Check for updates

OPEN ACCESS

EDITED BY Guanghua Rong, Fifth Medical Center of the PLA General Hospital, China

REVIEWED BY Zhi-De Hu, Inner Mongolia Medical University, China Zhi Mao, People's Liberation Army General Hospital, China Hongwei Cheng, University of Macau, China

*CORRESPONDENCE Guangwen Cao Sigcao@smmu.edu.cn

[†]These authors have contributed equally to this work

RECEIVED 31 March 2023 ACCEPTED 04 September 2023 PUBLISHED 25 September 2023

CITATION

Li P, Hu M, Liu M, Ren X, Liu D, Liu J, Yin J, Tan X and Cao G (2023) The efficacy and safety of different systemic combination therapies on advanced hepatocellular carcinoma: a systematic review and meta-analysis. *Front. Oncol.* 13:1197782. doi: 10.3389/fonc.2023.1197782

COPYRIGHT

© 2023 Li, Hu, Liu, Ren, Liu, Liu, Yin, Tan and Cao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The efficacy and safety of different systemic combination therapies on advanced hepatocellular carcinoma: a systematic review and meta-analysis

Ping Li^{1†}, Ming Hu^{1†}, Mei Liu^{1†}, Xiangyu Ren¹, Donghong Liu², Jiluo Liu¹, Jianhua Yin¹, Xiaojie Tan¹ and Guangwen Cao^{1*}

¹Department of Epidemiology, Second Military Medical University, Shanghai, China, ²Department of Hepatic Surgery, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China

Background and aims: Systemic combinations have recently brought significant therapeutic benefits for advanced hepatocellular carcinoma (aHCC). To design the most effective combination regimens, a systematic review (PROSPERO ID: CRD42022321949) was conducted to evaluate the efficacy and safety of systemic combinations on aHCC.

Methods: We retrieved all the studies from PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), and China National Knowledge Infrastructure (CNKI) using the Medical Subject Headings (MeSH) terms until December 21, 2022. The effect indicators (hazard ratio [HR], relative risk [RR], and median) were pooled by a fixed- or random-effects model. A subgroup analysis was conducted according to types and specific therapies.

Results: In total, 88 eligible studies were selected from 7249 potential records. Each kind of combination treatment (chemotherapy plus chemotherapy, targeted plus immune checkpoint inhibitor (ICI) therapy, targeted plus chemotherapy, and targeted plus targeted therapy) had a better objective response rate (ORR) in patients with aHCC, compared to the monotherapy mostly with sorafenib (RR: 1.57 [1.44–1.71]; $I^2 = 30\%$). Of those, targeted plus ICI therapy showed better therapeutic efficiency in overall survival (median: 15.02 [12.67–17.38]), progression-free survival (median: 7.08 [6.42–7.74]), and ORR (RR: 1.81 [1.55–2.13]), compared to the monotherapy. Specifically, Atezo plus Beva showed all those benefits. Our pooled result showed all the combinations had increased \geq 3 Grade treatment-related adverse events (TrAEs), with an RR of 1.25 [95% CI: 1.15–1.36], compared to the monotherapy.

Conclusion: The systemic combinations, especially targeted plus ICI therapy, including Atezo plus Beva, significantly improve clinical outcomes but increase side effects in patients with aHCC. Future trials should concentrate on improvement in therapeutic efficiency and reduction of toxicity of targeted plus ICI therapy.

Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42022321949.

KEYWORDS

advanced hepatocellular carcinoma, systemic combination therapy, targeted therapy plus ICI therapy, efficacy, safety

Highlights

- All systemic combinations (chemotherapy plus chemotherapy, targeted therapy plus ICI therapy, targeted therapy plus chemotherapy, and targeted plus targeted therapies) significantly improve the objective response rate in patients with aHCC.
- The targeted therapy plus ICI therapy showed better therapeutic efficiency in overall survival, progression-free survival, and objective response rate, compared to the monotherapy.
- In particular, Atezo plus Beva in targeted therapy plus ICI therapy shows superiority in multiple clinical outcomes over other therapies.
- Increased treatment-related toxicity is evident in combination therapies except for targeted plus chemotherapy.

1 Background

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with high incidence and comparable mortality (1). HCC at an early stage can be cured by topical treatments, like resection, liver transplantation, interventional embolization, radiofrequency ablation, and microwave ablation. For moderatestage HCC, transcatheter arterial chemoembolization (TACE) shows therapeutic efficiency. More recently, some novel embolic materials and technologies have been employed, especially the superstable homogeneous iodinated formulation technology (SHIFT), showing long-term stability and favorable pharmaceutical value (2-5). However, over 50% of patients with HCC are diagnosed at advanced stages and therefore not suitable for surgical or locoregional therapies (6). Patients with advanced HCC, which is regarded as incurable, have limited treatment options and poor prognosis, until the advent of tyrosine kinase inhibitor (TKI) sorafenib for systemic therapy (7). According to the National Comprehensive Cancer Network (NCCN) and American Society of Clinical Oncology (ASCO) guidelines,

systemic treatments were recommended for patients with advanced HCC (aHCC) (8, 9). Over the past decades, sorafenib was the leading systemic agent for those patients, followed by lenvatinib as well as other monotherapies (7, 10, 11). Recently, systemic combinations, like immunotherapy and targeted therapy, have brought significant benefits for those patients, which bring great changes to the treatment of advanced HCC (12). For instance, a randomized, phase III trial (EACH) in Asian patients with aHCC, showed progressionfree survival (PFS; hazard ratio [HR]: 0.62, 95% confidence interval [CI]: 0.49–0.79), and response rate (8.15% vs. 2.67%, p = 0.02) benefits for FOLFOX4 (infusional fluorouracil, leucovorin, and oxaliplatin) over doxorubicin (13). Another two phase II clinical trials showed sorafenib-oxaliplatin-gemcitabine/capecitabine increased overall survival (OS), objective response rate (ORR), and PFS (14, 15). In a global, phase III trial (IMbrave150), atezolizumab (Atezo) combined with bevacizumab (Beva) resulted in better OS (HR: 0.58 [95% CI: 0.42-0.79]) and PFS (median: 6.8 [95% CI: 5.7-8.3] vs. 4.3 [95% CI: 4.0-5.6] months) than did sorafenib in patients with unresectable HCC (16). More importantly, Atezo plus Beva was listed as a preferred regimen, while sorafenib was listed as another recommended regimen in NCCN guidelines (8). Although systemic combination treatments had great potential to improve the prognosis of aHCC, some phase III trials failed in evaluating systemic combinations for those patients (17, 18). Furthermore, the most critical concern is whether the combination strategy would be a trend in anticancer therapy development and what kind of combinations would be the most optimal one. To facilitate the design of future combination regimens, we performed the systematic review by making an expanded comparison between any two combinations of chemotherapy, targeted therapy, immune checkpoint inhibitor (ICI) therapy, and single certain interventions.

2 Methods

2.1 Protocol registration

We registered the protocol for this systematic review and metaanalysis on PROSPERO as recommended (https:// www.crd.york.ac.uk/PROSPERO, ID: CRD42022321949).

2.2 Search strategy

A systematic literature search was performed using PubMed, Embase, the Cochrane Central Register of Controlled Trials

Abbreviations: aHCC, advanced hepatocellular carcinoma; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; TrAEs, treatmentrelated adverse events; ICI, immune checkpoint inhibitor; Atezo, atezolizumab; Beva, bevacizumab; Gemc, gemcitabine; Oxal, oxaliplatin; Erl, erlotinib; Sora, sorafenib; GEMOX, gemcitabine and oxaliplatin.

(CENTRAL), and China National Knowledge Infrastructure (CNKI) using the Medical Subject Headings (MeSH) terms. The search covered the period from the inception date of each database until December 21, 2022. There was no restriction on publication status or language, and all the included non-English studies were translated into English. The keywords were as follows: (atezolizumab or bevacizumab or sorafenib or oxaliplatin or lenvatinib or pembrolizumab or nivolumab or camrelizumab or apatinib or tyrosine kinase inhibitor* or TKI or PD-1 or PD-L1 or immune checkpoint inhibitor* or ICI) and (hepatocellular cancer or liver cancer or hepatocellular carcinoma or HCC or liver neoplasms*) and (advanced or unresectable or inoperable).

2.3 Selection criteria

The inclusion criteria were as follows: 1) studies that evaluated the effects of systemic combination therapies on aHCC, with or without controls; 2) studies that included research subjects with advanced/unresectable HCC; 3) studies that incorporated at least one of available endpoints (overall survival, progression-free survival, or objective response rate). The exclusion criteria were as follows: 1) studies that enrolled patients with cancers that metastasized to the liver, 2) studies with the combination of systemic and topical treatments, and 3) studies that lacked necessary information for data extraction.

2.4 Definition of patients, interventions, and endpoints

Patients with aHCC were eligible, defined as advanced metastatic or unresectable hepatocellular carcinoma (i.e., patients with characteristics such as multifocal and/or infiltrative disease within the liver, vascular invasion, or extrahepatic spread), with the diagnosis confirmed by histologic or cytologic analysis or clinical features. Systemic combination therapies are defined as those systemic combination regimens for aHCC, recommended in the NCCN and ASCO guidelines (8, 9), or the actual combinations used clinically, including "atezolizumab+bevacizumab", "bevacizumab+erlotinib", "nivolumab +ipilimumab", "capecitabine+oxaliplatin", and "sorafenib+GEMOX". Comparators were the systemic monotherapies including sorafenib, gemcitabine, or oxaliplatin. There was no restriction on the types of control treatment. The primary endpoints were OS at 6 months or longer, PFS at 6 months or longer, and ORR. OS was defined as the interval between the date of random assignment and the date of death from any cause; PFS was defined as the interval between random assignment and progression or death from any cause; ORR was defined as the percentage of patients who had a confirmed complete or partial response. Those endpoints were assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The second endpoints were treatmentrelated adverse events (TrAEs) and ≥3 Grade TrAEs, according to the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) (version 3.0).

2.5 Study selection

Our systematic searching was conducted according to the search terms we set before and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA 2020, http://www.prisma-statement.org). The headings and abstracts identified in those databases were reviewed and crosschecked by four investigators (LM, HM, RX, and LD) for the identification of studies that fulfill the eligible criteria. Moreover, reference lists of eligible studies, conference abstracts, and systematic reviews were reviewed to acquire relevant papers as well. For studies using the same data source, the most recent study or the study with the largest sample size was included. Some complicated papers were judged by panel discussion and further arbitrated by the third experienced reviewer (LP).

2.6 Data extraction

Prespecified data were independently extracted and doublechecked by reviewers (LM, HM, RX, and LD). A standardized data extraction form was designed to manage the necessary items. The following information was extracted from all included publications (papers, abstracts, and reported data of registered trials): title, author, study design, country, sample size, experimental arms, control arms, other demographic characteristics, description of outcomes and adverse events, and their definitions. In particular, a study involving multiple systemic combination therapies was divided into a series of comparisons, each of which contained a group of combination and control regimens.

2.7 Statistical analysis

The characteristics of the included studies were synthesized and presented in a tabular form. Categorical variables were presented as counts (%), and continuous variables were described using means or medians. The HR, relative risk (RR), and median with corresponding 95% CI were pooled by the Mantel-Haenszel fixed-effects model if no evidence of significant heterogeneity existed; otherwise, the DerSimonian-Laird randomeffects model was applied. The heterogeneity was assessed by I^2 statistics, classified as low ($I^2 < 25$), moderate ($25 \le I^2 < 75$), and high heterogeneity ($I^2 \ge 75$). Generally, I^2 statistic >50% was considered significant heterogeneity. The subgroup analysis was conducted by types and specific therapies of systemic combination therapy to detect the effects and heterogeneity of the treatments on aHCC across different combinations. The sensitivity analysis was performed by study design. The publication bias of the included studies was evaluated qualitatively by funnel plot and quantitatively by Egger's test. These statistical analyses and plots were performed using "meta" and "metamedian" packages from R software, version 3.6.2 (R Foundation for Statistical Computing, Canberra, Austria).

2.8 Quality assessment

The Cochrane Collaboration Tools were applied to assess the risk of bias in the included studies. In the tools, the Newcastle–Ottawa Scale (NOS) and version 2 of the Cochrane tool (RoB 2) were used to assess the risk of bias in cohort studies and randomized trials, respectively, as recommended by the Agency for Healthcare Research (19, 20). An Excel tool developed by the agency was applied to implement RoB 2 (https://www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2). A cohort study was awarded a maximum of nine stars in three sections, and study quality was judged as follows: high risk of bias = 0-3; moderate risk of bias = 4-6; low risk of bias ≥ 7 . RoB 2 contains five domains, and each of them was assessed as low risk of bias. The judgment principles of the overall bias were as follows: low risk of bias if all domains were labeled as low risk, and high risk of bias if any of the

domains were labeled as high risk; otherwise, the assessment result was some concerns. Two reviewers (LM and HM) assessed the risk of bias for each study independently.

3 Results

3.1 Characteristics of studies and participants with advanced HCC

In total, 7,249 potential records (papers, abstracts, and registered trials) were screened from databases and other relevant sources. Ultimately, 88 eligible studies (13, 15, 21–107) fulfilling the criteria were included after removing duplicates and reviewing the papers in detail (Figure 1). Of those studies, Dhooge 2012 was conducted in both Child-Pugh A and B cohorts; Hitron 2014 and Jiang 2019 contained two kinds of combination regimens, and IMbrave150 included global and China cohorts. Thus, 92 records were incorporated into the analyses. The baseline characteristics of the studies are described and summarized in Table 1. In total, 9,748 patients with aHCC from all around the world were included in our systematic review. There were 47 double-arm studies with 7,431 patients and 45 single-arm studies with 2,317 patients. The mean or median age of the total population was 60 years. Most studies were conducted in China (48, 52.2%), and the USA (18, 19.6%). The

Study	Study design	Country	Experimental arm	Comparator arm	Population size (n)	Age, years (mean or median)	Gender, male (n, %)	Endpoints	Risk of bias
Abou-Alfa 2018 (21)	Trial	USA	Dalantercept+sorafenib	-	21	64	14 (66.7)	OS	High
Abou-Alfa 2019 (22)	Trial	USA	Doxorubicin+sorafenib	Sorafenib	356	62	306 (86.0)	OS and ORR	Low
An 2021 (23)	Trial	China	Tenofovir+sorafenib	Tenofovir	80	54	53 (66.3)	ORR	Moderate
Assenat 2019 (24)	Trial	USA	GEMOX+sorafenib	Sorafenib	48	64	74 (78.7)	OS, PFS, and ORR	Low
Bitzer 2016 (25)	Trial	Germany	Resminostat+sorafenib	Resminostat	45	E: 67; C: 61	38 (84.4)	OS and PFS	High
Cheng 2015 (26)	Trial	USA	CS1008+sorafenib	Sorafenib	109	62	89 (81.7)	OS, PFS, and ORR	Low
Cui 2020 (27)	Trial	China	Oxaliplatin+5- fluorouracil	_	88	67	76 (86.4)	ORR	High
Dhooge 2012	Cohort	France	Gemcitabine+oxaliplatin	_	17	57	14 (82.4)	OS, PFS, and ORR	Moderate
(28)	Conort	Flance	Gemcitabine+oxaliplatin	_	15	57	13 (86.7)	OS, PFS, and ORR	Moderate
Du 2019 (29)	Trial	China	Oxaliplatin+epirubicin	Oxaliplatin	120	E: 68; C: 68	65 (54.2)	ORR	Moderate
El 2020 (30)	Trial	USA	Sorafenib+doxorubic	_	30	65	26 (86.7)	OS, PFS, and ORR	High
El-Khoueiry 2018 (31)	Trial	USA	Cixutumumab+sorafenib	_	21	61	17 (81.0)	OS, PFS	High
Feng 2015 (32)	Cohort	Taiwan, China	Sorafenib +cyproheptadine	Sorafenib	52	E: 65; C: 66	45 (86.5)	OS, PFS	Low
Finn 2020 (33)	Trial	USA	Lenvatinib +pembrolizumab	-	100	67	81 (81.0)	OS, PFS, and ORR	High
Gabrielson 2015 (34)	Trial	USA	Temozolomide+veliparib	_	16	62	14 (88.0)	OS and PFS	High
Govindarajan 2013 (35)	Trial	UK	Erlotinib+bevacizumab	_	21	60	13 (61.9)	OS, PFS, and ORR	High
Guo 2017 (36)	Trial	China	Capecitabine+oxaliplatin	Oxaliplatin	54	55	43 (79.6)	ORR	Moderate
Ha 2015 (37)	Trial	USA	Pexa-Vec+sorafenib	Sorafenib	459	61	386 (84.1)	OS and ORR	Low
Han 2020 (38)	Trial	China	Erlotinib+AK105	_	13	58	11 (84.6)	ORR	High
Harding 2020 (39)	Trial	USA	Enzalutamide+sorafenib	Enzalutamide	28	E: 62; C: 70	14 (50.0)	OS, PFS, and ORR	High
He 2018 (40)	Trial	China	Oxaliplatin+5- fluorouracil+leucovorin +sorafenib	_	35	48	28 (88.5)	OS and PFS	High
Hitron 2014	Taial	T IC A	BBI608 (napabucasin) +sorafenib	Constanib	59	66	76 (78.4)	OS and ORR	Low
(41)	1 1181	USA	BBI503 (amcasertib) +sorafenib	Sorafenib	41	66	76 (78.4)	OS and ORR	Low
Hsu 2010 (42)	Trial	Taiwan, China	Sorafenib+tegafur/uracil	_	53	57	47 (88.7)	OS, PFS, and ORR	High
Hu 2014 (43)	Trial	China	Oxaliplatin+5- fluorouracil	_	22	30-76	19 (86.4)	ORR	High
Huang 2007 (44)	Trial	China	Gemcitabine+oxaliplatin	_	26	51	21 (80.8)	ORR	High

TABLE 1 The characteristics of studies and participants with advanced hepatocellular carcinoma included in the meta-analysis.

