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Cholesterol esterification is often dysregulated in cancer. Sterol O-acyl-

transferase 1 (SOAT1) plays an important role in maintaining cellular cholesterol

homeostasis by catalyzing the formation of cholesterol esters from cholesterol

and long-chain fatty acids in cells. Many studies have implicated that SOAT1 plays

a vital role in cancer initiation and progression and is an attractive target for novel

anticancer therapy. In this review, we provide an overview of the mechanism and

regulation of SOAT1 in cancer and summarize the updates of anticancer therapy

targeting SOAT1.
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Introduction

Sterol O-acyl-transferase 1 (SOAT1), also known as acyl-CoA:cholesterol

acyltransferase 1 (ACAT1), is an exclusively intracellular enzyme that catalyzes the

formation of cholesterol esters from cholesterol and long-chain fatty acids in cells. It

plays an important role in maintaining cellular cholesterol homeostasis (1–3). In the early

time, SOAT1 has been studied extensively as a potential drug target in atherosclerosis and

Alzheimer’s disease (4, 5). In recent years, many studies have found that tumors such as

glioblastoma and pancreatic cancer exhibit high expression of SOAT1 accompanied by

high cholesteryl esters, indicating that SOAT1 is also crucial for cancer cells to regulate

cholesterol metabolic homeostasis (6). Compelling evidence have implicated that targeting

SOAT1 is a promising therapeutic strategy for cancer management. In this review, we

mainly discuss the cholesterol metabolism centered on SOAT1 and mechanisms that

regulate SOAT1 expression in cancers. Finally, the latest developments that target SOAT1

for cancer treatment are summarized.
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Cholesterol metabolism centered
on SOAT1

Cholesterol can maintain membrane fluidity and integrity and

form membrane microstructures as an essential lipid component of

the mammalian cell membrane (7). Intracellular cholesterol

metabolic homeostasis is determined by a complex network that

regulates cholesterol biosynthesis, uptake, export, and esterification

(Figure 1) (8). Almost all mammalian cells can de novo synthesize

cholesterol from acetyl-CoA to cholesterol through more than 20

enzymatic reactions. Besides that way, most cells absorb cholesterol

from low-density lipoprotein (LDL) via LDLR-mediated

endocytosis (9), where the complex is internalized into the cell

endosome by endocytosis with the binding of LDL to LDLR. In the

endosome, LDL is dissociated from LDLR and further transferred to

the lysosome, where the free cholesterol is released from LDL.

Increased cholesterol can be converted to cholesteryl ester (CE)

by sterol O-acyltransferase (SOAT) and stored in lipid droplets

(10). There are two genes encoding the two SOAT enzymes, SOAT1

and SOAT2 (11). SOAT1 is widely expressed in most cell types and

highly expressed in some tumors (12). SOAT2 is mainly distributed

in hepatocytes and intestinal epithelial cells (13). Despite being

essential for cell viability, cholesterol is not always beneficial; in

contrast, when in excess, it is highly toxic, and its levels must

therefore be tightly controlled. This is, in part, achieved by SOAT1-

mediated cholesterol esterification (14). Sterol regulatory element-

binding proteins (SREBPs) are core transcription factors that can

sense cholesterol content in endoplasmic reticulum (ER) membrane
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synthesis and uptake (15, 16). Elevated cholesterol content can

inhibit the activity of SREBPs. SOAT1 can alleviate the inhibitory

effect of SREBPs activity by converting cholesterol into CE (17),

thus promoting the synthesis and absorption of cholesterol.

The precise control of free cholesterol content makes SOAT1 as

a key intrinsic driver of cholesterol metabolism. Previous studies

showed that SOAT1 plays a crucial role in the accumulation of foam

cells from macrophages, the key pathological process in

atherosclerosis. Besides, SOAT1 can promote the formation of

very low-density lipoprotein (VLDL) in the liver, and the

absorption of dietary cholesterol from the intestines (18).

Targeting SOAT can directly lower the level of plasma cholesterol

and inhibit the formation of arterial plaque, which may significantly

reduce the risk of atherosclerosis and other cardiovascular diseases,

although relevant phase III clinical trials were failed (19).

