shown in Supplementary Figure S7.
3.7 Exploration of the potential molecular
mechanisms for prognostic genes

To reveal the molecular mechanisms of prognostic genes, we

performed a single-gene GSEA on three prognostic genes. ADCK3

was enriched for a total of 2,172 GO terms (1659 BP terms, 245 CC

terms, and 268 MF terms; Supplementary Table S5, sheet1); HK3

was enriched for a total of 1,669 GO terms (1,374 BP terms, 124 CC
A

B

D E

C

FIGURE 4

Identification of tumor purity–associated prognostic genes. (A) K–M survival analysis of 26 tumor purity–associated DEGs with OS in TCGA-HCC
patients. (B) LASSO regression analysis. (C) Survival analysis of high- and low-risk groups. (D) The expression levels of three key prognostic genes in
the TCGA-HCC cohort. (E) The expression levels of three key prognostic genes in GSE105130 dataset. ***p< 0.001, ****p< 0.0001.
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terms, and 171 MF terms; Supplementary Table S5, sheet2); PPT1

was enriched with a total of 1,341 GO terms (964 BP terms, 183 GO

terms, and 194 MF terms; Supplementary Table S5, sheet3).

Figure 7A showed the top 10 terms of each prognostic gene in

the GO Overall; all three prognostic genes were closely correlated

with immune cell physiological processes (e.g., differentiation,

activation, proliferation, adhesion, and related regulatory signals),

immune-inflammatory response, cell cycle, vascular growth, and

fatty acid production. The top 10 KEGG pathways of the three

prognostic genes were displayed in Figure 7B, and they were notably

correlated with immune-inflammatory response-associated

pathways, also involved in Fatty acid degradation, Tyrosine

metabolism, and Primary bile acid biosynthesis. Exhaustive
Frontiers in Oncology 09
KEGG enrichment results for ADCK3, HK3, and PPT1 could be

reviewed in Supplementary Table S6.
3.8 Identification of differential immune
cells and correlation analysis

To clarify the correlation between the prognostic model and

immune infiltration, we recognized the differential immune cells

between high- and low-risk subgroups. Figure 8A revealed the

proportion of 14 immune cells [eosinophils, aDC, iDC,

macrophages, CD56 bright natural killer (NK) cells, CD56 dim

NK cells, T cells, T-helper cells, Tcm, Tem, TFH, TH1 cells, TH2
A

B

FIGURE 5

Establishment of a nomogram. (A) Nomogram for predicting the survival rate of patients with HCC based on three prognostic genes. (B) Calibration
curve plotted to evaluate consistency of predicted and actual observations.
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cells, and Th17 cells] was notably different between the high- and

low-risk groups. In addition, most of the differential immune cells

were positively correlated with PPT1 and HK3 but negatively

correlated with ADCK3 (Figure 8B). Thus, differential immune

cells might be linked with occurrence and development of HCC.
4 Discussion

Hepatocellular carcinoma (HCC) is the most common primary

liver cancer with poor prognosis. The incidence of HCC and HCC-

associated deaths have increased over the past several decades (24).

Consequently, there is an urgent need to find prognostic markers

for HCC. Previous studies have shown that tumor purity is

correlated with patient prognosis (11, 25). Tumor purity refers to

the proportion of cancer cells in the tumor tissue. Several

computational methods that can determine tumor purity have

been introduced with the advance of genomics, which made the

measurement of tumor purity more objective and accurate. In

accordance with the ESTIMATE algorithm, tumor purity was

estimated based on immune score and stromal score. Tumor

immune score is an important factor affecting tumor progression
Frontiers in Oncology 10
and immunotherapy outcomes (26). In this study, ESTIMATE was

used to calculate tumor purity of each HCC sample in TCGA-LIHC

cohort. Through the ssGSEA algorithm, the immune activity of the

respective sample can be accurately obtained.

In this study, we screened out three key prognostic genes; they

are PPT1, HK3, and ADCK3. Palmitoyl-protein thioesterase 1

(PPT1) is an enzyme that cleaves thioester-linked palmitate from

S-acylated proteins in lysosomes (27), Palmitoyl-protein

thioesterase 1 (PPT1) was transported to lysosomes through the

mannose-6-phosphate receptor-mediated pathway, and it

participates in the lysosomal degradation (28). In addition, PPT1

is known to be widely and notably overexpressed in a variety of

cancers, including breast, thyroid, and gastric cancers. In addition,

higher expression levels of PPT1 in tumors are correlated with

shorter overall survival for a variety of cancers. In our study, PPT1

expression was highly expressed in HCC tissues compared with

normal tissue. Meanwhile, PPT1 expression in clinical samples is

correlated with worse prognosis. Survival analyses for TCGA cancer

patients also demonstrated that tumor expression of PPT1 was

correlated with shorter overall survival in HCC (29). Meanwhile,

PPT1 expression in clinical samples is correlated with worse

prognosis. Therefore, we may infer that HCC patients exhibiting
A B

DC

FIGURE 6

Identification of tumor purity–associated prognostic genes. (A) Differences in tumor purity between high- and low-expression groups of prognostic
genes. (B) Differences in immune score between high- and low-expression groups of prognostic genes. (C) Differences in stromal score between high-
and low-expression groups of prognostic genes. (D) Differences in ESTIMATE score between high- and low-expression groups of prognostic genes.
***p< 0.001, ****p< 0.0001.
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higher expression of PPT1 had a worse prognosis. In addition,

PPT1 was notably enriched in pathways such as fat metabolism.