(Continued)

TABLE 1 Continued

Study	Study design	Country	Experimental arm	Comparator arm	Population size (n)	Age, years (mean or median)	Gender, male (n, %)	Endpoints	Risk of bias
IMbrave150	an - 1	China	Atezolizumab +bevacizumab	Sorafenib	194	56	165 (85.1)	OS and PFS	Low
2021 (45, 46)	Irial	Globe	Atezolizumab +bevacizumab	Sorafenib	501	63	414 (82.6)	OS and PFS	Low
	Trial	China	Raltitrexed+oxaliplatin	_	27	59	15 (55.6)	ORR	High
Jiang 2019 (47)	Trial	China	Oxaliplatin+calcium folinate+5-fluorouracil	_	30	57	17 (56.7)	ORR	High
Jin 2013 (48)	Trial	China	GEMOX+interferon α -2a	_	32	54	22 (68.8)	ORR	High
Kim 2020 (49)	Trial	USA	Sorafenib+trametinib	_	17	65	11 (64.7)	OS, PFS, and ORR	High
Li H 2014 (50)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	60	50	39 (65.0)	ORR	High
Li J 2016 (51)	Trial	China	Sorafenib+tegafur	Sorafenib	56	63	37 (66.1)	OS, PFS, and ORR	High
Li W 2017 (52)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	66	E: 50; C: 50	38 (57.6)	ORR	Moderate
Li Z 2020 (53)	Trial	China	Apatinib+lenalidomide	Apatinib	112	E: 58; C: 59	87 (77.7)	ORR	Moderate
Liao 2015 (54)	Trial	China	Gemcitabine+oxaliplatin	5-fluorouracil	136	E: 67; C: 60	79 (58.1)	ORR	Moderate
Lin 2015 (55)	Trial	China	Sorafenib+GEMOX	Sorafenib	53	51	42 (79.2)	OS, PFS, and ORR	High
Liu 2017 (56)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	58	E: 58; C: 58	28 (48.3)	ORR	Moderate
Lu M 2019 (57)	Trial	China	Erlotinib+tegafur	Erlotinib	20	61	17 (85.0)	OS, PFS, and ORR	High
Lu Y 2016 (58)	Trial	China	Gemcitabine+oxaliplatin	5-fluorouracil	65	E: 49; C: 49	43 (66.2)	ORR	Moderate
Niu 2017 (59)	Trial	China	Oxaliplatin+capecitabine	Oxaliplatin	90	-	79 (87.8)	ORR	Moderate
Ogasawara 2014 (60)	Trial	Japan	Capecitabine +peginterferon α-2a	_	24	65	23 (95.8)	OS and ORR	High
Ooka 2014 (61)	Trial	Japan	S-1+sorafenib	-	26	66	23 (88.5)	OS	High
Patt 2017 (62)	Trial	USA	Sorafenib+capecitabine	_	13	65	10 (76.9)	OS	High
Peng 2008 (63)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	50	46	31 (62.0)	ORR	Moderate
Petrini 2012 (64)	Trial	Italy	Sorafenib+5-fluorouracil	-	39	67	33 (84.6)	OS, PFS, and ORR	High
Philip 2012 (65)	Trial	USA	Bevacizumab+erlotinib	_	27	60	20 (74.1)	OS, PFS, and ORR	High
Puzanov 2015 (66)	Trial	USA	Tivantinib+sorafenib	Sorafenib	20	62	16 (80.0)	PFS	High
Qin S 2013 (13)	Trial	Asia	FOLFOX4	Doxorubicin	371	E: 50; C: 49	329 (88.7)	OS, PFS, and ORR	Low
Qin S 2019 (67)	Trial	China	Camrelizumab +FOLFOX4/GEMOX	_	34	-	_	PFS and ORR	High
Richly 2009 (68)	Trial	Germany	Sorafenib+doxorubicin	_	18	57	17 (94.4)	ORR	High
Ruanglertboon 2020 (69)	Trial	Australia	Proton pump inhibitors +sorafenib	Sorafenib	542	-	457 (84.3)	OS and PFS	Low
Prete 2010 (70)	Trial	Italy	Sorafenib+octreotide	_	50	68	43 (86.0)	OS and PFS	High
Shahda 2016 (71)	Trial	USA	Lenalidomide+sorafenib	_	5	56	_	OS and PFS	High

(Continued)

TABLE 1 Continued

Study	Study design	Country	Experimental arm	Comparator arm	Population size (n)	Age, years (mean or median)	Gender, male (n, %)	Endpoints	Risk of bias
Shen E 2013 (72)	Trial	China	5-Fluorouracil+sorafenib	-	39	67	_	OS, PFS, and ORR	High
Sho 2017 (73)	Trial	Japan	5-Fluorouracil+sorafenib	_	12	65	12 (100.0)	ORR	High
Sun 2011 (74)	Trial	USA	Bevacizumab +capecitabine+oxaliplatin	-	40	56	32 (80.0)	OS, PFS, and ORR	High
Tai 2016 (75)	Trial	Singapore	Selumetinib+sorafenib	-	27	63	24 (88.9)	OS and PFS	High
Teng 2021 (76)	Cohort	China	PD-1 inhibitors +lenvatinib	-	24	56	19 (79.2)	OS, PFS, and ORR	Low
Thomas 2018 (77)	Trial	USA	Bevacizumab+erlotinib	Sorafenib	90	61	71 (74.7)	OS	Low
Uchino 2012 (78)	Cohort	Japan	5-Fluorouracil +peginterferon alfa-2a	-	223	64.3	176 (78.9)	OS and ORR	Moderate
Wang F 2014 (79)	Cohort	China	FOLFOX4 or XELOX	_	16	52	14 (87.5)	OS and ORR	Low
Wang Jian 2019 (80)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	86	E: 41–70; C: 42– 73	41 (47.7)	ORR	High
Wang Jun 2019 (81)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	86	E: 50; C: 50	53 (61.6)	ORR	Moderate
Wu X 2021 (82)	Trial	China	Sorafenib+immune checkpoint inhibitors	Sorafenib	54	56	46 (85.2)	PFS and ORR	High
Xu 2019 (83)	Trial	China	SHR-1210+apatinib	-	18	49	17 (94.4)	OS, PFS, and ORR	High
Yang 2015 (84)	Trial	China	Oxaliplatin+gemcitabine	-	30	57	26 (86.7)	PFS and ORR	High
Yau 2012 (85)	Trial	Hong Kong, China	Bevacizumab+erlotinib	_	10	47	7 (70.0)	OS, PFS, and ORR	High
Yau 2013 (15)	Trial	Hong Kong, China	Sorafenib+oxaliplatin +capecitabine	_	51	58	_	OS, PFS, and ORR	High
Yau 2019 (86)	Trial	Globe	Nivolumab+ipilimumab	_	149	_	_	OS, PFS, and ORR	High
Yi 2014 (87)	Cohort	China	Gemcitabine+oxaliplatin	_	36	50	35 (97.2)	PFS and ORR	Low
Yoo 2020 (88)	Cohort	South Korea	Epirubicin+cisplatin+5- fluorouracil	Sorafenib	94	59	70 (74.4)	OS and PFS	Low
Zhang 2018 (89)	Trial	China	Gemcitabine+oxaliplatin	Gemcitabine	58	E: 58; C: 58	28 (48.3)	ORR	Moderate
Zheng 2020 (90)	Trial	China	Apatinib+tegafur	Tegafur	87	E: 56; C: 57	66 (75.9)	OS and ORR	High
Chon 2022 (91)	Cohort	Korea	Atezolizumab +bevacizumab	_	121	63	63 (82.6)	OS, PFS, and ORR	High
D'Alessio 2022 (92)	Cohort	Globe	Atezolizumab +bevacizumab	_	202	69	173 (85)	OS, PFS, and ORR	High
Fulgenzi 2022 (93)	Cohort	Globe	Atezolizumab +bevacizumab	_	296	66	245 (82.7)	OS, PFS, and ORR	High
Hiraoka 2021 (94)	Cohort	Japan	Atezolizumab +bevacizumab	_	171	73	144 (84.2)	ORR	High

(Continued)

Study	Study design	Country	Experimental arm	Comparator arm	Population size (n)	Age, years (mean or median)	Gender, male (n, %)	Endpoints	Risk of bias
Kim 2022 (95)	Cohort	Korea	Atezolizumab +bevacizumab	Lenvatinib	232	E: 62; C: 62	194 (83.6)	OS, PFS, and ORR	Low
Matsumoto 2022 (96)	Cohort	Japan	Atezolizumab +bevacizumab	-	32	77	19 (59.0)	OS, PFS, and ORR	High
Persano 2022 (97)	Cohort	Globe	Atezolizumab +bevacizumab	Lenvatinib	2135	_	1689 (79.1)	OS and ORR	Low
Sasaki 2022 (98)	Trial	Japan	Atezolizumab +bevacizumab	Lenvatinib	68	E: 69; C: 75	53 (77.9)	ORR	Moderate
Fan 2022 (99)	Trial	China	Camrelizumab +lenvatinib	Lenvatinib	126	60	76 (60.3)	ORR	Moderate
Fu 2022 (100)	Trial	China	PD-1 inhibitor +ranvatinib	Ranvatinib	66	61	38 (57.6)	PFS and ORR	Moderate
Gu 2010 (101)	Trial	China	Sorafenib+thymosin $\alpha 1$	Thymosin α1	40	44	35 (87.5)	ORR	High
Wang 2022 (102)	Cohort	China	Sintilimab+lenvatinib	Lenvatinib	75	52	57 (76.0)	OS, PFS, ORR	Low
Wu 2019 (103)	Cohort	China	Sorafenib+arsenic trioxide	Sorafenib	57	56	46 (80.7)	PFS and ORR	Moderate
Yan 2022 (104)	Trial	China	Camrelizumab+Apatinib	Apatinib	68	52	58 (85.3)	OS, PFS, and ORR	Low
Zhao 2021 (105)	Cohort	China	PD-1 antibody +antiangiogenic drug	PD-1 antibody	73	E: 51; C: 57	66 (90.4)	PFS and ORR	Moderate
Zhu 2021 (106)	Trial	China	Sorafenib+camrelizumab	Sorafenib	41	57	28 (68.3)	OS, PFS, and ORR	Moderate
Zong 2017 (107)	Cohort	China	Oxaliplatin+epirubicin	Oxaliplatin	50	E: 60; C: 60	35 (70.0)	OS and ORR	Moderate

TABLE 1 Continued

E, experimental group; C, control group; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; GEMOX, gemcitabine+oxaliplatin; FOLFOX4, oxaliplatin+calcium folinate+5-Fu; XELOX, oxaliplatin+capecitabine.

systemic regimens were the pairwise combinations of targeted therapy, ICI therapy, chemotherapy, and other therapies. Of those, the number and proportions of chemotherapy plus chemotherapy, targeted therapy plus chemotherapy, targeted therapy plus ICI therapy, and targeted plus targeted therapies were 25 (27.2%), 23 (25.0%), 20 (21.7%), and 16 (17.4%), respectively. Subsequently, four specific therapies of those combinations with study numbers greater than 3 were analyzed to probe heterogeneity: Atezo plus Beva, gemcitabine (Gemc) plus oxaliplatin (Oxal), erlotinib (Erlo) plus Beva, and sorafenib (Sora) plus gemcitabine and oxaliplatin (GEMOX). The majority of monotherapies was sorafenib (18, 38.3%), followed by gemcitabine (7, 14.9%). All studies included were trials (73, 79.3%) and cohorts (19, 20.7%).

3.2 Evaluation of efficacy

3.2.1 Overall survival

The effects of systemic combination interventions on OS were assessed in a total of 57 studies. In patients with aHCC, targeted therapy plus ICI therapy significantly increased OS (HR: 0.80 [95% CI: 0.68–0.94]; $I^2 = 0\%$) and prolonged median OS (15.02 [12.67–17.38] months vs. 8.55 [6.91–10.19] months), compared to the monotherapy. Further, the subgroup analysis of specific therapies indicated this effect was largely due to Atezo plus Beva (HR: 0.81 [0.69–0.96); median: 14.85 [9.87–19.83]). However, the OS benefits were not observed in other types of combinations (Figures 2, 3, S1, S2).

3.2.2 Progression-free survival

In total, 51 studies reported the effect of systemic combination interventions on PFS. The random-effects model indicated that targeted therapy plus ICI therapy had an estimated HR of 0.62 [95% CI: 0.46–0.84], which showed significant PFS benefits over monotherapy. Moreover, the estimated pooled results showed that median PFS was significantly improved if treated with targeted therapy plus chemotherapy (5.08 months [95% CI: 4.13– 6.03]) or targeted therapy plus ICI therapy (7.08 months [95% CI: 6.42–7.74]), compared to the monotherapy (3.52 months [95% CI: 2.82–4.22]). Specifically, the median PFS was 5.91 [5.07-6.75] in Sora plus GEMOX and 6.47 [6.06–6.88] in Atezo plus Beva. However, the PFS and median PFS were not improved in the other types of systemic combinations, compared to the monotherapy (Figures 4, 5, S3, S4).

Study	TE seTE	Hazard Ratio	HR	95%-CI	Weight (fixed)	Weight (random)
Treatment = Chemot	herapy plus Chemoth	erapy				
Qin S 2013	-0.22 0.1229		0.80	[0.63; 1.02]	6.4%	12.4%
Zong H 2017	-0.75 0.2383		0.47	[0.30; 0.76]	1.7%	6.4%
Fixed effect model		\diamond	0.72	[0.58; 0.89]	8.1%	
Heterogeneity: <i>I</i> ² = 74%	$\tau^2 = 0.1010, p = 0.05$		0.64	[0.39; 1.06]		18.8%
Treatment = Targeter	d plus Chemotherapy					
Abou-Alfa 2019	0.10 0.2507	_ +_	1.10	[0.67; 1.80]	1.5%	6.0%
Fixed effect model		\Leftrightarrow	1.10	[0.67; 1.80]	1.5%	
Random effects mod Heterogeneity: not appli	lel cable		1.10	[0.67; 1.80]		6.0%
Treatment = Targete	d plus ICI therapy					
IMbrave150-China 202	21 -0.36 0.1828		0.70	[0.49; 1.00]	2.9%	8.8%
IMbrave150-Global 20	021 -0.16 0.1117	-	0.86	[0.69; 1.07]	7.8%	13.2%
Kim 2022	-0.18 0.1970	-+-	0.83	[0.57; 1.23]	2.5%	8.1%
Yan L 2022	-0.47 0.3148		0.63	[0.34; 1.16]	1.0%	4.3%
Fixed effect model		\diamond	0.80	[0.68; 0.94]	14.2%	
Random effects mod		\diamond	0.80	[0.68; 0.94]		34.4%
Heterogeneity: $I^2 = 0\%$,	$\tau^2 = 0, p = 0.66$					
Treatment = Targete	d plus Other therapy		0.40		0.404	0.001
Feng 2015	-0.78 0.4901		0.46	[0.17; 1.19]	0.4%	2.0%
Ruangiertboon 2020	0.10 0.1383	Ť	1.10	[0.84; 1.44]	5.1%	11.4%
Fixed effect model			1.03	[0.79; 1.34]	5.5%	40 50/
Heterogeneity: $I^2 = 66\%$	$\tau^2 = 0.2561, p = 0.08$		0.80	[0.35; 1.63]		13.5%
Treatment = Targete	d plus Targeted thera	oy 🛛				
Ha 2015	0.04 0.0377	+	1.04	[0.97; 1.12]	68.4%	18.0%
Hitron-1 2014	0.37 0.4464	 +	1.44	[0.60; 3.46]	0.5%	2.4%
Hitron-2 2014	0.93 0.9521		— 2.53	[0.39; 16.34]	0.1%	0.6%
Thomas 2018	-0.08 0.2417	-+	0.92	[0.57; 1.48]	1.7%	6.3%
Fixed effect model		þ	1.04	[0.97; 1.12]	70.7%	
Random effects mod	lel	þ	1.04	[0.97; 1.12]		27.3%
Heterogeneity: $I^2 = 0\%$,	$\tau^2 = 0, p = 0.64$					
Fixed effect model		4	0.97	[0.92; 1.04]	100.0%	
Random effects mod	lel	A	0.86	[0.75; 1.00]		100.0%
Heterogeneity: $I^2 = 56\%$	$\tau = 0.0292, p < 0.01^{\circ}$	1 1 1	I.			