Cholesterol metabolism is also closely associated with Alzheimer’s

disease at several stages (5). Cholesterol levels affect the processing

of amyloid protein and its precursors (20). Genetic knockout or

pharmacological inhibition of SOAT1 have also been proved to

provide several beneficial effects on Alzheimer’s disease.
Clinical relevance of SOAT1 in cancer

In recent years, several studies have indicated that cholesterol

esterification is deregulated in cancers, and SOAT1 has received

increasing attention for its association with cancer (17). SOAT1 is

widely expressed across various cancers, such as breast cancer (21),
FIGURE 1

Cholesterol metabolism centered on SOAT1. Cholesterol acquisition by cells occurs through de novo synthesis in the endoplasmic reticulum (ER) and via
LDLR-mediated endocytosis of LDL. SOAT1 is an ER-associated enzyme responsible for cholesterol storage. SOAT1-mediated esterification of increased
cholesterol and fatty acids results in the formation of CE, which is stored in lipid droplets. SREBP cleavage-activating protein (SCAP) is a cholesterol
sensing protein and forms a complex with SREBP2 and an ER membrane anchor protein insulin-induced gene (INSIG). A decrease in cholesterol levels
within the endoplasmic reticulum (ER) results in the dissociation of INSIG from SCAP, thereby releasing the SCAP/SREBP2 complex. Subsequently,
SREBP2 is transported to the Golgi complex and undergoes proteolytic activation by the site-1 and site-2 proteases (S1P and S2P). The N-terminal
domain of SREBP2 then translocates to the nucleus to initiate gene transcription necessary for cholesterol synthesis and uptake.
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renal cancer (22), liver cancer (12), glioma cancer (23), pancreatic

cancer (24) and adrenocortical cancer (25). SOAT1 can play an

essential role in cancer cell proliferation, migration, invasion and

metastasis (26). As reported in previous studies, deregulated SOAT1

is associated with tumor aggressiveness and therapy resistance,

indicating poor prognosis in different kinds of cancers (17).

Typically, high expression of SOAT1 is a specific signature of

hepatocellular carcinoma (HCC), which can regulate the

distribution of cellular cholesterol and promote HCC cell

proliferation (27). Meanwhile, SOAT1 knockdown suppresses cell

proliferation and migration in HCC (12, 28). In gastric cancer (GC),

overexpression of SOAT1 could promote cholesterol ester synthesis

and GC cell proliferation. Meanwhile, SOAT1 can promote gastric

cancer lymph node metastasis via regulating lipid synthesis (29).

Mechanistically, SOAT1 can upregulate the activities of SREBPs,

which induces lymphangiogenesis by increasing the expression of

VEGF-C.

In addition, high SOAT1 expression is also associated with

lymph node metastasis, which indicates poor patient disease-free

survival and overall survival in colorectal cancer (CRC) (30, 31). In

prostate cancer, high expression of SOAT1 upregulates the

expression levels of SREBPs and LDLR and eventually promotes

cancer proliferation (32). A recent study found a significantly

shorter median biochemical recurrence (BCR)-free survival of 93

months in patients with high SOAT1 compared to 134 months with

low SOAT1 (33). In HCC, the protein expression of SOAT1 was

significantly increased in the tumor compared with adjacent tissue

(34). A proteomics study found that HCC patients with disrupted

cholesterol metabolism and high expression of SOAT1 tend to have

a poorer prognosis (12). Collectively, these results show that high

expression of SOAT1 is associated with poor prognosis and

promotes the growth and migration of different kinds of tumors.
Mechanisms that regulate SOAT
expression in cancer

SOAT1, as the main enzyme that converts cholesterol into CE,

is regulated exquisitely by a complex network, including the

transcription program and the posttranscriptional program.

Recent studies have reported some novel mechanisms that result

in the high expression of SOAT in cancer.
Transcriptional regulation

Previous studies have found that the SOAT1 promoter can be

activated by IFNg, TNF, insulin and glucocorticoids (14, 35, 36).

However, no binding site for the classic cholesterol metabolism

transcription factors SREBPs or LXRs has been identified in the

SOAT1 promoter (14). Recent studies have shown that the mRNA

levels of SOAT1 are also directly regulated by P53, b-catenin and

piRNA-6426.

P53, the tumor suppressor, plays a central role in cancer

development. Over 60% of human cancers carry P53 gene missense

mutations or deletions (37). P53 has the ability to repress cholesterol
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biosynthesis and restrict tumor growth by blocking cholesterol efflux

