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Background: Recent developments in artificial intelligence suggest that

radiomics may represent a promising non-invasive biomarker to predict

response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of

radiomics algorithms in independent cohorts remains a challenge due to

variations in image acquisition and reconstruction. Using radiomics, we

investigated the importance of scan normalization as part of a broader

machine learning framework to enable model external generalizability to

predict ICI response in non-small cell lung cancer (NSCLC) patients across

different centers.

Methods: Radiomics features were extracted and compared from 642 advanced

NSCLC patients on pre-ICI scans using established open-source PyRadiomics

and a proprietary DeepRadiomics deep learning technology. The population was

separated into two groups: a discovery cohort of 512 NSCLC patients from three
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academic centers and a validation cohort that included 130 NSCLC patients from

a fourth center. We harmonized images to account for variations in

reconstruction kernel, slice thicknesses, and device manufacturers.

Multivariable models, evaluated using cross-validation, were used to estimate

the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or

DeepRadiomics for progression-free survival at 6 months (PFS-6).

Results: The best prognostic factor for PFS-6, excluding radiomics features, was

obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the

discovery and 0.62 in the validation cohort). Without image harmonization,

combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69

and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in

the validation cohort. This lack of generalizability was consistent with

observations in principal component analysis clustered by CT scan parameters.

Subsequently, image harmonization eliminated these clusters. The combination

of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery

and validation cohort, respectively. Conversely, the combination of Clinical +

PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59.

Conclusion: We demonstrated that a risk prediction model combining Clinical +

DeepRadiomics was generalizable following CT scan harmonization and

machine learning generalization methods. These results had similar

performances to routine oncology practice using Clinical + PD-L1. This study

supports the strong potential of radiomics as a future non-invasive strategy to

predict ICI response in advanced NSCLC.
KEYWORDS

radiomics, Deeplearning, NSCLC, immunotherapy, DeepRadiomics
Introduction

The recent advent of radiomics by quantitative image analysis

has been gaining interest in oncology as a novel strategy for cancer

screening and predicting treatment response (1). Immune

checkpoint inhibitors (ICIs) represent the standard of care for

patients with advanced non-small cell lung cancer (NSCLC), and

development of biomarkers represents a paramount interest (2–4).

Nevertheless, primary resistance to ICIs remains unpredictable,

reaching up to 60%, while the rate of secondary resistance

approaches 100% (5–7). Assessment of PD-L1 expression in

tumor tissue has been widely used to determine the therapeutic

approach of either a single-agent anti-PD-1 inhibitor or the

combination of platinum doublet with anti-PD-1 for patients with

tumor PD-L1 expression ≥50% or <50%, respectively (4, 8).

Radiomics has been shown to predict CD8+ T-cell infiltration

and response to ICIs or radiotherapy (9–12). Additional studies

attempted to determine PD-L1 expression, the only approved

predictive biomarker in advanced NSCLC (13, 14). Nevertheless,

validation of radiomic models requires large image datasets that

include different cancer centers and a variety of computed

tomography (CT) scanners. The necessary diversity is a major

hurdle to validate published radiomics signatures in independent
02
cohorts (15). Different image acquisition parameters and different

reconstruction kernels with varying slice thicknesses alter the

predictive potential of radiomics (16). Therefore, the development

of signatures applicable across academic centers is a challenge that

has stymied the adoption of radiomics in routine oncology clinical

practice. Altogether, this highlights the importance of harmonizing

image acquisition and reconstruction procedures to reduce

multicenter variability before gathering data (17, 18). In recent

years, research efforts have focused on developing a statistical

harmonization strategy called ComBat (18–20). ComBat acts

directly on already computed features, not on the original images.

While a privacy advantage on one hand, this method is only capable

of harmonizing for a single batch effect at a time; as further detailed

(21), if variance in image acquisition and reconstruction protocols

affects image properties, then different batches should be used for

the same scanner corresponding to different settings. Furthermore,

four assumptions have to be met for ComBat to generate valid

results among which (1) covariates (if any) that might explain

different distributions at two or more sites have to be identified and

considered to redesign the original ComBat approach (2); the

different sets of feature values to be realigned have to be

independent, which challenges the very use of PyRadiomics

known for many correlating features; and (3) determining a
frontiersin.org
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single transformation with ComBat from data with different tissue

or tumor types does not always lead to satisfactory data

realignments, because different texture patterns are not

necessarily affected identically by the image acquisition and

reconstruction protocols (21). Taking these constraints altogether,

the present study hypothesized that developing specific machine

learning generalization methods rather than applying more

complex feature harmonization strategies might prove

more successful.