FIGURE 2

Forest plot for HR of overall survival for the systemic combination therapies, compared to the monotherapy in patients with aHCC. aHCC, advanced hepatocellular carcinoma: HR, hazard ratio: CI, confidence interval.

3.2.3 Objective response rate

In total, 75 studies reported the effect of systemic combination interventions on ORR. Of those, 39 studies included comparisons. The pooled results of combination regimens indicated that the effects across those interventions were consistent, and overall heterogeneity was moderate (RR: 1.57 [95% CI: 1.44–1.71]; $I^2 =$ 30%). All systemic combination interventions had an improved ORR in patients with aHCC (chemotherapy plus chemotherapy: 1.53 [1.37–1.71], $I^2 =$ 14%; targeted therapy plus chemotherapy: 1.77 [1.22–2.55], $I^2 =$ 0%; targeted therapy plus ICI therapy: 1.81 [1.55–2.13], $I^2 =$ 49%; targeted plus targeted therapy: 1.23 [0.85–1.79], $I^2 =$ 56%), compared to the monotherapy. In the subgroup analysis of specific therapies, Atezo plus Beva, Gemc plus Oxal gained ORR benefits as well (Figures 6, S5).

3.3 Safety assessment

The safety profile of systematic combination therapy was also evaluated in this meta-analysis, including the overall TrAEs in 31 twoarm studies and ≥ 3 Grade TrAEs in 20 two-arm studies. The incidence rate of TrAEs among those combination interventions was comparable (RR: 1.00 [95% CI: 0.98–1.02]; $I^2 = 73\%$; Figure S6). For ≥ 3 Grade TrAEs, the pooled result estimated by the fixed-effects model indicated that the combinations had an increased RR of 1.25 [1.15–1.36], compared to the monotherapy (Figure S7). Moderate heterogeneity was detected across those interventions ($I^2 = 25\%$). In the subgroup analysis, the incidence rates of ≥ 3 Grade TrAEs in the chemotherapy plus chemotherapy, targeted therapy plus ICI therapy, and targeted plus targeted were significantly higher, compared to the monotherapy, with RR values of 1.19 [95% CI: 1.01–1.39], 1.26 [0.90–1.75], and 1.38 [1.16–1.64], respectively. However, it was not significant in targeted therapy plus chemotherapy (1.08 [0.93–1.25]).

3.4 Quality assessment and publication bias analysis

For quality assessment, the risk of bias in most studies was high or moderate, which should be attributed to nearly half of the studies

with a single arm. However, the quality of double-arm studies was generally acceptable, of which the proportion with low or moderate risk of bias was 89.4%. Funnel plots for the effects of systematic combination therapies on OS, PFS, and ORR were asymmetrical. Moreover, the results of Egger's test indicated that publication bias was detected (OS, p = 0.084; PFS, p = 0.04; ORR, p = 0.002; \geq 3 Grade TrAEs, p = 0.092; Figure S8).

4 Discussion

In this systemic review, we evaluated the efficacy and safety of different systemic combination treatments on the prognosis of aHCC. All kinds of combination treatments (chemotherapy plus chemotherapy, targeted therapy plus ICI therapy, targeted therapy plus chemotherapy, and targeted plus targeted therapies) had better

Study	TE	seTE	Hazard Ratio	HR	95%-CI	Weight (fixed)	Weight (random)
Treatment = Chemothe	rapy plu	us Chemothe	erapy				
Qin S 2013	-0.48	0.1218	-	0.62	[0.49; 0.79]	14.5%	10.0%
Fixed effect model				0.62	[0.49; 0.79]	14.5%	40.0%
Heterogeneity: not applicat	ble		~	0.62	[0.49, 0.79]		10.0%
Treatment = Targeted p	olus Che	emotherapy					
Abou-Alfa 2019	-0.07	0.1113		0.93	[0.75; 1.16]	17.4%	10.2%
Assenat 2019	-0.04	0.1693	+	0.96	[0.69; 1.33]	7.5%	8.9%
Wu D 2019	-0.54	0.2727		0.58	[0.34; 1.00]	2.9%	6.6%
Fixed effect model			4	0.89	[0.75; 1.06]	27.8%	
Random effects model Heterogeneity: $I^2 = 27\%$, τ	² = 0.010	07, <i>p</i> = 0.26		0.88	[0.70; 1.09]		25.7%
Treatment = Targeted p	olus ICI	therapy					
IMbrave150-China 2021	-0.51	0.2069		0.60	[0.40; 0.90]	5.0%	8.0%
IMbrave150-Global 2021	-0.53	0.1226		0.59	[0.46; 0.75]	14.3%	10.0%
Wu X 2021	-1.71	0.3991 —	— <u> </u>	0.18	[0.08; 0.39]	1.4%	4.4%
Kim 2022	-0.05	0.1199	T	0.95	[0.75; 1.20]	15.0%	10.0%
Zhao M 2021	-0.11	0.2357	-	0.90	[0.56; 1.42]	3.9%	7.4%
Znu D 2021	-0.37	0.4830		0.69	[0.27; 1.77]	0.9%	3.4%
FU H 2022 Fixed offect model	-0.61	0.2422		0.54	[0.34; 0.87]	3.1%	7.2%
Pixed effect model			\sim	0.69	[0.60; 0.79]	44.1%	 50 5%
Heterogeneity: $I^2 = 74\%$, τ	² = 0.108	38, <i>p</i> < 0.01	<u> </u>	0.02	[0.40, 0.04]		50.5 /0
Treatment = Targeted p	olus Oth	er therapy					
Feng 2015	-1.71	0.4349 —-+		0.18	[0.08; 0.42]	1.1%	4.0%
Ruanglertboon 2020	0.10	0.1315	-	1.11	[0.86; 1.44]	12.4%	9.8%
Fixed effect model			\diamond	0.95	[0.74; 1.22]	13.6%	
Random effects model Heterogeneity: $l^2 = 94\%$, τ	² = 1.551	15, p < 0.01		0.47	[0.08; 2.78]		13.8%
Fixed effect model			*	0.76	[0.70; 0.84]	100.0%	
Random effects model			\diamond	0.68	[0.55; 0.83]		100.0%
Heterogeneity: $I^2 = 77\%$, τ	² = 0.099	97, p < 0.01	0.5 1 2	10	-		
		0.1	0.0 1 2	10			

Forest plot for HR of progression-free survival of the systemic combination therapies, compared to the monotherapy in patients with aHCC. aHCC, advanced hepatocellular carcinoma; HR, hazard ratio; CI, confidence interval.

ORRs in patients with aHCC, compared to the monotherapy (Figure 6). Importantly, targeted therapy plus ICI therapy, especially Atezo plus Beva, showed superiority in multiple clinical outcomes (OS, PFS, and ORR) over other combinations. Except for targeted therapy plus chemotherapy, all the other combinations had an increased RR for ≥3 Grade TrAEs, compared to the monotherapy. Our findings indicated that the systemic combination regimens had a prominent advantage in treating advanced HCC, although adverse events should be taken into consideration. The pooled results were also calculated separately by study design, and the subgroups with the number of studies greater than 3 were presented. The results of trials and cohorts were generally consistent with studies combined together, indicating the robustness of the pooled results in this study (Figures S9-S11). In particular, targeted therapy plus ICI therapy should be given priority on further drug design and development in aHCC.

Previously, several systematic reviews investigated the effects of different systemic treatments on aHCC across lines of therapy (108–110). For instance, a systematic review provided evidence that the combination of PD-1/PD-L1 inhibitors with anti-VEGF agents improved clinical outcomes in patients with aHCC (ORR, p = 0.016; PFS, p < 0.001) but also increased immune-related toxicity (108). The other two network systemic reviews made a comparison

between the specific systemic combination therapies and monotherapy (109, 110). It was demonstrated that the Atezo plus Beva combination prolonged OS, PFS, and ORR in patients with unresectable HCC in both the experimental setting and the real world (Figures S1–S4). Notably, systemic treatment should be selected based on the goals of individualized treatment. The outcomes of those studies were generally consistent with our findings. However, more clinical trials are needed to update longterm clinical outcomes. Moreover, safety is also an important factor affecting clinical decision-making. Our pooled analysis showed the combinations of chemotherapy plus chemotherapy, targeted therapy plus ICI therapy, and targeted plus targeted therapies had increased and comparable risk of suffering \geq 3 Grade TrAEs, which were partly reported in another study (108). The treatment-related toxicity is critical for patients with aHCC.

The mechanisms by which the combination of targeted therapy plus ICI therapy improved the prognosis in aHCC remain largely unknown. Anti-angiogenesis therapy using multikinase inhibitors not only prunes blood vessels essential for cancer progression and metastasis but also has immune modulatory effects by increasing M1 polarization of macrophages and stimulating CD8⁺ T-cell function (111–113). Hence, immune checkpoint blockade and anti-angiogenesis synergistically increase anti-tumor activity in

Study		weight	wedian [95% CI]	Study	weight	median [a5% Cl
Dhooge-1 2012		2 18%	2 40 [-0 35 5 15]	Cheng 2015	8.22%	3.90 [3.25, 4.55
D100ge=1 2012		2.1070	2.40 [-0.35, 5.15]	Hsu 2010	6.81%	3.70 [2.80, 4.60 6.80 [5.16, 8.44
Dhooge-2 2012		13.35%	3.00 [2.01, 3.99]	Petrini 2012	7.48%	7.50 [6.28, 8.72
Qin S 2013	•	51.49%	2.93 [2.78, 3.08]	Shen E 2013	- 7.48% 8.32%	7.50 [6.28, 8.72
Yi 2014	·	3.05%	5.10 [2.79, 7.41]	Gabrielson 2015	8.54%	1.90 [1.81, 1.99
Yang 2015	·	1.78%	3.90 [0.85, 6.95]		5.45%	5.20 [2.75, 7.65
Yoo 2020		28.15%	3.50 [2.95, 4.05]	Abou-Alfa 2019	8.51%	4.00 [3.80, 4.20
				Assenat 2019	8.07%	6.20 [5.41, 6.99
PE Model		100 00%	3 17 [2 76 3 50]	EI 2020	8.13%	4.50 [3.46, 5.54 3.90 [3.17, 4.63
KE WODEN	•	100.00 /	5.17 [2.70, 5.59]	RE Model	100.00%	5.08 [4,13, 6.03
					_	
	-202468	8		0 2 4 6 8	10	
Che	motherapy plus Che	motherapy		Targeted plus Cherr	otherapy	
с				D		
Study		Weight	Median [95% Cl]	Study	Weight	Median [95% Cl
Finn 2020	•	10.03%	8.20 [7.78, 8.62]	Prete 2010	15 27%	7 00 [4 97 9 03
IMbrave150-China	2021	9.52%	5.70 [5.06, 6.34]		10.2170	0.00[4.97, 9.03
Teng 2021	2021 •	8.03%	8.40 [7.28, 9.52]	Philip 2012	16.04%	3.00 [1.24, 4.76
Zhao 2021		2.92%	9.57 [6.29, 12.85]	Yau 2012	18.70%	1.51 [1.13, 1.89]
Chon 2022	H -	8.19%	5.70 [4.62, 6.78]	Govindarajan 2013 🛛 🖃	18.12%	2.57 [1.73, 3.41]
Fulgenzi 2022	-	10.02 %	6.90 [6.67, 7.13]	Shahda 2016	16.51%	1.00 [-0.58, 2.58
Kim 2022		7.07%	5.70 [4.29, 7.11]	Tai 2016	15 37%	5 60 [3 60 7 60
Matsumoto 2022	H B -1	8.74%	6.50 [5.59, 7.41]		10.01 /0	0.00 [0.00, 1.00
Yan 2022		6.21%	7.03 [5.34, 8.72]			
DE Madal		100.00%	7.00 (6.40, 7.74)	RE Model	100.00%	3.32 [1.50, 5.15
RE Model	•	100.00%	7.08 [0.42, 7.74]		٦	
		1		-2 0 2 4 6 8	10	
	4 6 8 10 12	14		Targeted plus Target	ed therapy	
	Targeted plus ICI t	herapy				
E						
Study		Weight	Median [95% Cl]			
Cheng 2015		5.70%	2.80 [1.80, 3.80]			
Qin S ⁻ 2013 Yau 2013	■ , <u>=</u> ,	6.44% 6.21%	1.77 [1.68, 1.86] 5.26 [4.72, 5.80]			
Feng 2015 Puzanov 2015	<u> </u>	6.40%	1.70 1.46, 1.94			
Bitzer 2016	•	6.30%	1.60 1.17, 2.03			
Abou-Alfa 2019	•••••	6.41%	3.70 3.48, 3.92			
Assenat 2019 Lu M 2019	·····	6.15% 3.35%	4.60 [3.99, 5.21] 3.00 [0.35, 5.65]			
Harding 2020 Yoo 2020		5.76% 6.31%	1.80 [0.85, 2.75] 2.80 [2.39, 3.21]			
IMbrave150-China 2 IMbrave150-Global	:021 •	6.23% 6.41%	3.20 2.68, 3.72			
Kim 2022		6.38%	6.00 5.71, 6.29			
Zhao 2021		6.03%	5.90 5.17, 6.63			
Zhao 2021 Wang 2022		6.21%	3.77 [3.23, 4.31]			
Zhao 2021 Wang 2022 Yan 2022	-	400 000				
Zhao 2021 Wang 2022 Yan 2022 RE Model	*	100.00%	3.52 [2.82, 4.22]			
Zhao 2021 Wang 2022 Yan 2022 RE Model		100.00%	3.52 [2.82, 4.22]			
Zhao 2021 Wang 2022 Yan 2022 RE Model		100.00% 	3.52 [2.82, 4.22]			
Zhao 2021 Wang 2022 Yan 2022 RE Model	0 2 4 6 8 Monotherapy	100.00% 	3.52 [2.82, 4.22]			
Zhao 2021 Wang 2022 Yan 2022 RE Model	0 2 4 6 8 Monotherapy	100.00% 	3.52 [2.82, 4.22]			
Zhiao 2021 Wang 2022 Yan 2022 RE Model	Monotherapy	100.00% 	3.52 [2.82, 4.22] e systemic comb	nation therapies, compared to the mo	notherapy	(E) in patient

aHCC. However, high dosages of the kinase inhibitors may contribute to immune suppression in the tumor microenvironment (113), indicating that the immune modulatory dosage should be optimized to facilitate the design of future combination regimens. In the precise medicine era, identifying a universal therapy covering a large group is important but not enough. To further improve therapeutic effect, it is of great significance to find out the target patients of those combination treatments. It is reported that investigating treatment-related

biomarkers, like immunotherapy, is a promising therapeutic strategy (114-116).