(38). The recent study also indicated that P53 can directly bind to the

promoters of SOAT1 genes and lead to its transcriptional attenuation

(39). The oncogene b-catenin can also regulate cholesterol

esterification by directly activating the transcriptional expression of

SOAT1 (30). piRNAs are small RNAs with a length of approximately

30 nt that can guide PIWI proteins to silence transposable factors by

binding to DNA methyltransferases (40). The overexpression of

piRNA-6426 could increase the methylation level of the SOAT1

promoter, which can reduce the expression level of SOAT1 mRNA

and protein, while the interference of piRNA-6426 can enhance the

expression levels of SOAT1 mRNA and protein (41).
Posttranscriptional regulation

SOAT1 is regulated not only by the transcription programbut also

by the posttranscriptional program. Studies have shown that P53 can

not only directly regulate the mRNA levels of SOAT1 involved in

cholesterol metabolism but can also regulate the protein levels of

SOAT1 by regulating the mRNA levels of USP19 (39). Ubiquitin-

specificpeptidase19 (USP19) is adeubiquitinatingenzyme (DUB) that

stabilizes SOAT1 by decreasing its ubiquitination (42). Potential

ubiquitination of SOAT1 includes the ϵ-amino groups of the

protein’s seven lysine residues (K6, K11, K27, K29, K33, K48, and

K63). USP19 can stabilize SOAT1 by decreasing K33/K48-linked

ubiquitination (38). In addition, a previous study have also reported

that SOAT2, the homologous protein of SOAT1 can be regulated by

cholesterol and fatty acids (FAs). High levels of cholesterol and FA can

prevent SOAT2 from ubiquitination on C277 cite and degradation via

inducing ROS (43). However, whether cholesterol and FA have the

same effect on SOAT1 is still unknown.
Tumor promotion by high
SOAT1 expression

Cholesterol metabolism has been considered to play essential

roles in tumor growth and metastasis (17). As the key enzyme in the

steps of cholesteryl ester synthesis, the activity of SOAT determines

the abundance of cholesterol in cancer. The excess free cholesterol,

together with the fatty acyl CoA substrate can be converted to CE by

SOAT1 and stored in LDs. Some studies also emphasized that it is

the role of cholesteryl ester rather than cholesterol that promotes

tumor growth (44–47). Given that cholesterol and fatty acids are

important components of the cell membrane, cancer cells may use

these stored CEs for new cell membranes and signaling molecules,

which can promote the growth of tumors. Studies have showed that

high SOAT1 expression elevated lipid availability, which can

promote tumor aggressiveness (12, 32).

There are three SREBP isoforms. SREBP-1a and SREBP-1c

mainly regulate fatty acid synthesis, and SREBP-2 controls

cholesterol synthesis (48, 49). They all have the function of

controlling lipid and cholesterol homeostasis (50). Normally,

SREBP activity is tightly regulated by negative feedback, which is

controlled by endoplasmic reticulum (ER) membrane cholesterol
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(14). However, studies found that tumor cells could evade high

levels of cholesterol-induced negative feedback inhibition as well as

maintain SREBP activity (51, 52). In PTEN-deficient tumors, the

PI3K/AKT/mTOR pathway is activated, which in turn upregulates

SREBPs-mediated cholesterol synthesis and absorption. However,

elevated cholesterol content can inhibit the activity of SREBPs.

SOAT1 could alleviate the inhibitory effects of SREBPs via

converting cholesterol into CE, thus promoting the growth of

PTEN-deficient tumors. The deficient of SOAT1 or SOAT1

inhibition would disturb cholesterol homeostasis, and then

inhibits the activities of SREBPs and eventually suppresses tumor

development (32).

In addition, SOAT1 can suppress the function of CD8+ T cells.

CD8+ T cells have a central role in antitumor immunity. However,

numerous studies have shown that their activity is suppressed in the

tumor microenvironment (TME) (53–56). Inhibiting cholesterol

esterification in T cells by SOAT1 inhibitors can enhance the

proliferation of CD8+ T cells and their effector function. This is

because when the cholesterol level of CD8+ T cells decreases, T-cell

receptor clustering and signaling as well as efficient formation of the

immunological synapse were suppressed (57). SOAT1 expression in

tumors might also affect immune infiltration in the TME. A recent

study noted that SOAT1 expression was positively correlated with

various tumor infiltrating immune cells in glioma. More

importantly, SOAT1 expression was found to be positively

correlated with multiple chemokine/chemokine receptor gene and

various checkpoint genes, including PD-L1. These results indicated

that SOAT1 overexpression may affect immune infiltration and

tumor immune escape via increasing the secretion of chemokines

and the levels of checkpoint genes (58). Nevertheless, both the

mechanism by which SOAT1 promotes tumor growth and immune

escape need to be further studied.
SOAT1-targeted therapeutic strategies
for cancer treatment

The process by which SOAT1 converts cholesterol into CE

occurs in many types of aggressive cancer. High SOAT1 expression
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of breast and renal cancer, respectively (21, 22). In addition, high

expression of SOAT1 has also been considered to be associated with

poor prognosis for patients with liver (12), glioma (23), pancreatic

(24) and adrenocortical cancers (25). Thus, SOAT1 inhibition could

be pursued as a therapeutic strategy for cancers (Table 1).