In this study, using conventional harmonization techniques

together with AI generalization strategies, we showed that a

radiomic signature generated in a discovery cohort from three

independent cancer centers of NSCLC patients amenable to ICI

to predict PFS at 6 months could be validated in a fourth cohort.

This new method designed for generalizability rather than

traditional performance has the potential to further the use of

radiomics in routine oncology practice.
Methods

Study population

This retrospective study included 642 advanced NSCLC

patients treated with anti-PD-1 alone or in combination with

platinum-doublet chemotherapy between 2015 and 2021 in the

chemotherapy-refractory or first-line settings. Signed, informed

consent was obtained from each patient, and the study was

approved by the Institutional Review Board [Human Ethics

Committee (MP-02-2019-8091)] at four academic institutions

where patient data were acquired: Centre Hospitalier de

l’Université de Montréal (CHUM), Jewish General Hospital in

Montreal (JGH), Institut Universitaire de Cardiologie et

Pneumologie de Québec – Université Laval (IUCPQ-UL), and

Centre Hospitalier de l’Université de Sherbrooke (CHUS). All

patients with histology-proven stage III or IV NSCLC treated

with ICI and with a pre-ICI CT scan were eligible for

retrospective review. Response Evaluation Criteria in Solid

Tumors (RECIST) criteria version 1.1 was used to assess tumor

response, and all patients were followed until death or until the data

were locked on 15 January 2022 (22).
Clinical data analysis

We separated the total population into two independent

cohorts. All patients from CHUM, JGH, and IUCPQ comprised

the discovery cohort (n = 512 patients) while patients from CHUS

comprised the validation cohort (n = 130 patients). Baseline

demographic and clinicopathological characteristics were

compared between the discovery and validation cohort using chi-

square or Fisher’s exact test for categorical variables and Student’s t-

test or Mann–Whitney U test for continuous variables, as

appropriate. Clinical outcome of PFS at 6 months was used as the

stronger outcome marker for NSCLC patients amenable to ICIs as

this clinical marker was found to be one of the most robust (3).
Frontiers in Oncology 03
All patients included had a PFS superior to 6 months or

progressed before.
Harmonization process

CT scan normalization
Each primary lesion was manually annotated by a radiation

oncologist or a radiologist for identifying the tumor’s longest axis,

on de-identified, pretreatment CT images. The following pre-

processing steps were applied to all scans: resampling to 1-mm

isometric voxels (to normalize pixel and slice thickness variation)

followed by Hounsfield Unit (HU) truncation to a range −400 HU

to 1,024 HU (to reduce the impact of artifacts on radiomics

features), followed by image noise normalization using a

Laplacian of Gaussian filter from the PyRadiomics library with

hyperparameter values for sigma2 = {1,3} (20, 23) (see Figure 1).

Radiomics feature extraction
PyRadiomics features extraction

We used a three-stage process to determine the region of interest

(ROI) used for extracting radiomic features. The first stage consisted

of CT scan alignment achieved by principal component analysis

(PCoA), followed by chest isolation through mathematical

morphology-based denoising, and finally chest segmentation based

on connected regions (24). In the second stage, the lung was

automatically segmented based on the detected skin boundary,

rough segmentation of lung contour, and pulmonary parenchyma

refinement. Next, this lung segmentation was intersected with a

clustering-based nodule mask to identify a nodule ROI agnostic of

size, position, and spreading near or through the pleura, utilizing the

relative symmetry of the lung (25). These ROIs were then assessed for

clinical appropriateness in view of known shortcomings of

segmentation techniques reported in the radiomics literature that

extend beyond the objective of the current study but for which,

nonetheless, we present an alternative in the form of a new

DeepRadiomics method. From the segmentation, the PyRadiomics

library v3.0.1, an open-source python package for the extraction of

radiomics features from medical imaging, was used to extract 94

candidate radiomics features: 19 first-order features and 75 second-

order features with a Laplacian of Gaussian (LoG) filter applied (26).