Our study had limitations. First, the heterogeneity existed in total systematic combinations, although types and specific therapies partly accounted for it. Second, some single-arm trials included in this metaanalysis could lead to potential bias. Despite this, the single-arm studies did not cause significant bias in major conclusions since they were only used to estimate the pooled median of OS and PFS. During the process of the study searching, we found an increasing number of studies

Treatment = Chemotherapy Du 2019 Discreption	Study	Combined t Events	herapy Total	Mon Even	otherapy ts Total	, Relative Risk	RR	95%-CI	Weight (fixed)	Weight (random)
$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	Treatment = Chemothe	erany nius C	hemoth	erany	,	I.				
Cub 2017 23 31 14 23 LH 2014 19 30 10 30 LH 2017 26 33 14 33 LU 2017 26 33 14 33 LU 2017 27 28 33 14 33 LU 2017 17 29 8 29 Lu 2017 17 29 8 29 Lu 2017 4 57 1 30 LU 2018 20 34 11 31 LU 2018 20 34 11 31 LU 2018 20 34 11 31 LU 2017 4 57 1 30 Con S 2013 15 184 5 187 Nu 2017 8 29 43 14 43 How 2017 9 29 43 14 43 How 2019 22 43 14 43 How 2019 24 10 1 10 How 2019 2 10 2 1 32 100 40 How 1.77 [122 2.28] 38/K 2.7K LU 2020 2 21 86 32 110 33 How 2010 2.25 [0.21; 2.25] 7.7K How 2012 10 21 3 20 How 2011 12 3 12 27 How 2014 7 12 0, 81 31 How 2015 1 12 0 16 How 2011 12 1 12 16 How 2011 12 16 How 2011 12 12 16	Du 2019	55	60	44	60	+	1.25	[1.05; 1.48]	8.6%	8.0%
Li H 2014 19 30 10 30 10 10 107 3.38 2.9% Lias 2015 58 68 45 68 1.28 [1.06; 1.57] 8.8% 2.7% Lias 2015 17 4 8, 77 1 30 1.28 [1.00; 1.57] 8.8% 2.7% Lias 2015 17 4 8, 77 1 30 1.28 [1.00; 1.57] 8.8% 2.7% Lias 2015 17 4 8, 77 1 30 1.28 [1.00; 1.57] 8.8% 2.7% Lia 2017 17 4 57 1 30 1.29 [1.06; 1.57] 8.8% 2.7% Lia 2017 17 4 57 1 30 1.29 [1.06; 1.57] 8.8% 2.7% Lia 2016 1.29 [1.06; 1.57] 8.8% 2.2% Lia 2016 1.29 [1.06; 1.57] 1.2% 2.2% Lia 2016 1.2%	Guo 2017	23	31	14	23		1.22	[0.83; 1.80]	3.2%	4.3%
Li W 2017 26 33 14 33 + 1.66 [1.20; 2.87] 2.7% 3.7% Liu 2017 17 29 8 29 - 2.12 [1.09; 4.13] 1.6% 2.0% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2	Li H 2014	19	30	10	30		1.90	[1.07; 3.38]	2.0%	2.5%
Liao 2015 58 68 64 56 68 229 1.02 (1.67; 1.57) 4.58% 7.5% Paragraphic 20 34 11 31 168% 2.0% 1.413 1.415 1.52% 2.56% 0.7% 0.7% 1.413 1.68% 2.0% 1.413 1.416 1.69 1.65% 2.66% 0.7% 0.7% 1.413 1.68% 2.0% 1.413 1.68% 2.0% 1.413 1.416 1.69 0.53 3.66 0.2% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4% 0.4	Li W 2017	26	33	14	33		1.86	[1.20; 2.87]	2.7%	3.7%
Lu 2017 17 29 8 29 Lu 2017 17 29 8 29 Lu 2017 4 57 1 30 Peng 2008 5 27 2 23 Can 2 2013 15 184 5 187 Alago 2013 15 184 5 187 Alago 2019 21 43 14 45 Lu 2019 22 43 14 45 Lu 2019 22 25 15 25 Fixed effect model A Heterogeneity: $f^2 = 148$, $s^2 = 0.0084$, $p = 0.30$ Treatment = Targeted plus Chemotherapy Abou-Aliz 2019 5 180 8 176 Assent 2019 6 39 4 44 Lu 2019 7 2 20 5 15 26 Lu 2019 7 2 27 1 29 Lu 2016 2 277 1 29 Lu 2019 5 30 2 27 Random effect model A A 2020 9 8 46 6 65 Lu 2019 5 30 2 27 Random effect model A Heterogeneity: $f^2 = 0.0, s^2 = 0., p = 1.00$ Treatment = Targeted plus Cl therapy An 2021 6 20 3 20 Marave 150-China 2021 3 21 60 34 Heterogeneity: $f^2 = 0.0, s^2 = 0.0 = 1.00$ Treatment = Targeted plus Cl therapy An 2021 6 20 3 20 Marave 150-China 2021 13 21 10 33 Heterogeneity: $f^2 = 0.0, s^2 = 0.0 = 1.00$ Treatment = Targeted plus Cl therapy An 2021 1 20 6 20 3 20 Marave 150-China 2021 21 30 4 60 Marave 150-China 2021 13 21 10 33 Heterogeneity: $f^2 = 0.078, p = 0.02$ Treatment = Targeted plus Cl therapy An 2021 1 2 21 30 4 60 Marave 150-China 2021 32 21 6 34 40 Cu 1.76 [1.42; 2.24] 0.1%,	Liao 2015	58	68	45	68		1.29	[1.06; 1.57]	8.8%	7.5%
Lu Y 2016 20 34 11 31 Niz 2017 4 67 1 30 Peng 2008 5 27 2 23 Quing X 2019 30 43 20 43 Wang J 2019 30 43 20 43 Hardon affect model 63 654 Fixed affect model 63 654 Pixed affect model 72 25 15 25 Fixed affect model 72 26 Lu X 2019 2 24 3 14 43 Lu Z 2017 22 25 15 25 Fixed affect model 72 26 Lu X 2019 2 24 3 14 43 Heterogenety: $\Gamma^2 = 14\%, \tau^2 = 0.064, \rho = 0.30$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 0.02$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0, \rho = 1.00$ Treatment = Targeted plus Cherotherapy Hardong affects model Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0.078, \rho = 0.02$ Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0.078, \rho = 0.02$ Treatment = Targeted plus Cherotherapy Hardong affects model Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 0\%, \tau^2 = 0.078, \rho = 0.02$ Treatment = Targeted plus Cherotherapy Hardong affects model Treatment = Targeted plus Cherotherapy Hardong affects model Heterogenety: $\Gamma^2 = 2\%, \tau^2 = 0.078, \rho = 0.04$ Heterogenety: $\Gamma^2 = 2\%, \tau^2 = 0.078, \rho = 0.04$ Heterogenety: $\Gamma^2 = 2\%, \tau^2 = 0.078, \rho = 0.04$ Heterogenety: $\Gamma^2 = 2\%, \tau^2 = 0.078, \rho = 0.04$ Heterogenety: $\Gamma^2 = 2$	Liu 2017	17	29	8	29		2.12	[1.09; 4.13]	1.6%	2.0%
Niu 2017 4 57 1 30 Peng 2008 5 27 2 23 10 21 10 21 10 21 10	Lu Y 2016	20	34	11	31		1.66	[0.95; 2.88]	2.3%	2.7%
Peng 2008 5 27 2 23 Qin S 2013 15 184 5 167 Wang J 2019 30 43 20 43 Wang J 2019 30 43 20 43 Pressent 2019 15 124 5 167 Random effect model 683 654 Heterogenetic, F^2 1/3, F^2 10, 004, p = 0.30 Treatment = Targeted plus Chemotherapy Abou-Alfa 2019 15 180 8 176 Assent 2019 15 180 2 27 1 29 Li J 2016 2 27 1 20 1 10 Treatment = Targeted plus Cl therapy Ara 2021 3 4 40 20 40 Fract Y 2022 32 43 11 33 Harding 2020 1 1 2 85 32 Aradom effect model Heterogeneity: $F^2 - 0.0, t^2 = 0.0$ Treatment = Targeted plus Cl therapy Harding 2020 1 1 2 85 33 Harding 420 2 4 46 12 418 Heterogeneity: $F^2 - 0.0, t^2 = 0.0$ Treatment = Targeted plus Cl therapy Harding 2020 1 1 2 85 33 Harding 420 2 40 Fixed effect model 872 Pandom effects model Heterogeneity: $F^2 - 0.078, p = 0.02$ Treatment = Targeted plus Dther therapy Harding 2020 1 1 2 0 16 Fixed effect model 12 16 Random effects model Heterogeneity: $F^2 - 0.078, p = 0.02$ Treatment = Targeted plus Cl therapy Harding 2020 1 1 2 0 16 Fixed effect model 12 6 0 19 Heterogeneity: $F^2 = 490, t^2 = 0.078, p = 0.02$ Treatment = Targeted plus Cl therapy Harding 2020 1 1 12 0 16 Fixed effect model 2 12 6 5 31 Hitcor-2014 7 6 1 26 0 19 Heterogeneity: $F^2 = 0.078, p = 0.02$ Fixed effect model 2 126 5 4 To 1.5 [1.46; 1.73]	Niu 2017	4	57	1	30		2.11	[0.25; 18.01]	0.3%	0.2%
Chin S 2013 16 184 5 187 Wang J 2019 30 43 20 43 Wang J 2019 22 43 14 43 Lang 2018 17 29 8 29 Zong H 2017 22 25 15 25 Fixed effect model 693 654 Fixed effect model 693 654 La 2016 2 27 6 298 AL 2000 19 6 24 46 55 Li 2016 2 27 6 298 Lu M 2019 2 10 1 10 Lu M 2019 2 10 1 10 Heterogeneity: $r^2 = 0, p = 1.00$ Treatment = Targeted plus Chemotherapy An 2021 4 4 6 12 41 Heterogeneity: $r^2 = 0, p = 1.00$ Treatment = Targeted plus Cl therapy An 2021 1 23 12 30 4 60 Kim 2022 32 23 3 11 33 Fu H 2022 32 23 3 11 33 Fu H 2022 17 35 16 33 Wang J 2022 17 32 11 00 32 4 60 Heterogeneity: not applicable Treatment = Targeted plus Other therapy Hitron-2014 10 28 15 31 Hitron-2014 10 28 15 31 Hitron-2014 7 10 28 15 31 Hitron-2014 7 10 15 31 Hitron-2014 7 10 28 15 31 Hitron-2014 7 10 15 31 Hitron-2014 7 10 28 15 31 Hitron-2014 7 10 15 31 Hitron-2014 7 10 28 15 31 Hitron-2014 7 10 15 31 Hitron-	Peng 2008	5	27	2	23		2.13	[0.46; 9.96]	0.4%	0.4%
Wang J 2019 30 43 20 43 44 Wang J 2019 24 31 44 39% 4.4% Zhang 2018 17 29 8 29%	Qin S 2013	15 1	84	5	187		3.05	[1.13; 8.22]	1.0%	1.0%
Wang J2019 22 43 14 43 Zhang 2018 17 29 8 29 20 100 21.2 100 2.12 100 2.13 100 2.13 100 2.13 100 2.13 100 2.13 10.33 1.23 1.29 4.43 1.46 2.13 1.03 1.03 2.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.15 1.13 1.14 1.15 1.14 <td>Wang J 2019</td> <td>30</td> <td>43</td> <td>20</td> <td>43</td> <td></td> <td>1.50</td> <td>[1.03; 2.18]</td> <td>3.9%</td> <td>4.4%</td>	Wang J 2019	30	43	20	43		1.50	[1.03; 2.18]	3.9%	4.4%
Zhang 2018 17 29 8 29 Zong H 2017 22 25 25 Fixed effect model 693 654 Random effects model 693 654 Heterogeneily: $I^2 = 14\%$, $\tau^2 = 0.0064$, $p = 0.30$ 1.45 [1.37; 1.71] 1.03; 2.08 2.0% 4.8% Abou-Alfa 2019 15 160 8 176 1.33 [0.80; 4.22] 1.6% 4.4% Li J 2016 2 27 1 29 2.15 [0.21; 2:36] 0.2% <t< td=""><td>Wang J 2019</td><td>22</td><td>43</td><td>14</td><td>43</td><td></td><td>1.57</td><td>[0.93; 2.64]</td><td>2.7%</td><td>2.9%</td></t<>	Wang J 2019	22	43	14	43		1.57	[0.93; 2.64]	2.7%	2.9%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zhang 2018	17	29	8	29		2.12	[1.09; 4.13]	1.6%	2.0%
Fixed effect model9365401.53[1.37: 1.14 42.0% -Random effects modelHeterogeneity: $I^2 = 14\%$, $\tau^2 = 0.0064$, $p = 0.00$ -46.4%Treatment = Targeted plus ChemotherapyAbou-Alia 20191518.08176Abou-Alia 20191518.081761.69[0.50; 3.65]1.7%1.4%A 20098546551.36[0.50; 3.65]1.7%0.7%Li J 20154272.291.680.4%0.4%0.4%Lu M 20192101102.00[0.21; 8.09]0.2%0.2%Zheng 20202446124141402.000.21; 1.880.2%0.2%Random effects model41340204040434040404040404041340201.76[1.23; 2.53]-7.0%Heterogeneity: $I^2 = 0.\%, \tau^2 = 0p = 1.00$ Treatment = Targeted plus Cl therapy41.70[1.21; 2.38]3.9%5.0%3.8%Kim 2022122323113340.04%4.3%3.2%Yan 202215396361.001.651.684.9%3.3%Yan 20221535533-1.661.651.684.9%3.3%Yan 20221535533-1.761.282.9%1.78 <t< td=""><td>Zong H 2017</td><td>22</td><td>25</td><td>15</td><td>25</td><td>*</td><td>1.47</td><td>[1.03; 2.08]</td><td>2.9%</td><td>4.8%</td></t<>	Zong H 2017	22	25	15	25	*	1.47	[1.03; 2.08]	2.9%	4.8%
Random effects model Hetrogeneity: $l^2 = 0.0064, p = 0.30$ Treatment = Targeted plus Chemotherapy Abou-Mfz 2019 15 18.0 8 176 Assent 2019 6 39 4 44 Alson 2019 6 39 4 44 Li 2016 2 27 29 Lin 2015 4 27 2 c6 Lin 2016 2 27 1.36 [0.52; 5.56] 0.7% 0.7% Vu J 2019 5 30 2 27 1.36 [0.52; 5.56] 0.2%	Fixed effect model	. 6	593		654	\$	1.53	[1.37; 1.71]	42.0%	
Heterogenety: $l^{2} = 14\%$, $t^{2} = 0.0084$, $p = 0.30$ Treatment = Targeted plus Chemotherapy Abou-Alfa 2019 6 39 4 AL 2009 8 54 6 Li 2016 2 27 129 Lin 2015 4 27 26 Luw 2019 2 10 1 VW D 2019 5 30 2 Price diffect model 413 408 Random effects model 413 408 Mbrave 150-China 2021 34 40 20 0 2.5% 2.7% - Numbrave 150-China 2021 33 44 0 0 4 1.76 1.23; 2.53] - 7.0% Mibrave 150-China 2021 13 201 1.76 1.23; 2.43]	Random effects model	2				•	1.45	[1.29; 1.63]		46.4%
Treatment = Targeted plus Chemotherapy Abou-Alfa 2019 15 180 8 176 Asserat 2019 6 39 4 44 1.69 [0.52; 5.56] 0.7% 0.7% AL 2009 8 54 6 55 1.36 [0.52; 5.56] 0.7% 0.2% <td>Heterogeneity: I² = 14%, t</td> <td>: ⁻ = 0.0064, p</td> <td>= 0.30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Heterogeneity: I ² = 14%, t	: ⁻ = 0.0064, p	= 0.30							
Abou-Alfa 2019 15 180 8 176 Assenat 2019 6 39 4 44 1.83 [0.02, 2.2] 1.0% 1.0% Al 2009 8 54 6 55 1.36 [0.52, 5.56] 0.2% <td>Treatment = Targeted</td> <td>plus Chemo</td> <td>therapy</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Treatment = Targeted	plus Chemo	therapy	,						
Assenti2019 6 39 4 4 Al. 2009 8 54 6 55 Li J 2016 2 27 1 29 Lin 2015 4 27 2 26 Lin 2015 2 10 21; 22.36] 0.2% 0.2% Vu D 2019 5 30 2 27 Zheng 2020 24 46 12 41 Heterogeneity: $l^2 = 0\%, \tau^2 = 0, p = 1.00$ Treatment = Targeted plus ICI therapy An 2021 34 402 40 Fixed effect model Morrave 150-China 2021 32 130 4 60 Minrave 150-China 2021 32 130 4 60 Minrave 150-China 2021 32 130 4 60 Minrave 150-China 2021 13 2130 4 60 Minrave 150-China 2021 13 210 33 That 21 10 33 20 Zhao M 2021 11 23 12 27 Zhao M 2021 11 23 12 27 Zhao M 2021 11 23 12 27 Treatment = Targeted plus Cher therapy Ana 2021 10 21 3 20 Fixed effect model 12 16 Random effects model Heterogeneity: $l^2 = 0.0788, p = 0.02$ Treatment = Targeted plus Cher therapy Harding 2020 1 12 0 16 Fixed effect model 12 16 Random effects model Heterogeneity: $l^2 = 0.0788, p = 0.02$ Treatment = Targeted plus Cher therapy Harding 2020 4 25 85 21 31 Heterogeneity: $l^2 = 0.0788, p = 0.02$ Treatment = Targeted plus Cher therapy Harding 2020 4 1 12 3 12 27 Treatment = Targeted plus Cher therapy Harding 2020 4 25 85 21 31 Heterogeneity: $l^2 = 50\%, \tau^2 = 0.0788, p = 0.02$ Treatment = Targeted plus Cher therapy Bizer 2016 1 26 0 19 Harding 2020 4 25 8 21 54 Thomas 2018 7 45 4 455 Fixed effect model 401 4115 Random effects model Heterogeneity: $l^2 = 50\%, \tau^2 = 0.0788, p = 0.04$ Heterogeneity: $l^2 = 50\%, \tau^2 = 0.0748, p = 0.04$	Abou-Alfa 2019	15 1	80 .	8	176		1.83	[0.80; 4.22]	1.6%	1.4%