There are studies that have indicated that, in variety of cancers, fat

uptake, storage, and fat production are upregulated, which in turn

promotes the rapid growth, invasion, and migration of tumors

(30).The above-described results suggest that PPT1 gene may affect
Frontiers in Oncology 11
the occurrence and development of HCC through fat metabolism.

Also, multiple substance synthesis pathways promotes the

progression and malignant behaviors of cancers (31).

Hexokinase-3 (HK3), that is, a member of the hexokinase

family, is involved in the first step of glucose metabolism, and its

coding gene is located on the human chromosomal 5q35.2 segment.
A B

FIGURE 7

The top 10 terms of each prognostic gene in GSEA analysis. (A) GO analysis. (B) KEGG analysis.
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The inactivation of HK3 notably affects the activation of cancer cells

glycolysis, and then activates the downstream signaling pathways,

such as apoptosis and endoplasmic reticulum stress. In cancer cells,

which plays a vital role in the progression and development of

cancers (32). Also, in numerous studies, HK3 has been identified as

a potential marker for regulating the tumor metabolic

microenvironment and malignant progression, with predictive

efficacy for tumor progression and prognosis. In addition, low

expression of HK3 were usually malignant entities and were

shown to be obvious genomic aberrat ions of driver

oncogenespoor (33). In this study, from enrichment analysis of

GSEA, the HK3 gene was notably enriched in cancer pathways,

cellular communication factor, PI3K-Akt Pathway, and virus

response. Cancer pathway takes on critical significance to cancer

progression and cancer-associated genes’ expression, regulating
Frontiers in Oncology 12
tumor progression and prognosis (34). Furthermore, the

validation of expression level in the GEO external dataset

confirmed that the HK3 gene was upregulated in HCC compared

with normal groups, consistent with previous studies, suggesting

higher expression of HK3 in HCC patients with poor prognosis.

ADCK3 has been confirmed as a mitochondrial protein

homologous to the yeast COQ8 and the bacterial UbiB proteins,

required for CoQ biosynthesis. Amount of experiments strongly

suggested that ADCK3 is also involved in CoQ10 biosynthesis (35).

CoQ10 may play a certain role in regulating apoptosis (36, 37).

CoQ10, an energy transfer molecule, occurs in high levels in the

liver. As reported by some research, a possible inverse correlation

exists between blood CoQ 10 levels and cancer (38). In the above

research, similar to the HK3 gene, the ADCK3 gene also enriched in

cancer pathways, cellular communication factor, PI3K-Akt Pathway
B

A

FIGURE 8

Relevance of three prognostic genes and 14 differential immune cells. (A) The proportion of 24 immune cells in high- and low-risk groups. (B) The
relevance of three prognostic genes (PPT1, HK3, and ADCK3) to 14 differential immune cells. ns, not significant; *p< 0.05, ***p< 0.001, and ****p<
0.0001.
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and virus response. The PI3K-Akt Pathway is closely related to the

malignant behavior of tumor cells, and it manifested its compelling

influence on multiple cellular process in different cancers, which are

closely related with tumorigenesis, proliferation, growth, apoptosis,

invasion, metastasis, epithelial–mesenchymal transition, stem-like

phenotype, immune microenvironment and drug resistance of

cancer cells (39). Moreover, the PI3K/Akt pathway plays an

important role in tumor formation and metastasis. Various

analysis identified, PI3K/Akt mutation status can be used as a

novel predictor of cancer patients (40). Our research in GEO

external validation dataset also identified ADCK3 showed high-

expression level in cancer tissue in comparison with normal tissue.

Thus, we can speculate that better prognosis of HCC patients

correlated with high ADCK3 expression.

In summary, our study identified the abovementioned TME-

associated prognostic markers in HCC. PPT1 and HK3 were

overexpressed in tumor and its high expression was correlated with

poor prognosis, while high ADCK3 expression was correlated with

better survival. However, the prognostic value of the three genes

warrants further validation by more clinical data. Importantly, the

HK3 and ADCK3 genes were not only highly expressed in HCC but

also correlated with PI3K/Akt Pathway and cancer pathways. It holds a

great potential as a candidate for targeted immunotherapy of HCC.
5 Conclusions

In conclusion, this study identified three novel predictive

biomarkers (ADCK3, HK3, and PPT1) correlated with tumor purity

for HCC by bioinformatics methods. In addition, the nomogram was

established based on three biomarkers to predict the survival time of

HCC patients at 1, 3, and 5 years. The current study might contribute

to the prognostic workup of HCC and played a complementary role in

determining tumor purity phenotypes.
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35. Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N,
et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated
with coenzyme Q10 deficiency. Am J Hum Genet (2008) 82(3):661–72. doi: 10.1016/
j.ajhg.2007.12.024