The reproducibility of extracting PyRadiomics features from different

segmentations has been well studied, and a high reproducibility was

reported for first-order, Laplacian, Gaussian-filtered features and

texture features, but low reproducibility for shape and wavelet

features. Indeed, wavelet features were extracted but omitted from

analyses due to the high association with the acquisition parameters.

DeepRadiomics features extraction

We proposed a new data-driven alternative to the traditional

PyRadiomics method. We followed the emerging interest in deep

learning models to provide suitable high-throughput extraction of

quantitative imaging features from medical images (27, 28). A

VGG16 backbone was pre-trained to learn image features

followed by a SimCLR process, a self-learning framework for

contrastive learning of visual representations (29, 30). The pre-
frontiersin.org
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training datasets consisted of the public dataset [Lung Image

Database Consortium (LIDC)], after applying the CT scan

normalization procedure described in this article (31), in order to

leverage a larger dataset of lung CT scans also obtained across

multiple institutions and acquisition parameters. The pretraining

was made on 2D patches of 48 × 48 pixels, centered on the nodules.

For each image in a batch, we applied two different sets of data

augmentation (random translation, rotation, flip, gaussian blur, and

zoom), while training the model to correctly identify pairs of images

representing the same nodule among other nodules in the same

batch. In our proposed method, relevant images were processed

using the pretrained SimCLR network, and automatically learned

features were extracted from its last convolutional layer. Patch input

could not be smaller than 32 × 32 due to the model architecture

backbone, so we expanded context as needed for ROIs smaller than

this. Finally, the full ROI bounding box derived from the annotation

process was used instead of segmenting or delineating potential

lesions as is usually required in radiomics, which we see as further

contributing to clinical generalization.

Toward the generalizability of AI models across
healthcare settings

We designed a global hyperparameter search framework (the

“GHPS”) to autonomously determine the final artificial intelligence

(AI) model based on generalization-optimizing parameter

configurations rather than performance-optimizing configurations.

GHPS is ideally implemented by iteratively performing cross-center

cross-validation testing over all combinations of parameters

composed of the following four methods (32): (a) feature

extraction, (b) feature selection, (c) model selection, and (d) model

hyperparameter tuning. To reduce computational complexity, we

elected to perform cross-validation testing, after processing all data

with our normalization strategy, over all combinations of parameters

consisting of (i) feature selection, (ii) model selection, and (iii) model

hyperparameter tuning. Finally, our cross-validation testing allowed

for refining the estimated final model with the best average
Frontiers in Oncology 04
performance remaining within small cross-center variability in

performance, thus ensuring optimal generalizability.

We used a Sobol sequence for the randomized hyperparameter

search to construct low discrepancy sets (33). The feature selection

space was optimized for removing highly correlated features using a

Spearman rho method with thresholds ranging from 0.8 to 1, as well

as evaluating the optimal feature reduction method from among (a)

F-test, (b) three relief-based algorithms from the open-source

library ReBATE (34), or (c) a custom implementation of the

Maximum Relevance − Minimum Redundancy strategy (35).

Model selection space was optimized for identifying non-

overfitting methods on our datasets (across folds) from logistic

regression and XGboost, and then defining the optimal

parametrization of such, considering (a) a metric of calibration

with Nagekjerje’s R index (average), (b) metrics of discrimination

with the area under the curve (AUC), and (c) a metric of goodness

of fit with the Brier’s score; altogether, the agreement of these

metrics is chosen as a proxy for generalizability due to their ability

to capture (correlate with) the variance of the AUC (Supplementary

Table 1). Moreover, we extended this observation by measuring the

Youden’s J statistics from both the discovery and validation models

where the Clinical + DeepRadiomics model had a superior Youden

score compared to Clinical + PD-L1 or Clinical + PyRadiomics,

informing on the probability of a model to support an informed

decision as opposed to a random guess, taking into account all

model predictions (Supplementary Table 2).