AL 2009 8 54 6 55 Li J 2016 2 27 1.29 Lin 2015 4 27 2 26 Lin 2015 4 27 2 26 Lin 2019 2 10 100 200 0.21; 18:69 0.2% 0.2% Vin D 2019 5 30 2 27 2.25 10.48; 10.66 0.4% 0.4% Pixed effect model 413 408 1.76 1.77 1.22; 2.53 - 7.0% Heterogeneity: $f^2 = 0$, $r^2 = 0$, $r^2 = 0$, r^2 - - 1.76 1.23; 2.53 - 7.0% Mbravel 50-China 2021 32 23 31 33 - 2.91 1.76 1.23; 2.33 .4% 3.9% 5.0% Kim 2022 32 33 133 33 - 2.91 1.1% 1.0% .7% Mibravel 50-China 2021 32 33 - 2.91 1.0% .7% .3% .3% Kim 2022 15 5 33 - .24	Assenat 2019	6	39	4	44		1.69	[0.52; 5.56]	0.7%	0.7%
Li J 2016 2 27 1 29 Li J 2016 2 27 1 29 Li J 2016 2 27 1 29 Li J 2016 2 27 2 26 Li M 2019 2 10 1 10 Wu D 2019 2 4 46 12 41 Fixed effect model 413 408 Random effects model Heterogeneity: $l^2 = 0\%, \tau^2 = 0.02$ Treatment = Targeted plus ICI therapy An 2021 3 2 63 21 63 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 0.0788, p = 0.02$ Treatment = Targeted plus Offer therapy Harding 2020 1 1 2 0 16 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 0.0788, r^2 = 0.0278, p = 0.04$ Fixed effect model 2391 2196 Fixed	AL 2009	8	54	6	55		1.36	[0.50; 3.65]	1.2%	1.0%
Lin 2015 4 27 2 26 Lin 2019 2 10 1 10 Vu D 2019 5 30 2 27 Vu D 2019 5 30 2 27 Pixed effect model 413 408 Random effects model Heterogeneity: $r^2 = 0.\%, r^2 = 0.9 = 1.00$ Treatment = Targeted plus ICI therapy An 2021 34 40 20 40 Fan Y 2022 32 63 21 63 Fu H 2022 32 63 11 33 Gu X 2010 6 20 3 20 Mbrave150-Global 2021 89 326 19 159 Kim 2022 17 35 16 33 Yan L 2024 11 1 23 12 27 Fixed effect model 872 703 Random effects model Heterogeneity: $r^2 = 49\%, r^2 = 0.078b, p = 0.02$ Treatment = Targeted plus Targeted therapy Harding 2020 42 58 21 54 Hitron-2 2014 7 10 15 31 Liz 2020 42 58 21 54 Hitron-2 2014 7 10 15 31 Hitron-2 2014 7 10 15 31 Hitron-2 2014 7 10 15 31 Heterogeneity: $r^2 = 56\%, r^2 = 0.078b, p = 0.02$ Fixed effect model 207 Fixed effect model 401 415 Random effects model Heterogeneity: $r^2 = 56\%, r^2 = 0.078b, p = 0.04$ Heterogeneity: $r^2 = 56\%, r^2 = 0.078b, p = 0.04$ Heterogeneity: $r^2 = 50\%, r^2 = 0.078b, p = 0.04$ Heterogeneity: $r^2 = 50\%, r^2 = 0.078b, p = 0.04$ Heterogeneity: $r^2 = 50\%, r^2 = 0.078b, p = 0.04$ Heterogeneity:	Li J 2016	2	27	1	29		2.15	[0.21; 22.36]	0.2%	0.2%
Lu M 2019 2 10 1 10 Wu D 2019 5 30 2 27 Fixed effect model 413 408 Random effects model 413 408 Random effects model 413 408 Random effects model 413 408 Random effects model 7 Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ Treatment = Targeted plus ICI therapy An 2021 34 40 20 40 Fan Y 2022 32 63 21 63 Fu H 2022 32 33 11 33 Gu X 2010 6 20 3 20 Horave150-China 2021 32 130 4 60 Hibrave150-China 2021 13 21 10 33 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Other therapy Harding 2020 1 12 0 16 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Thereapy Harding 2020 1 12 0 16 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Thereapy Harding 2020 1 12 0 16 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Targeted therapy Harding 2020 1 12 0 16 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Targeted therapy Harding 2020 42 58 21 54 Hiron-2 2014 7 10 15 31 Li Z 2020 42 58 21 54 Fixed effect model 203 22 Hiron-2 2014 7 10 15 31 Li Z 2020 42 58 21 54 Fixed effect model 203 7 45 4 45 Fixed effect model 203 7 45 4 45 Fixed effect model 203 22 Hiron-2 2014 7 10 15 31 Li Z 2020 42 58 21 54 Fixed effect model 203 7 416 Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.078$, $p = 0.04$	Lin 2015	4	27	2	26		1.93	[0.39; 9.63]	0.4%	0.4%
Wu D 2019 5 30 2 27 Zheng 2020 24 46 12 413 408 Random effects model 413 408 1.76 [1.03; 3.09] 2.5% 2.7% Random effects model 413 408 1.77 [1.22; 2.55] 7.2% - 7.0% Heterogeneity: $l^2 = 0\%, r^2 = 0, p = 1.00$ Treatment = Targeted plus ICI therapy - 1.76 [1.21; 2.33] 3.9% 5.0% Fuel Ago22 32 33 1.33 - 2.91 [1.79; 4.73] 2.2% 3.2% 3.9% 5.0% Mbrave150-China 2021 32 32 1.33 - 2.91 1.79; 4.73] 2.2% 3.2% 3.2% Kim 2022 17 35 16 33 - 2.00 10.6%; 1.68] 4.9% 3.3% Saski 2022 17 35 16 33 1.00 10.61; 1.63] 3.2% 3.2% Van L 2022 15 5 33 2.04 1.10; 3.78] 1.5% 2.2% 2.3% 1.10; 1.63] 3.2% 2.3% <td>Lu M 2019</td> <td>2</td> <td>10</td> <td>1</td> <td>10</td> <td></td> <td>2.00</td> <td>[0.21; 18.69]</td> <td>0.2%</td> <td>0.2%</td>	Lu M 2019	2	10	1	10		2.00	[0.21; 18.69]	0.2%	0.2%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wu D 2019	5	30	2	27	- 	2.25	[0.48; 10.66]	0.4%	0.4%
Fixed effect model 413 408 413 408 1.77 $[1.22, 2.53]$ 7.2% -7.0% Random effects model 1.76 $[1.23, 2.53]$ -7.0% Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ $\tau^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ $\tau^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ Treatment = Targeted plus ICI therapy 1.76 $[1.23, 2.53]$ -7.0% An 2021 34 40 20 40 \pm 1.76 $[1.23, 2.53]$ -7.0% Fuel 2022 32 33 11 33 \pm 2.01 $[1.79, 4.73]$ 2.2% 3.2% 3.2% Mibrave 150-China 2021 32 100 3.66 6.91 0.6% 0.7% Mibrave 150-China 2021 22 1.76 $(1.37, 2.2\%)$ 3.2%	Zheng 2020	24	46	12	41		1.78	[1.03; 3.09]	2.5%	2.7%
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 1.00$ Treatment = Targeted plus ICI therapy An 2021 34 40 20 40 Fan Y 2022 32 63 1.76 [1.23; 2.53] - 7.0% Marcel Social Soc	Fixed effect model	4	13		408	\diamond	1.77	[1.22; 2.55]	7.2%	
Treatment = Targeted plus ICI therapy An 2021 34 40 20 40 Fan Y 2022 32 33 11 33 Fu H 2022 32 33 11 33 Gu X 2010 62 32 33 11 33 Wibrave150-China 2021 32 130 4 60 Mibrave150-China 2021 29 326 19 59 636 Kim 2022 21 86 34 146 1.05 1.055 1.06% 3.7% Murave150-China 2021 15 35 53 33 -2.01 1.05 1.2% 1.4% 3.2% <td>Random effects mode</td> <td></td> <td></td> <td></td> <td></td> <td>\diamond</td> <td>1.76</td> <td>[1.23; 2.53]</td> <td>-</td> <td>7.0%</td>	Random effects mode					\diamond	1.76	[1.23; 2.53]	-	7.0%
Treatment = Targeted plus ICI therapy An 2021 34 40 20 40 Fan Y 2022 32 63 21 63 Fu H 2022 32 33 11 33 Gu X 2010 6 20 3 20 IMbrave150-China 2021 32 13 34 60 IMbrave150-China 2021 21 86 34 160 IMbrave150-China 2021 13 21 10 33 Sasaki 2022 17 35 16 33 Vin X 2021 13 21 10 33 Yan L 2022 15 35 5 33 Chu X 2021 11 23 12 27 Shu D 2021 10 21 3 20 1.88 1.166 1.99 1.2% Chu X 2020 1 12 0 16 3.96 0.18; 89.24] 0.1% - Fixed effect model 12 16 3.96 0.18; 89.24] 0.1% - 0.1% Heterogeneity: I ² = 49%, $\tau^2 = 0.0$	Heterogeneity: $I^{-} = 0\%$, τ^{-}	r = 0, p = 1.00								
An 2021 34 40 20 40 Fan Y 2022 32 63 21 63 Fu H 2022 32 33 11 33 Gu X 2010 6 20 3 20 Mbrave150-China 2021 32 130 4 60 Mbrave150-China 2021 32 130 4 60 Mag J 2022 17 35 16 33 Mang J 2022 15 35 5 33 Chu D 2021 11 23 12 27 Yan L 2022 15 35 5 33 Chu D 2021 10 21 3 20 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 49k$, $t^2 = 0.078k$, $p = 0.02$ Treatment = Targeted plus Other therapy Harding 2020 1 12 0 16 Fixed effect model 12 16 Fixed effect model 401 415 Random effects model Heterogeneity: $l^2 = 50k$, $t^2 = 0.104l$, $p = 0.05$ Fixed effect model 401 415 Random effects model Heterogeneity: $l^2 = 0.078k$, $p = 0.04$	Treatment = Targeted	plus ICI ther	ару							
Fan Y 2022 32 33 11 33 Fu H 2022 32 33 11 33 Gu X 2010 6 20 3 20 Mbravet50-China 2021 32 130 4 60 Mbravet50-China 2021 89 326 19 159 Kim 2022 21 86 34 146 Sasaki 2022 17 35 16 33 Wang J 2022 15 39 6 36 Wang J 2022 15 39 6 36 Wu X 2021 13 21 10 33 Yan L 2022 15 35 5 33 Zhao M 2021 11 2 31 2 27 Zhao M 2021 11 23 12 27 Zhao M 2021 11 23 12 27 Zhao M 2021 10 21 3 20 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Cher therapy Harding 2020 1 12 0 16 Fixed effect model 12 16 Random effects model Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ Fixed effect model 2391 2196 Random effects model Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.078$, $p = 0.04$	An 2021	34	40	20	40		1.70	[1.21; 2.38]	3.9%	5.0%
Fu H 2022 32 33 11 33 Gu X 2010 6 20 3 20 Mbrave150-China 2021 32 130 4 60 Mbrave150-China 2021 32 130 4 60 Mbrave150-China 2021 32 130 4 60 Mbrave150-China 2021 130 4 60 Mbrave150-China 2022 17 35 16 33 Sasaki 2022 17 35 16 33 Wu X 2021 13 21 10 33 Yan L 2022 15 35 5 33 Zhu D 2021 10 21 3 20 Fixed effect model 872 703 - 1.08 [0.59; 1.96] 2.2% 2.3% Heterogeneity: $l^2 = 49\%, \tau^2 = 0.0788, p = 0.02$ - 3.96 [0.18; 89.24] 0.1% - Heterogeneity: $l^2 = 49\%, \tau^2 = 0.0788, p = 0.02$ - 16 3.96 [0.18; 89.24] - 0.1% Heterogeneity: $l^2 = 56\%, \tau^2 = 0.1041, p = 0.05$ 531 - -	Fan Y 2022	32	63	21	63		1.52	[1.00; 2.33]	4.1%	3.8%
Gu X 2010 6 20 3 20 IMbrave150-China 2021 32 130 4 60 IMbrave150-Global 2021 89 326 19 159 Kim 2022 21 86 34 146 Sasaki 2022 17 35 16 33 Wang J 2022 15 39 6 36 Wu X 2021 13 21 10 33 Yan L 2022 15 35 5 33 Zhao M 2021 11 23 12 27 Zhao M 2021 11 23 12 27 Zhao M 2021 11 23 12 27 Tratment = Targeted plus Other therapy Harding 2020 1 12 10 21 3 20 Fixed effect model 872 703 Random effects model Heterogeneity: $r^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Other therapy Harding 2020 1 12 10 28 15 31 Heterogeneity: not applicable Treatment = Targeted plus Cher therapy Harding 2020 42 58 21 54 Hitron-1 2014 10 28 15 31 Hitron-2 2014 7 10 15 31 Li Z 2020 42 58 21 54 Hitron-2 2014 7 10 15 31 Li Z 2020 42 58 21 54 Hitron-2 2014 7 45 4 455 Fixed effect model 401 415 Random effects model Heterogeneity: $r^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$	Fu H 2022	32	33	11	33		2.91	[1.79; 4.73]	2.2%	3.2%
IMbrave150-China 2021 32 130 4 60 Mbrave150-Global 2021 89 326 19 159 Kim 2022 21 86 34 146 Sasaki 2022 17 35 16 33 Wang J 2022 15 39 6 36 Wu X 2021 13 21 100 10.0 10.66; 1.68] 4.9% 3.3% Zhao M 2021 11 23 12 27 1.08 [0.59; 1.96] 2.2% 2.3% Zhu D 2021 10 21 3 20 - 1.08 [0.59; 1.96] 2.2% 2.3% Chu D 2021 10 21 3 20 - 1.76 [1.42; 2.24] - 31.6% - Random effect model 12 0 16 3.96 [0.18; 89.24] 0.1% - - 31.6% - - 31.5% Heterogeneity: not applicable 12 16 3.96 [0.18; 89.24] 0.1% - 0.1% - - </td <td>Gu X 2010</td> <td>6</td> <td>20</td> <td>3</td> <td>20</td> <td></td> <td>2.00</td> <td>[0.58; 6.91]</td> <td>0.6%</td> <td>0.7%</td>	Gu X 2010	6	20	3	20		2.00	[0.58; 6.91]	0.6%	0.7%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IMbrave150-China 2021	32 1	30	4	60		3.69	[1.37; 9.97]	1.1%	1.0%
Kim 2022218634146Sasaki 202217351633Wang J 20221539636Wu X 202113211033Yan L 20221535533Zhao M 202111231227Zho M 20211021320Fixed effect model872703Random effects model872703Heterogeneity: $l^2 = 49\%$, $r^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Other therapyHarding 202011216Fixed effect model1216Fixed effect model12619Hators 201612619Hators 201612619Hators 201871015Fixed effect model1216Speice fixer and effects model1023Hitron-12 201471015Hitron-2 201471015Fixed effect model401415Fixed effect model401415Fixed effect model23912196Heterogeneity: $l^2 = 56\%$, $r^2 = 0.0278$, $p = 0.04$	IMbrave150-Global 202	1 89 3	326	19	159		2.28	[1.45; 3.61]	5.0%	3.5%
Sasaki 2022 17 35 16 33 Wang J 2022 15 39 6 36 Wu X 2021 13 21 10 33 Zha L 2022 15 35 5 33 Zhu D 2021 10 21 3 20 Fixed effect model 872 703 Random effects model Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ Treatment = Targeted plus Other therapy Harding 2020 1 12 0 16 Fixed effect model 12 16 Random effects model Heterogeneity: not applicable Treatment = Targeted plus Targeted therapy Bitzer 2016 1 26 0 19 Ha 2015 45 234 50 235 Hitron-1 2014 10 28 15 31 Li Z 2020 42 58 21 54 Thomas 2018 7 45 4 45 Fixed effect model 401 4115 Random effects model Heterogeneity: $l^2 = 6\%$, $\tau^2 = 0.1041$, $p = 0.05$ Fixed effect model 2391 2196 Fixed effect model 2391 2196 Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$	Kim 2022	21	86	34	146	+	1.05	[0.65; 1.68]	4.9%	3.3%
Warg J 2022 15 39 6 36 Wu X 2021 13 21 10 33 Zhao M 2021 11 23 12 27 Zhu D 2021 10 21 3 20 Fixed effect model 872 703 Random effects model 872 703 Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ 112 0 Treatment = Targeted plus Other therapy 112 0 Harding 2020 1 12 0 Heterogeneity: not applicable 12 16 Treatment = Targeted plus Targeted therapy 3.96 0.18; 89.24] 0.1% 0.1% Hitron-1 2014 10 28 15 31 - - 0.74 0.40; 1.37] 2.8% 2.3% Hitron-2 2014 7 10 15 31 - - 0.74 0.43; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 54 45 - 1.75 0.55; 5.57 0.8% 0.88 0.88 0.1% 0.1% <td>Sasaki 2022</td> <td>17</td> <td>35</td> <td>16</td> <td>33</td> <td></td> <td>1.00</td> <td>[0.61; 1.63]</td> <td>3.2%</td> <td>3.2%</td>	Sasaki 2022	17	35	16	33		1.00	[0.61; 1.63]	3.2%	3.2%