Avasimibe, first discovered in 1996, is the first and most

frequently used SOAT1 inhibitor (62, 63). It has been clinically

verified to be safe and effective for cancer treatment in preclinical

studies (64). Therefore, targeting SOAT1 with avasimibe may be a

safe and effective method to disrupt cholesterol metabolic

homeostasis in cancer treatment. In prostate cancer and

glioblastoma, avasimibe could increase intracellular cholesterol

levels, thus inhibiting the activities of SREBPs and eventually

suppressing cancer proliferation (32, 44). In pancreatic cancer,

avasimibe can promote tumor cell apoptosis by increasing

intracellular cholesterol-induced ER stress (59). In HCC, SOAT1

inhibition by avasimibe dramatically repressed high-cholesterol

high-fat diet (HCHFD)-induced HCC tumorigenesis and

decreased cholesterol esterification, which markedly reduced

tumor growth in HCC with high SOAT1 expression (12, 39). In

gastric cancer, the inhibition of SOAT1 by avasimibe could suppress

GC cell proliferation, cholesterol ester synthesis, and

lymphangiogenesis (29). In addition, SOAT deficiency in

cytotoxic T lymphocyte (CTL) leads to enhanced T-cell receptor

clustering and increased cholesterol content in the plasma

membrane, which can enhance CTL cytotoxicity, and synergize

with immunotherapy in controlling cancer development and

growth (57, 65, 66).

In addition to avasimibe, there are also some other compounds

that can suppress SOAT1 activity. ATR-101 (nevanimibe) is a

SOAT1-specific inhibitor that has been tested against

adrenocortical carcinoma in clinical trial . This study

demonstrated the safety of nevanimibe, but with limited efficacy

in patients with advanced ACC (60). A recent study also screened

three compounds, nilotinib, ABT-737, and evacetrapib, that

exhibited optimal binding with SOAT1 and inhibitive activities.

In particular, nilotinib, a second-generation tyrosine kinase

inhibitor used in the clinic, displayed a high affinity for SOAT1
TABLE 1 SOAT1-targeted therapies in cancer.

Drug Target Cancer type Phase Mechanism Reference

Avasimibe SOAT1/2 Prostate cancer and
glioblastoma

In vivo preclinical
experiments

Inhibits the activities of SREBPs and eventually suppressing cancer
proliferation

(32, 44)

Pancreatic cancer In vivo preclinical
experiments

Promotes cholesterol-induced ROS and ER stress (59)

HCC In vivo preclinical
experiments

Disrupts cholesterol metabolism homeostasis and decreases
cholesterol esterification

(12, 39)

Gastric cancer In vitro
experiments

Suppresses GC cell proliferation, cholesterol ester synthesis, and
lymphangiogenesis

(29)

ATR-101
(Nevanimibe)

SOAT1/2 Adrenocortical
carcinoma

In phase I clinical
trials

Suppresses adrenal steroidogenesis at lower doses and causes
apoptosis of adrenocortical cells at higher doses

(60)

Nilotinib SOAT1 HCC In vivo preclinical
experiments

Displays a high effect on SOAT1 protein and significantly inhibit
tumor activity both in vitro and in vivo

(61)
f
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protein and significantly inhibited tumor activity both in vitro and

in vivo by reprogramming the intracellular cholesterol metabolism

of tumor cells and enhancing the effect of CD8+ T cells and

neutrophils (61).

In addition, the latest research has also explored combination

strategies based on avasimibe for cancer treatment. A previous

study showed that simultaneously targeting SOAT1 and CPT1A by

avasimibe and etomoxir had cooperative anticancer efficacy in HCC

in vitro and in vivo via increasing the intracellular levels of

cholesterol and fatty acids (28). Nystatin, a polyene antifungal

drug for managing cutaneous or mucosal candidiasis, can

synergize with avasimibe in suppressing the viability of colon

cancer cells in vitro and in vivo via cholesterol sequestration and

decreasing cholesterol-promoted oncogenic signals (67).
Conclusion

SOAT1 plays an important role in maintaining cellular

cholesterol homeostasis by meeting the requirement of cancer

cells for cholesterol. The high abundance of SOAT1 in tumors

indicates worse prognosis. Therefore, SOAT1 seems to be an

attractive target for novel anticancer therapy. It is glad that an

increasing number of preclinical studies have revealed the

antitumor effects of SOAT1 inhibition and relative mechanisms.

Several SOAT1 inhibitors, such as avasimibe and nevanimibe, have

shown a good human safety profile in clinical trials, making them

promising approach to fight against tumors. However, these clinical

trials have proven to be ineffective in retarding atherosclerosis (68,

69), probably due to the nonspecific binding and low absorptivity.

To date, clinical trials have not extensively evaluated the efficacy of

SOAT1 inhibitors for cancer treatment, with the exception of

nevanimibe in a phase I study (60). To facilitate their clinical

implementation, it is imperative to conduct large-scale clinical

trials and explore combination therapy. The elucidation of the

SOAT1 protein crystal structure provides an opportunity to

develop a more potent and safer SOAT1 inhibitor with specific
Frontiers in Oncology 05
binding and high absorptivity, potentially paving the way for the

next generation of SOAT1-targeted therapy in cancer (70).
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