The model with both best average and smallest variability in

performance across folds was selected as the final model. The

hyperparameter tuning space of the “selected model” was optimized

for discovering the final 5 to 20 features best representing the complete

information space (at each fold), inclusive of a set of 5 fixed features

comprising lesion radius, ECOG score, age, smoking history (never/

former/current), and first-line ICI (yes/no), with and without including

PD-L1 status. In that manner, imaging features would only be

identified in case of complementing clinically relevant features as per

our primary objective.
FIGURE 1

Radiomics workflows used in the study. The upper panel represents PyRadiomics pipeline including, sequentially, the segmentation input and hand-
engineered feature extractions. The lower panel represents the DeepRadiomics pipeline with weakly supervised region extractions and automated
feature learning extractions.
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We used the bootstrap 95% confidence interval of the model

performance in the discovery cohort for establishing a judgment of

generalizability to the validation cohort (36). We determined the

success of a biomarker’s generalizability test when its estimate of the

AUC derived from the validation cohort fell within the confidence

interval of estimate of the AUC derived from the discovery cohort.
Results

Cohort description

This study included a total of 910 eligible patients from four

institutions. A first selection was made on availability of imaging

within 3 months prior to initiation of ICI therapy, which resulted in

the exclusion of 147 patients. Then, we excluded 121 patients for

which a primary lesion could not be clearly delineated in the

annotation process, to reach a final population of 642 patients

(Supplementary Figure 1). A total of 512 patients from the

discovery cohort had a median PFS of 5.5 months (95% CI [4.8–

6.7]) and 130 patients from the validation cohort had a median PFS
Frontiers in Oncology 05
of 6.1 months (95% CI [5.1–7.5]) (p = 0.377). There were no

statistical differences between the discovery and validation cohorts

regarding the mean age, sex proportion, history of smoking,

distribution of ECOG status, stage, or distribution of the PD-L1

group (all p > 0.05) (Table 1). However, a larger proportion of

patients in the validation cohort received ICI as first-line therapy

(72%) compared to the discovery cohort (39%) (p < 0.001)

(Table 1). With respect to outcome, the proportion of patients in

discovery and validation cohorts with PFS at 6 months were 51%

and 46%, respectively (p = 0.377).
Benchmark of clinical outcome prediction
with standard clinicopathological features

First, we sought to define the role of standard-of-care

prognostic score using only clinical variables (age, ECOG status,

smoking status, and line of treatment) alone or in combination with

PD-L1 expression to establish a benchmark for clinical outcome

prediction. The best clinical prognostic factor for PFS-6 was

obtained with the combination of Clinical + PD-L1 expression
TABLE 1 Baseline characteristics of 642 patients segregated into the discovery and validation cohorts.

Discovery cohort
n=512

Validation cohort
n=130

p-value

Age - median [IQR] 68.3 [62.3, 73.8] 67.1 [60.5, 72.8] 0.232

Sex - n (%)
Male
Female

258 (51)
254 (49)

69 (53)
61 (47)

0.653

Smoking history - n (%)
Current or former
Never

466 (92)
46 (8)

125 (97)
5 (3)

0.067

ECOG status - n (%)
0
1
>2

137 (27)
292 (59)
68 (14)

37 (29)
77 (59)
16 (12)

0.514

Stage - n (%)
III
IV

52 (10)
460 (90)

11 (8)
119 (92)

0.642

Histology - n (%)
Adenocarcinoma
Squamous
Other

404 (79)
29 (6)
79 (15)

89 (69)
13 (10)
28 (21)

0.034

PD-L1 status - n (%)
<1%
1-49%
≥50%

97 (22)
117 (27)
223 (51)

36 (29.0)
34 (27.4)
54 (43.5)

0.222

Line of treatment - n (%)
First line
Second line or more

197 (39)
315 (61)

94 (72)
36 (28)

<0.001

Type of treatment - n (%)
ICI alone
Chemotherapy-ICI

469 (91)
43 (9)

76 (59)
54 (41)

<0.001

Progression-free survival - n (%)
≥ 6 months
< 6 months

260 (51)
252 (49)

60 (46)
70 (54)