Wu X 2021 13 21 10 33 21 10 33 Zhao M 2021 15 35 5 33 Zhao M 2021 11 23 12 27 Lo 2021 10 21 3 20 Fixed effect model 872 703 Random effects model 872 703 Heterogeneity: $l^2 = 49\%, \tau^2 = 0.0788, p = 0.02$ 1.81 [1.55; 2.13] 31.6%	Wang J 2022	15	39	6	36		2.31	[1.00; 5.30]	1.2%	1.4%
Yah L 20221535533Zhao M 202111231227Zhu D 20211021320Fixed effect model872703Random effects model872703Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ 1.81[1.55; 2.13]31.6%Treatment = Targeted plus Other therapyHarding 202011216Fixed effect model1216Random effects model1216Heterogeneity: not applicable3.96[0.18; 89.24]Treatment = Targeted plus Targeted therapyBitzer 201612619Haton-2 201471015Hitron-2 201471015Thomas 2018745Fixed effect model401415Random effects model401415Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ Fixed effect model23912196Random effects model23912196Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$	Wu X 2021	13	21	10	33		2.04	[1.10; 3.78]	1.5%	2.2%
2hao M 2021112312272hu D 20211021320Fixed effect model872703Random effects model872703Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ 112Treatment = Targeted plus Other therapy11216Fixed effect model1216Fixed effect model1216Heterogeneity: not applicable3.96[0.18; 89.24]0.1%Treatment = Targeted plus Targeted therapy3.96[0.18; 89.24]	Yan L 2022	15	35	5	33		2.83	[1.16; 6.91]	1.0%	1.2%
2/102/132/0Fixed effect model872703Random effects model872703Heterogeneity: $l^2 = 49\%$, $\tau^2 = 0.0788$, $p = 0.02$ 1.81[1.55; 2.13]31.6%Treatment = Targeted plus Other therapyHarding 20201120Fixed effect model1216Fixed effect model1216Fixed effect model1216Stare 20161260Ha 20154523450Hitron-1 2014102815Hitron-2 201471015Hitron-2 201471015Hitron-2 201471015Fixed effect model401415Fixed effect model401415Fixed effect model23912196Fixed effect model23912196Fixed effect model23912196Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$	Zhao M 2021	11	23	12	21		1.08	[0.59; 1.96]	2.2%	2.3%
Fixed effects model 0.2 703 \circ 1.51 $[1.52; 2.13]$ 31.5% $$ Random effects model 12 0.02 1.78 $[1.42; 2.24]$ $$ 31.5% Treatment = Targeted plus Other therapy 1.22 0.1% 3.96 $[0.18; 89.24]$ 0.1% 0.1% Harding 2020 1 12 0 16 3.92 $[0.18; 89.24]$ 0.1% $$ Random effects model 12 16 3.96 $[0.18; 89.24]$ 0.1% $$ Heterogeneity: not applicable Treatment = Targeted plus Targeted therapy 3.96 $[0.18; 89.24]$ $$ 0.1% Bitzer 2016 1 26 0.90 $[0.63; 1.30]$ 9.8% 4.6% Hitron-2 2014 7 10 15 1.45 0.84 2.49 1.4% 2.7% 0.90 $0.63; 1.30]$ 9.8% 4.6% Hitron-2 2014 7 45 4 45 1.75 $0.95; 5.57$ 0.8% 0.8% Fixed effect model 401 4	LINU D 2021	10	∠ I 72	3	∠∪ 702		3.17	[1.02; 9.88]	0.0%	0.8%
Hattoring Precision of the structure 1136 1142 2241 1136 1142 2141 1136 1142 2141 1136 1142 2141 1120 116 3.96 $[0.18; 89.24]$ 0.1% 0.1% Fixed effect model 12 16 3.96 $[0.18; 89.24]$ 0.1% 0.1% Heterogeneity: not applicable 12 16 3.96 $[0.18; 89.24]$ 0.1% $-$ Treatment = Targeted plus Targeted therapy 3.96 $[0.18; 89.24]$ $ 0.1\%$ $-$ Heterogeneity: not applicable 1 26 0 19 $ 0.1\%$ $-$ Hitron-1 2014 10 28 15 $ 0.74$ $[0.40; 1.37]$ 2.8% 2.3% Hitron-2 2014 7 10 15 1.45 0.8% 1.75 $[1.42; 1.71]$ 0.8% 4.5% Thomas 2018 7 4.54 4.5 1.75 $[1.42; 1.71]$ 10.0% $-$ Random effects model 2391 2196 $1.$	Pixed effect model	, °	572		703	~	1.81	[1.55; 2.13]	31.0%	24 59/
Treatment = Targeted plus Other therapy Harding 2020 1 12 16 Fixed effect model 12 16 Random effects model 12 16 Heterogeneity: not applicable 3.96 [0.18; 89.24] 0.1% Treatment = Targeted plus Targeted therapy 0.1%	Heterogeneity: $l^2 = 49\%$.	2 ² = 0.0788. ρ	= 0.02			×	1.70	[1.42; 2.24]		31.3%
Treatment = Targeted plus Other therapy Harding 2020 1 12 0 16 Fixed effect model 12 16 3.96 [0.18; 89.24] 0.1% Random effects model 12 16 3.96 [0.18; 89.24] 0.1% 0.1% Heterogeneity: not applicable 1 26 0 19 0.18; 89.24] 0.1% Hitron-1 2016 1 26 0 19 0.1% 0.1% 0.1% Hitron-1 2014 10 28 15 31 0.163; 1.30] 9.8% 4.6% Hitron-2 2014 7 10 15 31 1.45 [0.48; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 - 1.75 [0.55; 5.7] 0.8% 0.8% Fixed effect model 401 415 - 1.18 [0.95; 1.46] 19.2% Heterogeneity: l ² = 56%, $\tau^2 = 0.1041, p = 0.05$ - 1.55 1.44; 1.71] 100.0% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Fixed effect model 12 0 10 12 10 Fixed effect model 12 16 3.96 [0.18; 89.24] 0.1% 0.1% Random effects model 12 16 3.96 [0.18; 89.24] 0.1% - 0.1% Heterogeneity: not applicable Treatment = Targeted plus Targeted therapy Bitzer 2016 1 26 0 19 Hitron-1 2014 10 28 15 31 - 0.74 [0.40; 1.37] 2.8% 2.3% Hitron-2 2014 7 10 15 31 - 1.45 [0.48; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 45 1.75 [0.55; 5.7] 0.8% 0.8% Fixed effect model 401 415 1.18 [0.95; 1.46] 19.2% - Heterogeneity: l ² = 56%, $\tau^2 = 0.1041, p = 0.05$ 2391 2196 0 1.55 [1.40; 1.73] - 100.0% Fixed effect model 2391 2196 0 1.55 [1.40; 1.73] - 100.0%	Treatment = Targeted	plus Other tl	12	0	16		- 2.06	10 10 00 041	0.40/	0.40/
rize effect model 12 16 $3.92 [0.17; 88.67]$ 0.1% $$ Random effects model $3.96 [0.18; 89.24]$ $$ 0.1% Heterogeneity: not applicable $3.96 [0.18; 89.24]$ $$ 0.1% Treatment = Targeted plus Targeted therapy Bitzer 2016 $1 26 0 19$ $2.21 [0.09; 51.35]$ 0.1% 0.1% Ha 2015 $45 234 50 235$ $0.90 [0.63; 1.30] 9.8\%$ 4.6% Hitron-1 2014 $10 28 15 31$ $$ $0.74 [0.40; 1.37] 2.8\%$ 2.3% Hitron-2 2014 $7 10 15 31$ $$ $1.45 [0.84; 2.49] 1.4\%$ 2.7% 2.7% $1.46 [1.29; 2.70] 4.3\%$ 4.5% Thomas 2018 $7 45 4 45$ $$ $1.86 [1.29; 2.70] 4.3\%$ $$ 0.8% <td>Harding 2020</td> <td>1</td> <td>12</td> <td>U</td> <td>16</td> <td></td> <td>- 3.96</td> <td>[0.18; 89.24]</td> <td>0.1%</td> <td>0.1%</td>	Harding 2020	1	12	U	16		- 3.96	[0.18; 89.24]	0.1%	0.1%
Treatment = Targeted plus Targeted therapy Bitzer 2016 1 26 0 19 Ha 2015 45 234 50 235 0.90 [0.63; 1.30] 9.8% 4.6% Hitron-1 2014 10 28 15 31 - 0.74 [0.40; 1.37] 2.8% 2.3% Li Z 2020 42 58 21 54 - 1.86 [1.29; 2.70] 4.3% 4.5% Thomas 2018 7 45 4 45 - 1.18 [0.95; 1.46] 19.2% Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ - 1.23 [0.85; 1.79] - 14.9% Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$ - - 1.55 [1.40; 1.73] - 100.0%	Fixed effect model		12		16		- 3.92	[0.17; 88.67]	0.1%	
Treatment = Targeted plus Targeted therapy Bitzer 2016 1 26 0 19 Ha 2015 45 234 50 235 0.90 [0.63; 1.30] 9.8% 4.6% Hitron-1 2014 10 28 15 31 - 0.74 [0.40; 1.37] 2.8% 2.3% Hitron-2 2014 7 10 15 31 - 1.45 [0.48; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 - 1.75 [0.55; 5.57] 0.8% 0.8% Fixed effect model 401 415 - 1.18 [0.95; 1.46] 19.2% - Heterogeneity: $l^2 = 56\%, \tau^2 = 0.1041, p = 0.05$ - - 1.57 [1.44; 1.71] 100.0% Fixed effect model 2391 2196 0 1.55 [1.40; 1.73] 100.0% Heterogeneity: $l^2 = 30\%, \tau^2 = 0.0278, p = 0.04$ - - 1.55 [1.40; 1.73] 100.0%	Heterogeneity: not applica	ble					- 3.96	[0.18; 89.24]		0.1%
Treatment = Targeted plus Targeted therapy Bitzer 2016 1 26 0 19 Ha 2015 45 234 50 235 0.90 [0.63; 1.30] 9.8% 4.6% Hitron-1 2014 10 28 15 31 0.74 [0.40; 1.37] 2.8% 2.3% Hitron-2 2014 7 10 15 31 1.45 [0.48; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 1.75 [0.55; 5:57] 0.8% 0.8% Fixed effect model 401 415 1.18 [0.95; 1.46] 19.2% Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ 5 1.55 [1.40; 1.71] 100.0% Fixed effect model 2391 2196 4 1.55 [1.40; 1.73] 100.0%										
Bitzer zurb 1 26 0 19 2.21 [0.09; 51.35] 0.1% 0.1% Ha 2015 45 234 50 235 90 [0.63; 1.30] 9.8% 4.6% Hitron-1 2014 10 28 15 31 97 97 98% 4.6% Hitron-2 2014 7 10 15 31 97 98% 4.6% Li Z 2020 42 58 21 54 91 1.45 [0.40; 1.37] 2.8% 2.3% Thomas 2018 7 45 4 45 1.75 [0.55; 5.57] 0.8% 4.5% Fixed effect model 401 415 91 1.18 [0.95; 1.46] 19.2% Random effects model 2391 2196 9 1.57 [1.44; 1.71] 100.0% Fixed effect model 2391 2196 9 1.55 [1.40; 1.73] 100.0%	Treatment = Targeted	plus Targete	d thera	ру	10			ro oo = : o=-	o	c 10.
Ha 2015 45 234 50 235 0.90 $[0.63; 1.30]$ 9.8% 4.6% Hitron-1 2014 10 28 15 31 0.74 $[0.40; 1.37]$ 2.8% 2.3% Hitron-2 2014 7 10 15 31 0.74 $[0.40; 1.37]$ 2.8% 2.3% Li Z 2020 42 58 21 54 1.45 $[0.84; 2.49]$ 1.4% 2.7% Thomas 2018 7 45 4 45 1.86 $[1.29; 2.70]$ 4.3% 4.5% Thomas 2018 7 45 4 45 1.86 $[1.29; 2.70]$ 4.3% 4.5% Random effects model 401 415 1.88 $[0.95; 1.46]$ 19.2% Heterogeneity: $l^2 = 56\%, \tau^2 = 0.1041, \rho = 0.05$ 7 2196 0 1.57 $[1.44; 1.71]$ 100.0% Fixed effect model 2391 2196 0 1.55 $[1.40; 1.73]$ 100.0% Heterogeneity: $l^2 = 30\%, \tau^2 = 0.0278, \rho = 0.04$ 0.04 0.55 0.05 0.00% </td <td>Bitzer 2016</td> <td>1</td> <td>26</td> <td>0</td> <td>19</td> <td></td> <td>2.21</td> <td>[0.09; 51.35]</td> <td>0.1%</td> <td>0.1%</td>	Bitzer 2016	1	26	0	19		2.21	[0.09; 51.35]	0.1%	0.1%
Hitton-1 2014 10 28 15 31 0.74 $[0.40; 1.37]$ 2.8% 2.3% Hitton-2 2014 7 10 15 31 1.45 $[0.84; 2.49]$ 1.4% 2.7% Li Z 2020 42 58 21 54 1.45 $[0.84; 2.49]$ 1.4% 4.5% Thomas 2018 7 45 4 45 1.86 $[1.29; 2.70]$ 4.3% 4.5% Fixed effect model 401 415 1.18 $[0.95; 5.57]$ 0.8% 0.8% Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $\rho = 0.05$ 1.23 $[0.85; 1.79]$ 14.9% Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $\rho = 0.04$ 0 1.55 $[1.40; 1.73]$ 100.0%	на 2015	45 2	:34	50	235	-	0.90	[0.63; 1.30]	9.8%	4.6%
Hittor-2 2014 7 10 15 31 + 1.45 [0.84; 2.49] 1.4% 2.7% Li Z 2020 42 58 21 54 + 1.45 [0.84; 2.49] 1.4% 2.7% Thomas 2018 7 45 445 + 1.86 [1.29; 2.70] 4.3% 0.8% Fixed effect model 401 415 1.18 [0.95; 1.46] 19.2% Random effects model 2391 2196 \diamond 1.57 [1.44; 1.71] 100.0% Fixed effect model 2391 2196 \diamond 1.55 [1.40; 1.73] 100.0%	Hitron-1 2014	10	28	15	31		0.74	[0.40; 1.37]	2.8%	2.3%
Li $\angle 2U2U$ 42 58 21 54 1.86 [1.29; 2.70] 4.3% 4.5% Thomas 2018 7 45 4 45 1.75 [0.55; 5.57] 0.8% 0.8% Fixed effect model 401 415 \land 1.18 [0.95; 1.46] 19.2% Random effects model 2391 2196 \land 1.57 [1.44; 1.71] 100.0% Random effects model 2391 2196 \land 1.55 [1.40; 1.73] 100.0% Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \bullet \checkmark \bullet	Hitron-2 2014	7	10	15	31	<u>+</u>	1.45	[0.84; 2.49]	1.4%	2.7%
Inomas Zuits / 45 4 45 1.75 [0.55; 5.57] 0.8% 0.8% Fixed effect model 401 415 118 [0.95; 1.46] 19.2% Random effects model 401 415 1.8 [0.95; 1.46] 19.2% Fixed effect model 2391 2196 \diamond 1.57 [1.44; 1.71] 100.0% Fixed effects model 2391 2196 \diamond 1.55 [1.40; 1.73] 100.0% Heterogeneity: $l^2 = 30\%, \tau^2 = 0.0278, p = 0.04$ \diamond 1.55 [1.40; 1.73] 100.0%	LI Z 2020	42	58	21	54	*	1.86	[1.29; 2.70]	4.3%	4.5%
Fixed effects model 401 415 \sim 1.18 [0.95; 1.46] 19.2% Random effects model Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ \sim 1.23 [0.85; 1.79] 14.9% Fixed effect model 2391 2196 \diamond 1.57 [1.44; 1.71] 100.0% Random effects model 0.0278, $p = 0.04$ \bullet 1.55 [1.40; 1.73] 100.0%	i nomas 2018	7	45	4	45		1.75	[U.55; 5.57]	0.8%	0.8%
Kandom errects model Heterogeneity: $l^2 = 56\%$, $\tau^2 = 0.1041$, $p = 0.05$ Fixed effect model 2391 2196 \circ 1.57 [1.44; 1.71] 100.0% Random effects model \diamond 1.55 [1.40; 1.73] 100.0%	Fixed effect model	. 4	101		415	Ê	1.18	[0.95; 1.46]	19.2%	
Fixed effect model 2391 2196 \diamond 1.57 [1.44; 1.71] 100.0% Random effects model \diamond 1.55 [1.40; 1.73] 100.0% Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$ \checkmark \checkmark \checkmark \checkmark \checkmark \uparrow \uparrow \uparrow \bullet </td <td>Heterogeneity: $I^2 = 56\%$</td> <td>$r^2 = 0.1041$ p</td> <td>= 0.05</td> <td></td> <td></td> <td></td> <td>1.23</td> <td>[U.85; 1.79]</td> <td></td> <td>14.9%</td>	Heterogeneity: $I^2 = 56\%$	$r^2 = 0.1041$ p	= 0.05				1.23	[U.85; 1.79]		14.9%
Fixed effect model 2391 2196 Ø 1.57 [1.44; 1.71 100.0% Random effects model Ø Ø 1.55 [1.40; 1.73] 100.0% Heterogeneity: /² = 30%, τ² = 0.0278, ρ = 0.04 Ø Image: 1.55 [1.40; 1.73] 100.0%		. – σ. το τ τ, μ	0.00							
Random effects model \diamond 1.55 [1.40; 1.73] 100.0% Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $\rho = 0.04$ \bullet 1.55 [1.40; 1.73] 100.0%	Fixed effect model	23	891	2	2196	٥	1.57	[1.44; 1.71]	100.0%	
Heterogeneity: $l^2 = 30\%$, $\tau^2 = 0.0278$, $p = 0.04$						•	1.55	[1.40: 1.73]		100.0%
	Random effects mode									