36. Walter L, Miyoshi H, Leverve X, Bernard P, Fontaine E. Regulation of the
mitochondrial permeability transition pore by ubiquinone analogs. a progress report.
Free Radical Res (2002) 36(4):405–12. doi: 10.1080/10715760290021252

37. Devun F, Walter L, Belliere J, Cottet-Rousselle C, Leverve X, Fontaine E, et al.
Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway
to selective cell death. PloS One (2010) 5(7):e11792. doi: 10.1371/journal.pone.0011792

38. Testai L, Martelli A, Flori L, Cicero AFG, Colletti A. Coenzyme Q(10): clinical
applications beyond cardiovascular diseases. Nutrients (2021) 13(5):1697. doi: 10.3390/
nu13051697

39. Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J, et al. Role of PI3K/AKT pathway in
cancer: the framework of malignant behavior.Mol Biol Rep (2020) 47(6):4587–629. doi:
10.1007/s11033-020-05435-1

40. Lin A, Gu T, Hu X, Zhang J, Luo P. Comprehensive analysis identifies PI3K/Akt
pathway alternations as an immune-related prognostic biomarker in colon
adenocarcinoma patients receiving immune checkpoint inhibitor treatment. J
Immunol Res (2022) 2022:8179799. doi: 10.1155/2022/8179799
frontiersin.org

https://doi.org/10.1016/S0140-6736(16)31012-1
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.1038/nrc4017
https://doi.org/10.1093/jnci/djx030
https://doi.org/10.3322/caac.21262
https://doi.org/10.1002/2211-5463.12872
https://doi.org/10.3389/fcell.2021.775462
https://doi.org/10.1093/jjco/hyx180
https://doi.org/10.1038/516S2a
https://doi.org/10.1002/cam4.3505
https://doi.org/10.1002/cam4.3505
https://doi.org/10.1186/s12967-021-03002-1
https://doi.org/10.1111/cpr.12865
https://doi.org/10.1038/ncomms9971
https://doi.org/10.1093/bfgp/elw016
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1155/2021/9548648
https://doi.org/10.1186/s12967-019-2025-x
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fphys.2018.00399
https://doi.org/10.3390/ijms15045762
https://doi.org/10.1002/hep.25932
https://doi.org/10.1158/0008-5472.CAN-12-3797
https://doi.org/10.21037/jgo.2016.09.07
https://doi.org/10.2147/CMAR.S171855
https://doi.org/10.1016/j.biopha.2019.109228
https://doi.org/10.3389/fphys.2020.569221
https://doi.org/10.1080/09687680802629329
https://doi.org/10.1158/2159-8290.CD-18-0706
https://doi.org/10.1158/2159-8290.CD-18-0706
https://doi.org/10.3390/life12060784
https://doi.org/10.1016/j.canlet.2020.02.034
https://doi.org/10.7150/ijbs.58295
https://doi.org/10.1002/ctm2.6
https://doi.org/10.1038/s41392-021-00788-w
https://doi.org/10.1016/j.ajhg.2007.12.024
https://doi.org/10.1016/j.ajhg.2007.12.024
https://doi.org/10.1080/10715760290021252
https://doi.org/10.1371/journal.pone.0011792
https://doi.org/10.3390/nu13051697
https://doi.org/10.3390/nu13051697
https://doi.org/10.1007/s11033-020-05435-1
https://doi.org/10.1155/2022/8179799
https://doi.org/10.3389/fonc.2023.1197898
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Tumor purity–associated genes influence hepatocellular carcinoma prognosis and tumor microenvironment
	1 Introduction
	2 Materials and methods
	2.1 Data source
	2.2 Differential expression analysis
	2.3 Tumor purity and immune landscape
	2.4 Weighted Gene Co-expression Network Analysis
	2.5 Identification and enrichment analyses of tumor purity–associated genes with differential expression
	2.6 Survival analysis
	2.7 Least Absolute Shrinkage and Selection Operator algorithm
	2.8 Establishment of a nomogram
	2.9 Clinical and immunological phenotypes of prognostic genes
	2.10 Single-gene gene set enrichment analysis
	2.11 Validation of expression levels of prognostic genes
	2.12 Statistical analysis

	3 Results
	3.1 Identification of the hepatocellular carcinoma–associated genes with differential expression
	3.2 Analysis of tumor purity and immune infiltrating cell co-expression network
	3.3 Identification and enrichment analysis of the tumor purity–associated genes with differential expression
	3.4 Identification of tumor purity–associated prognostic genes
	3.5 Development of a nomogram
	3.6 Correlation of prognostic genes with immunophenotypes
	3.7 Exploration of the potential molecular mechanisms for prognostic genes
	3.8 Identification of differential immune cells and correlation analysis

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Supplementary material
	References