FIGURE 6

Forest plot for RR of objective response rate of the systemic combination therapies compared to the monotherapy in patients with aHCC. aHCC, advanced hepatocellular carcinoma; RR, relative risk; CI, confidence interval.

evaluating the efficacy of new therapy (i.e., Atezo and Beva) in the clinic since 2022. We would exclude single-arm studies when the number of double-arm studies are large enough. Despite those disadvantages, this study provides the most convincing evidence indicating that combinations of systemic therapies especially targeted therapy plus ICI therapy have more advantages compared with monotherapy in treating aHCC.

5 Conclusion

Our systematic review and meta-analysis showed that the combinations of chemotherapy plus chemotherapy, targeted therapy plus ICI therapy, targeted therapy plus chemotherapy, and targeted plus targeted therapies significantly improve ORR in patients with aHCC. Furthermore, targeted therapy plus ICI therapy, especially Atezo plus Beva, shows superiority in multiple clinical outcomes over other combinations. Moreover, increased toxicity is evident in combination therapies except for targeted plus chemotherapy. Future trials should concentrate on improvement in the therapeutic efficiency and reduction of the treatment-related toxicity of targeted therapy plus ICI therapy.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

Conception and design: PL and GC. Administrative support: GC. Provision of study materials or patients: none. Collection and assembly of data: ML, MH, XR, and DL. Data analysis and interpretation: PL and GC. Manuscript writing: all authors. Final approval of manuscript: all authors.

Funding

This work was supported by grant 2015CB554006 from the National Key Basic Research Program of China (GC); grants 91529305 (GC), 81520108021 (GC), 81673250 (GC), and 81521091 (GC) from the National Natural Science Foundation of China; grants GWV-10.1-XK17 from the "3-year public health promotion" program of Shanghai Municipal Health Commission

References

1. Liu Z, Suo C, Mao X, Jiang Y, Jin L, Zhang T, et al. Global incidence trends in primary liver cancer by age at diagnosis, sex, region, and etiology, 1990-2017. *Cancer* (2020) 126:2267–78. doi: 10.1002/cncr.32789

2. Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation technology: revolutionizing transcatheter arterial chemoembolization. *Sci Bull (Beijing)* (2020) 65:1685–7. doi: 10.1016/j.scib.2020.06.029

3. Chen H, Cheng H, Dai Q, Cheng Y, Zhang Y, Li D, et al. A superstable homogeneous lipiodol-ICG formulation for locoregional hepatocellular carcinoma treatment. *J Control Release* (2020) 323:635–43. doi: 10.1016/j.jconrel.2020.04.021

4. Li Z, Cheng H, Mao J, Liu G. Conversion therapy of intermediate and advanced hepatocellular carcinoma using superstable homogeneous iodinated formulation technology. *Sci China Life Sci* (2022) 65:2114–7. doi: 10.1007/s11427-022-2142-3

5. Peng Y, Cheng H, Liu H, Zhang Y, Liu G. Super-stable homogeneous embolic agents advance the treatment of hepatocellular carcinoma. *Iradiology* (2023) 1:1–5. doi: 10.1002/ird3.22

6. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. *Liver Int* (2015) 35:2155–66. doi: 10.1111/liv.12818

7. Bruix J, Raoul JL, Sherman M, Mazzaferro V, Bolondi L, Craxi A, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. *J Hepatol* (2012) 57:821–9. doi: 10.1016/j.jhep.2012.06.014

8. Benson AB, D'Angelica MI, Abbott DE, Anaya DA, Anders R, Are C, et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw (2021) 19:541–65. doi: 10.6004/jnccn.2021.0022 (GC); and grant 2022QN021 (PL) from the Youth Fund of Naval Military Medical University.

Acknowledgments

We acknowledge all workers involved in study searching, data extraction, statistical analysis, and writing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1197782/ full#supplementary-material

9. Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. *J Clin Oncol* (2020) 38:4317–45. doi: 10.1200/JCO.20.02672

10. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib vs sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. *Lancet* (2018) 391:1163–73. doi: 10.1016/S0140-6736(18)30207-1

11. Bruix J, da Fonseca LG, Reig M. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. *Nat Rev Gastroenterol Hepatol* (2019) 16:617–30. doi: 10.1038/s41575-019-0179-x

12. Foerster F, Galle PR. The current landscape of clinical trials for systemic treatment of HCC. *Cancers* (2021) 13:1962. doi: 10.3390/cancers13081962

13. Qin S, Bai Y, Lim HY, Thongprasert S, Chao Y, Yang TS, et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. *Clin Oncol* (2013) 31:3501–8. doi: 10.1200/JCO.2012.44.5643

14. Assenat E, Pageaux GP, Thézenas S, Peron JM, Bécouarn Y, Seitz JF, et al. Sorafenib alone vs. sorafenib plus GEMOX as 1-line treatment for advanced HCC: the phase II randomised PRODIGE 10 trial. *Br J Cancer* (2019) 120:896–902. doi: 10.1038/ s41416-019-0443-4

15. Yau TC, Cheung FY, Lee F, Choo SP, Wong H, TohA. Leung K. HC, et al. A multicenter phase II study of sorafenib, capecitabine, and oxaliplatin (SECOX) in patients with advanced hepatocellular carcinoma: Final results of Hong Kong-Singapore Hepatocellular Carcinoma Research Collaborative Group study. *J Clin Oncol* (2013) 31:15_suppl 4117-4117. doi: 10.1200/jco.2013.31.15_suppl.4117

16. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. *N Engl J Med* (2020) 382:1894–905. doi: 10.1056/NEJMoa1915745

17. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, et al. SEARCH: a phase III, randomized, doubleblind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. *J Clin Oncol* (2015) 33:559–66. doi: 10.1200/JCO.2013.53.7746

18. Abou-Alfa GK, Niedzwieski D, Knox JJ, Kaubisch A, Posey J, Tan BR, et al. Phase III randomized study of sorafenib plus doxorubicin versus sorafenib in patients with advanced hepatocellular carcinoma (HCC): CALGB 80802 (Alliance). *J Clin Oncol* (2016) 34:15_suppl 4003-4003. doi: 10.1200/jco.2016.34.4_suppl.192

19. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. *The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.* Ontario K1J 8M5, Canada: Professor GA Wells, Department of Epidemiology and Community Medicine, University of Ottawa (2020). Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

20. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* (2019) 366:l4898. doi: 10.1136/bmj.l4898

21. Abou-Alfa GK, Miksad RA, Tejani MA, Williamson S, Gutierrez ME, Olowokure OO, et al. Open-label study of dalantercept, an activin receptor-like kinase 1 ligand trap, plus sorafenib in advanced hepatocellular carcinoma. *Oncologist* (2019) 24:161–70. doi: 10.1634/theoncologist.2018-0654

22. Abou-Alfa GK, Shi Q, Knox JJ, Kaubisch A, Niedzwiecki D, Posey J, et al. Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: phase 3 CALGB 80802 randomized clinical trial. *JAMA Oncol* (2019) 5:1582–8. doi: 10.1001/jamaoncol.2019.2792

23. An X, Li Y, Menggen C. Clinical observation of tenofovir and sorafenib in the treatment of patients with hepatitis B associated advanced primary liver cancer. *J Prac Hepatol* (2021) 24:600–2. doi: 10.3969/j.issn.1672-5069.2021.04.037

24. Assenat E, Pageaux GP, Thézenas S, Peron JM, Bécouarn Y, Seitz JF, et al. Sorafenib alone vs. sorafenib plus GEMOX as 1st-line treatment for advanced HCC: the phase II randomised PRODIGE 10 trial. *Br J Cancer* (2019) 120:896–902. doi: 10.1038/s41416-019-0443-4

25. Bitzer M, Horger M, Giannini EG, Ganten TM, Wörns MA, Siveke JT, et al. Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma - The SHELTER study. *J Hepatol* (2016) 65:280–8. doi: 10.1016/j.jhep.2016.02.043

26. CS1008- in combination with sorafenib compared to sorafenib alone in subjects with advanced liver cancer (2009). Available at: https://clinicaltrials.gov/ct2/show/ NCT01033240.

27. Cui J. Clinical analysis of oxaliplatin combined with 5-Fu in the treatment of advanced primary liver cancer. *Guide Chin Med* (2020) 18:138. doi: 10.15912/j.cnki.gocm.2020.06.112

28. Dhooge M, Coriat R, Mir O, Perkins G, Brezault C, Boudou-Rouquette P, et al. Feasibility of gemcitabine plus oxaliplatin in advanced hepatocellular carcinoma patients with Child-Pugh B cirrhosis. *Oncology* (2013) 84:32–8. doi: 10.1159/000342763

29. Du G, Wang H. Therapeutic effect of oxaliplatin combined with epirubicin in the interventional treatment of advanced primary liver cancer. *Syst Med* (2019) 4:121–3. doi: 10.19368/j.cnki.2096-1782.2019.14.121

30. El DI, Capanu M, Chou JF, Harding JJ, Ly M, Hrabovsky AD, et al. Phase II trial of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma after disease progression on sorafenib. *Cancer Med* (2020) 9:7453–9. doi: 10.1002/cam4.3389

31. El-Khoueiry AB, O'Donnell R, Semrad TJ, Mack P, Blanchard S, Bahary N, et al. A phase I trial of escalating doses of cixutumumab (IMC-A12) and sorafenib in the treatment of advanced hepatocellular carcinoma. *Cancer Chemother Pharmacol* (2018) 81:957–63. doi: 10.1007/s00280-018-3553-4

32. Feng YM, Feng CW, Lu CL, Lee MY, Chen CY, Chen SC. Cyproheptadine significantly improves the overall and progression-free survival of sorafenib-treated advanced HCC patients. *Jpn J Clin Oncol* (2015) 45:336–42. doi: 10.1093/jjco/hyv007

33. Finn RS, Ikeda M, Zhu AX, Sung MW, Baron AD, Kudo M, et al. Phase ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. *J Clin Oncol* (2020) 38:2960–70. doi: 10.1200/JCO.20.00808

34. Gabrielson A, Tesfaye AA, Marshall JL, Pishvaian MJ, Smaglo B, Jha R, et al. Phase II study of temozolomide and veliparib combination therapy for sorafenibrefractory advanced hepatocellular carcinoma. *Cancer Chemother Pharmacol* (2015) 76:1073–9. doi: 10.1007/s00280-015-2852-2

35. Govindarajan R, Siegel E, Makhoul I, Williamson S. Bevacizumab and erlotinib in previously untreated inoperable and metastatic hepatocellular carcinoma. *Am J Clin Oncol* (2013) 36:254–7. doi: 10.1097/COC.0b013e318248d83f

36. Guo N, Wu Y, Zhao F. Clinical efficacy and safety analysis of capecitabine combined with oxaliplatin in patients with advanced liver cancer. *Guizhou Med J* (2017) 41:930–3. doi: 10.3969/j.issn.1000-744X.2017.09.013

37. Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based immunotherapy Plus Sorafenib vs Sorafenib Alone (PHOCUS) (2015). Available at: https://clinicaltrials.gov/show/NCT02562755.

38. Han C, Ye S, Li J, Zhang P, Dong Y, Bai L. A preliminary study on effect and safety of anlotinib combined with anti-PD-1 antibody (AK105) in treatment of

advanced hepatocellular carcinoma. Acad J Chin PLA Med Sch (2020) 41:868–72. doi: 10.3969/j.issn.2095-5227.2020.09.005+

39. Harding JJ, Kelley RK, Tan B, Capanu M, Do GK, Shia J, et al. Phase ib study of enzalutamide with or without sorafenib in patients with advanced hepatocellular carcinoma. *Oncologist* (2020) 25:e1825–36. doi: 10.1634/theoncologist.2020-0521

40. He MK, Zou RH, Li QJ, Zhou ZG, Shen JX, Zhang YF, et al. Phase II study of sorafenib combined with concurrent hepatic arterial infusion of oxaliplatin, 5-fluorouracil and leucovorin for unresectable hepatocellular carcinoma with major portal vein thrombosis. *Cardiovasc Intervent Radiol* (2018) 41:734–43. doi: 10.1007/s00270-017-1874-z

41. A study of BBI608 in combination with sorafenib, or BBI503 in combination with sorafenib in adult patients with hepatocellular carcinoma (2014). Available at: https://clinicaltrials.gov/show/NCT02279719.

42. Hsu CH, Shen YC, Lin ZZ, Chen PJ, Shao YY, Ding YH, et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. *J Hepatol* (2010) 53:126–31. doi: 10.1016/j.jhep.2010.01.035

43. Hu Q, Wei Y, Wang Y, Wan X, Hu J, Yuan L. Clinical observation on oxaliplatin in combination with 5-fluorouracil for advanced primary hepatocarcinoma. *J Wannan Med Coll* (2014) 33:328–31. doi: 10.3969/j.issn.1002-0217.2014.04.014

44. Huang H, Zheng Z, Li G. Clinical study of double-way chemotherapy with gemcitabine and oxaliplatin in the treatment of advanced primary hepatocarcinoma. *Chongqing Med* (2007) 36:2315–7. doi: 10.3969/j.issn.1671-8348.2007.22.029

45. Qin S, Ren Z, Feng YH, Yau T, Wang B, Zhao H, et al. Atezolizumab plus Bevacizumab versus Sorafenib in the Chinese Subpopulation with Unresectable Hepatocellular Carcinoma: Phase 3 Randomized, Open-Label IMbrave150 Study. *Liver Cancer* (2021) 10:296–308. doi: 10.1159/000513486

46. A study of atezolizumab in combination with bevacizumab compared with sorafenib in patients with untreated locally advanced or metastatic hepatocellular carcinoma (IMbrave150) (2018). Available at: https://clinicaltrials.gov/ct2/show/ NCT03434379.

47. Jiang Z. Clinical study of combined chemotherapy in the treatment of advanced primary liver cancer. *China Prar Med* (2019) 14:124–7. doi: 10.14163/j.cnki.11-5547/r.2019.36.067

48. Jin Y, Lu J, Chen P, Li X, Mei K. Clinical analysis of 32 cases of gem and L-OHP with interferon regimen for the treatment of patients with advanced primary liver cancer. *Prog Mod BioMed* (2013) 13:4295–9. doi: CNKI:SUN:SWCX.0.2013-22-026

49. A phase I trial of trametinib in combination with sorafenib in patients with advanced hepatocellular cancer (2014). Available at: https://clinicaltrials.gov/ct2/show/NCT002292173.

50. Li H, Lei Y, Huang J, He Q, Sun Y. Study of the efficacy and safety of GEMOX regimen for the patients with advanced primary liver cancer. *J Clin Exp Med* (2014) 13:271–7. doi: 10.3969/j.issn.1671-4695.2014.04.010

51. Li J, Huang Y, Yuan J, Chen Q, Liu Q, Meng J, et al. Clinical study of Sorafenib combined with S-1 in advanced hepatocellular carcinoma. *China J Mod Med* (2016) 26:77–83. doi: 10.3969/j.issn.1005-8982.2016.24.017

52. Li W, Cao X. Short-term efficacy and adverse reactions of gemcitabine combined with oxaliplatin in the treatment of advanced liver cancer. *Strait Pharm J* (2017) 29:119–22. doi: 10.3969/j.issn.1006-3765.2017.06.054

53. Li Z, Chen R. Clinical efficacy of apatinib and lenalidomide in advanced primary liver cancer. J Guangdong Med Univ (2020) 38:325–8. doi: 10.3969/j.issn.1005-4057.2020.03.020

54. Liao H. Analysis of the effect of gemcitabine combined with oxaliplatin in the treatment of advanced liver cancer. *Contemp Med Forum* (2015) 13:233–5. doi: CNKI: SUN:QYWA.0.2015-17-198

55. Lin S, Liu C, Jiang G, Zhang R. Therapeutic effect and prognosis of sorafenib combined with GEMOX regimen in the treatment of advanced hepatocellular carcinoma. *Chin Clin Oncol* (2015) 20:517–21. doi: CNKI:SUN:LCZL.0.2015-06-010

56. Liu H, Zhou F, Yi S. Efficacy of gemcitabine combined with oxaliplatin in the treatment of advanced primary liver cancer. *World Latest Med Info* (2017) 17:96–7. doi: CNKI:SUN:WMIA.0.2017-41-066

57. Lu M, Kang M, Li B, Xu S, Luo M. Observation on Effect of single anlotinib or combined with tegafur in treating sorafenib resistant advanced hepatocellular carcinoma. *J Mod Med Health* (2020) 36:985–9. doi: CNKI:SUN:XYWS.0.2020-07-008

58. Lu Y. Clinical observation of GEMOX regimen in the treatment of advanced primary liver cancer. *Guide Chin Med* (2016) 14:96–8. doi: CNKI:SUN:YYXK.0.2016-28-075

59. Niu H, Guo J, Zhu F, Zhao H, Hou Z. Observation of effects of oxaliplatin combined with capecitabine in the treatment of primary hepatic carcinoma. *Anti-tumor Pharm* (2017) 7:360–4. doi: 10.3969/j.issn.2095-1264.2017.03.22

60. Ogasawara S, Chiba T, Ooka Y, Kanogawa N, Motoyama T, Suzuki E, et al. A phase I/II trial of capecitabine combined with peginterferon α -2a in Patients with sorafenib-refractory advanced hepatocellular carcinoma. *Invest New Drugs* (2014) 32:762–8. doi: 10.1007/s10637-014-0097-2

61. Ooka Y, Chiba T, Ogasawara S, Arai K, Suzuki E, Tawada A, et al. A phase I/II study of S-1 with sorafenib in patients with advanced hepatocellular carcinoma. *Invest New Drugs* (2014) 32:723–8. doi: 10.1007/s10637-014-0077-6

62. Patt Y, Rojas-Hernandez C, Fekrazad HM, Bansal P, Lee FC. Phase II trial of sorafenib in combination with capecitabine in patients with hepatocellular carcinoma: INST 08-20. *Oncologist* (2017) 22:1158–16. doi: 10.1634/theoncologist.2017-0168

63. Peng C, Xu A, Su X. An initial study of GEMOX regimen for the patients with advanced hepatocellular carcinoma. *J Nantong Univ (Med Sci)* (2008) 28:281–3. doi: 10.3969/j.issn.1674-7887.2008.04.017

64. Petrini I, Lencioni M, Ricasoli M, Iannopollo M, Orlandini C, Oliveri F, et al. Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. *Cancer Chemother Pharmacol* (2012) 69:773–80. doi: 10.1007/s00280-011-1753-2

65. Philip PA, Mahoney MR, Holen KD, Northfelt DW, Pitot HC, Picus J, et al. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. *Cancer* (2012) 118:2424–30. doi: 10.1002/cncr.26556

66. Puzanov I, Sosman J, Santoro A, Saif MW, Goff L, Dy GK, et al. Phase 1 trial of tivantinib in combination with sorafenib in adult patients with advanced solid tumors. *Invest New Drugs* (2015) 33:159–68. doi: 10.1007/s10637-014-0167-5

67. Qin S, Chen Z, Liu Y, Xiong J, Ren Z, Meng Z, et al. A phase II study of anti–PD-1 antibody camrelizumab plus FOLFOX4 or GEMOX systemic chemotherapy as firstline therapy for advanced hepatocellular carcinoma or biliary tract cancer. *Journal of Clinical Oncology* (2019) 37:15_suppl 4074-4074. doi: 10.1200/ JCO.2019.37.15_suppl.4074.

68. Richly H, Schultheis B, Adamietz IA, Kupsch P, Grubert M, Hilger RA, et al. Combination of sorafenib and doxorubicin in patients with advanced hepatocellular carcinoma: results from a phase I extension trial. *Eur J Cancer* (2009) 45:579–87. doi: 10.1016/j.ejca.2008.10.039

69. Ruanglertboon W, Sorich MJ, Logan JM, Rowland A, Hopkins AM. The effect of proton pump inhibitors on survival outcomes in advanced hepatocellular carcinoma treated with sorafenib. *J Cancer Res Clin Oncol* (2020) 146:2693–7. doi: 10.1007/s00432-020-03261-3

70. Prete SD, Montella L, Caraglia M, Maiorino L, Cennamo G, Montesarchio V, et al. Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: multicenter phase II So. *LAR. study. Cancer Chemother Pharmacol* (2010) 66:837–44. doi: 10.1007/s00280-009-1226-z

71. Shahda S, Loehrer PJ, Clark RS, Spittler AJ, Althouse SK, Chiorean EG. Phase I study of lenalidomide and sorafenib in patients with advanced hepatocellular carcinoma. *Oncologist* (2016) 21:664–5. doi: 10.1634/theoncologist.2016-0071

72. Shen E, Hu J, Weng J. Clinical study of sorafenib combined with 5-fluorouracil in the treatment of advanced liver cancer. *J Clin Exp Med* (2013) 12:1573–5. doi: 10.3969/j.issn.1671-4695.2013.19.023

73. Sho T, Nakanishi M, Morikawa K, Ohara M, Kawagishi N, Izumi T, et al. A phase I study of combination therapy with sorafenib and 5-fluorouracil in patients with advanced hepatocellular carcinoma. *Drugs R D* (2017) 17:381–8. doi: 10.1007/s40268-017-0187-7

74. Sun W, Sohal D, Haller DG, Mykulowycz K, Rosen M, Soulen MC, et al. Phase 2 trial of bevacizumab, capecitabine, and oxaliplatin in treatment of advanced hepatocellular carcinoma. *Cancer* (2011) 117:3187–92. doi: 10.1002/ cncr.25889

75. Tai WM, Yong WP, Lim C, Low LS, Tham CK, Koh TS, et al. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). *Ann Oncol* (2016) 27:2210–5. doi: 10.1093/annonc/mdw415

76. Teng Y, Ding X, Li W, Chen J. Clinical effect of programmed cell death-1 inhibitor combined with lenvatinib in treatment of advanced primary liver cancer and related adverse events. *J Clin Hepatol* (2021) 37:606–11. doi: 10.3969/j.issn.1001-5256.2021.03.020

77. Bevacizumab and erlotinib or sorafenib as first-line therapy in treating patients with advanced liver cancer (2009). Available at: https://clinicaltrials.gov/ct2/show/results/NCT00881751.

78. Uchino K, Obi S, Tateishi R, Sato S, Kanda M, Sato T, et al. Systemic combination therapy of intravenous continuous 5-fluorouracil and subcutaneous pegylated interferon alfa-2a for advanced hepatocellular carcinoma. *J Gastroenterol* (2012) 47:1152–9. doi: 10.1007/s00535-012-0574-3

79. Wang F, Qin S, Hua H, Liu X, Yang L, Qu W, et al. Clinical observation of oxaliplatinbased regimen for sorafenib-resistant advanced primary liver carcinoma. *Chin Clin Oncol* (2014) 19:226–30. doi: CNKI:SUN:LCZL.0.2014-03-010

80. Wang J, Zhang J, Wu Z, Zhang Y. Clinical analysis of gemcitabine combined with oxaliplatin in the treatment of stage IV primary hepatocellular carcinoma. *Elec J Clin Med Lit* (2019) 6:151–2. doi: CNKI:SUN:LCWX.0.2019-94-129

81. Wang J. Feasibility and safety of gemcitabine combined with oxaliplatin in the treatment of advanced primary hepatocellular carcinoma. *Clin Res* (2019) 27:130–2. doi: CNKI:SUN:LCYN.0.2019-10-073

82. Wu X, Chen W, Zheng L, Fang S, Wu F, Zhao Z, et al. Efficacy and safety of sorafenib combined with immune checkpoint inhibitors in TACE refractory liver cancer. J HPB Surg (2021) 33:585–91. doi: 10.11952/j.issn.1007-1954.2021.10.003

83. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. *Clin Cancer Res* (2019) 25:515–23. doi: 10.1158/1078-0432.CCR-18-2484

84. Yang Y, Wang M, Wang Z, Wang J, Zheng R. Gemcitabine plus oxaliplatin for treatment of advanced primary liver cancer. *J Bengbu Med Coll* (2015) 40:1158–62. doi: 10.13898/j.cnki.issn.1000-2200.2015.09.005

85. Yau T, Wong H, Chan P, Yao TJ, Pang R, Cheung TT, et al. Phase II study of bevacizumab and erlotinib in the treatment of advanced hepatocellular carcinoma patients with sorafenib-refractory disease. *Invest New Drugs* (2012) 30:2384–90. doi: 10.1007/s10637-012-9808-8

86. Yau T, Kang YK, Kim TY, El-Khoueiry B. A, Santoro A, Sangro B, et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. *J Clin Oncol* (2019) 37:15_suppl.4012. doi: 10.1200/JCO.2019.37.15_suppl.4012

87. Yi W, Fang L, Liao X, Qin F, Zhou W, Li Y, et al. A Clinical study of Gemcitabine plus Oxaliplatin in the treatment of Advanced Primary hepatocellular carcinoma. *J Guangxi Med Univ* (2014) 31:756–60. doi: CNKI:SUN:GXYD.0.2014-05-012

88. Yoo SH, Kwon JH, Nam SW, Lee JY, Kim YW, Shim DJ, et al. Transarterial infusion of epirubicin and cisplatin combined with systemic infusion of 5-flurouracil versus sorafenib for hepatocellular carcinoma with refractoriness of transarterial chemoembolization using doxorubicin. *Cancer Control* (2020) 27:1–9. doi: 10.1177/ 1073274820935843

89. Zhang H. Efficacy of gemcitabine combined with oxaliplatin in the treatment of advanced primary hepatocellular carcinoma. *Guide Chin Med* (2018) 16:168–70. doi: CNKI:SUN:YYXK.0.2018-16-123

90. Zheng Z, Pan M. Efficacy and safety of apatinib combined with tegafur in the treatment of liver cancer after the failure of initial treatment. *J Bengbu Med Coll* (2020) 45:917–21. doi: 10.13898/j.cnki.issn.1000-2020.07.020

91. Chon YE, Cheon J, Kim H, Kang B, Ha Y, Kim DY, et al. Predictive biomarkers of survival in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab treatment. *Cancer Med* (2023) 12:2731–8. doi: 10.1002/cam4.5161

92. D'Alessio A, Fulgenzi CAM, Nishida N, Schönlein M, Felden JV, Schulze K, et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: a real-world study. *Hepatology* (2022) 76:1000–12. doi: 10.1002/hep.32468

93. Fulgenzi CAM, Cheon J, D'Alessio A, Nishida N, Ang C, Marron TU, et al. Reproducible safety and efficacy of atezolizumab plus bevacizumab for HCC in clinical practice: Results of the AB-real study. *Eur J Cancer* (2022) 175:204–13. doi: 10.1016/j.ejca.2022.08.024

94. Hiraoka A, Kumada T, Tada T, Hirooka M, Kariyama K, Tani J, et al. Atezolizumab plus bevacizumab treatment for unresectable hepatocellular carcinoma: Early clinical experience. *Cancer Rep (Hoboken)* (2022) 5:e1464. doi: 10.1002/cnr2.1464

95. Kim BK, Cheon J, Kim H, Kang B, Ha Y, Kim DY, et al. Atezolizumab/ bevacizumab vs. Lenvatinib as first-line therapy for unresectable hepatocellular carcinoma: A real-world, multi-center study. *Cancers (Basel)* (2022) 14:1747. doi: 10.3390/cancers14071747

96. Matsumoto H, Tsuchiya K, Nakanishi H, Hayakawa Y, Yasui Y, Uchihara N, et al. Clinical usefulness of monitoring muscle volume during atezolizumab plus bevacizumab therapy in patients with unresectable hepatocellular carcinoma. *Cancers* (*Basel*) (2022) 14:3551. doi: 10.3390/cancers14143551

97. Persano M, Rimini M, Tada T, Suda G, Shimose S, Kudo M, et al. Clinical outcomes with atezolizumab plus bevacizumab or lenvatinib in patients with hepatocellular carcinoma: a multicenter real-world study. *J Cancer Res Clin Oncol* (2023) 149:5591–602. doi: 10.1007/s00432-022-04512-1

98. Sasaki R, Nagata K, Fukushima M, Haraguchi M, Miuma S, Miyaaki H, et al. Evaluating the role of hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in predicting treatment impact of lenvatinib and atezolizumab plus bevacizumab on unresectable hepatocellular carcinoma. *Cancers (Basel)* (2022) 14:827. doi: 10.3390/cancers14030827

99. Fan Y, Ge C, Chen C. Efficacy of Erika combined with Renvastinib in the treatment of advanced primary liver cancer. *Mod Pract Med* (2022) 34:1462-4. doi: 10.3969/j.issn.1671-0800.2022.11.025

100. Fu H, Ke C, Zhang B, Peng E. Analysis of efficacy of PD-1 inhibitor combined with renvatinib in the treatment of advanced liver cancer. *Shanghai Med Pharm J* (2022) 43:29–30. Available at: http://qikan.cqvip.com/Qikan/Article/Detail?id=7106570386

101. Gu X, Jiang Z, Yang M, Shi L. Efficacy of sorafenib with thymosin α 1 for patients with ER hepatocellular carcinoma. *Jiangsu Med J* (2010) 36:2491–3. doi: CNKI:SUN: YIYA.0.2010-21-004

102. Wang J, Xu L, Yuan G, Xu X, Zhou X, Luo R, et al. Efficacy and safety of sintilimab in combination with lenvatinib therapy as second-line regimen for patients with unresectable hepatocellular carcinoma. *Mod Pract Med* (2022) 38:1130–5. doi: 10.3969/j.issn.1006-5725.2022.09.016

103. Wu D, Shi J, Zhang Q, Liu L. Clinical observation of patients with advanced primary liver cancer treated by Sorafenib combined with arsenic trioxide. *Mod Oncol* (2019) 27:2728–31. doi: 10.3969/j.issn.1672-4992.2019.15.025

104. Yan L, Li Y, Jiang L, Wen H. Efficacy of camrelizumab combined with apatinib in the treatment of advanced liver cancer. *Henan Med Res* (2022) 31:1203–7. doi: 10.3969/j.issn.1004-437X.2022.07.012

105. Zhao M, Liu P, Zhang Y, Da J, Dai Y, Du Y, et al. Efficacy of PD-1 antibody combined with anti-angiogenic drug in the treatment of patients with advanced hepatocellular carcinoma. *Chin J Cancer Prev Treat* (2021) 28:1247–52. doi: 10.16073/j.cnki.cjcpt.2021.16.10

106. Zhu D, Yang S, Li Y, Gu J, Ren X, Zhang H, et al. Efficacy of carrelizumab combined with sorafenib onadvanced hepatocellular carcinoma. *J Chin Pract Diagn* (2021) 35:1063–7. doi: 10.13507/j.issn.1674-3474.2021.10.023

107. Zong H, Qi C, Wu F, Li M, Li J, Huang Z, et al. Effect and adverse reaction of oxaliplatin combined with epirubicin in the treatment of primary liver cancer. *Chin Gen Pract* (2017) 20:163–4. doi: CNKI:SUN:QKYX.0.2017-S3-068

108. Feng Z, Rong P, Wang W. Meta-analysis of the efficacy and safety of PD-1/ PD-L1 inhibitors administered alone or in combination with anti-VEGF agents in advanced hepatocellular carcinoma. *Gut* (2020) 69:1904–6. doi: 10.1136/gutjnl-2019-320116

109. Sonbol MB, Riaz IB, Naqvi SAA, Almquist DR, Mina S, Almasri J, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis. *JAMA Oncol* (2020) 6:e204930. doi: 10.1001/jamaoncol.2020.4930

110. Han Y, Zhi WH, Xu F, Zhang CB, Huang XQ, Luo JF, et al. Selection of first-line systemic therapies for advanced hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. *World J Gastroenterol* (2021) 27:2415–33. doi: 10.3748/ wjg.v27.i19.2415

111. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. *Cancer Cell* (2019) 36:418–430.e6. doi: 10.1016/j.ccell.2019.08.007

112. Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. *Mol Cancer* (2019) 18:60. doi: 10.1186/s12943-019-0974-6

113. Lin YY, Tan CT, Chen CW, Ou DL, Cheng AL, Hsu C, et al. Immunomodulatory Effects of Current targeted Therapies on Hepatocellular Carcinoma: Implication for the Future of immunotherapy. *Semin Liver Dis* (2018) 38:379–88. doi: 10.1055/s-0038-1673621

114. Chen WM, Zhang XP, Yan YY, Sun X, Li L. Targeting the interactions between lymphocytes and liver cancer stem cells in combination with ICI therapy is a promising therapeutic strategy. *Hepatoma Res* (2023) 9:2. doi: 10.20517/2394-5079.2022.52

115. Kwee SA, Tiirikainen M. Beta-catenin activation and ICI therapy resistance in hepatocellular carcinoma: mechanisms and biomarkers. *Hepatoma Res* (2021) 7:8. doi: 10.20517/2394-5079.2020.124

116. Armstrong S, Prins P, He AR. Immunotherapy and immunotherapy biomarkers for hepatocellular carcinoma. *Hepatoma Res* (2021) 7:18. doi: 10.20517/2394-5079.2020.118