0.377
fron
Italic terms define the p-value.
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with an AUC of 0.66 (95% CI [0.61–0.70]) in the discovery cohort

and 0.62 (95% CI [0.53–0.72]) in the validation cohort

(Supplementary Figures 2A, D). Clinical markers alone did not

perform as well with an AUC of 0.64 (95% CI [0.59–0.69]) and 0.58

(95% CI [0.49–0.69]) in the discovery and validation cohort,

respectively. Similarly, the AUC of the model with PD-L1

expression alone was 0.56 (95% CI [0.52–0.61]) in the discovery

cohort and 0.59 (95% CI [0.48–0.70]) in the validation cohort

(Supplementary Figures 2B, C, E, F).
Radiomics prediction
without harmonization

Subsequently, we measured the predictive role of radiomics

with no harmonization. We used PCoA to facilitate the projection

and visualization of high-dimensional radiomic feature data. Before

data harmonization, using PyRadiomic features, we observed

clustering by CT scan slice thickness, manufacturer, kernel, and

academic centers (Figure 2A). PCoA obtained from DeepRadiomics

revealed similar clustering effect across the different medical

centers, CT vendors, reconstruction kernels, and slice thicknesses

(Figure 3A). These clusters were expected based on the important

difference in CT acquisition parameters from each center

(Supplementary Table 3). Without CT harmonization, a model

combining Clinical + PyRadiomics or DeepRadiomics features to

predict PFS-6 featured had an AUC of 0.69 (95% CI [0.64–0.74])

and 0.69 (95% CI [0.64–0.74]), respectively, in the discovery cohort

(Supplementary Figure 3A). Nevertheless, AUC in the validation

cohorts did not generalize; the AUC was 0.57 for Clinical +

PyRadiomics and 0.52 for Clinical + DeepRadiomics both outside
Frontiers in Oncology 06
their respected interval CI obtained in the discovery cohorts

(Supplementary Figure 3B).

Next, we aimed to include PD-L1 to these models to improve

generalizability. First, PD-L1 did not increase the AUC in the

discovery cohorts for both radiomic signatures with AUC

reaching 0.71 compared to 0.69 without PD-L1 (Supplementary

Figure 3C). Second, the addition of PD-L1 did not support the

generalizability of performances in the validation cohorts

(Supplementary Figure 3D).
Image processing-based harmonization of
radiomics features

Following the normalization of raw CT scans data detailed in

the “CT scan normalization” section, and processing first for

PyRadiomics, we obtained a relatively homogeneous population

for the clusters of slice thickness, manufacturer, and site

(Figure 2B). Despite improvement in kernel distribution on the

PCoA, visual clustering was still observed.

Next , the same normal iza t ion method a longs ide

DeepRadiomics revealed a broad homogenization across the four

parameters of interest including kernel (Figure 3B). Of note, we

observed, after normalization, two populations across all PCoA.

After further investigation, we confirmed that these populations

were a result of the patch size of 48 × 48 pixels used during

pretraining of the VGG16 backbone introduced in the

“DeepRadiomics features extraction” section (Supplementary

Figure 4A). To assess if the radius clusters were confounders for

PFS-6 months, we represented a PCoA for DeepRadiomics features

vs. PFS-6 months (Supplementary Figure 4B). We observed that
A

B

FIGURE 2

(A) Principal component analysis (PCoA) of PyRadiomics representation of various CT-scan acquisition parameters (Slide thickness, Manufacturer,
Kernel, and Site) prior to image harmonization. (B) PCoA of PyRadiomics representation of various CT-scan acquisition parameters (Slide thickness,
Manufacturer, Kernel, and Site) after image harmonization. PyRad, PyRadiomics.
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there was no association of radius cluster with PFS-6 months. Our

results showed that, after normalization, we were able to mitigate

for variation across medical centers, CT vendors, acquisition

variability, and reconstruction kernels.
Performance of AI-based radiomics
signature designed for generalizability

Having laid out the foundation to construct a radiomic

signature across centers, we sought to implement a global

hyperparameter search framework (the “GHPS”) to determine the

optimal combination of machine learning and imaging features to

establish a final radiomics biomarker to predict PFS-6.

First, using this construct, the combination of Clinical +

PyRadiomics depicted an AUC of 0.66 (95% CI [0.61–0.70]) and

0.59 (95% CI [0.49–0.68]) in the discovery and validation cohorts,

respectively, failing to meet the validation criteria for

reproducibility (remaining within the discovery CI), de facto

failing the generalizability objective (Figures 4A, B).

Second, the combination of Clinical + DeepRadiomics features

reached an AUC of 0.67 (95% CI [0.63–0.73]) and 0.63 (95% CI

[0.53–0.73]) in the discovery and validation cohort, respectively

(Figures 4C, D). The validation cohort AUC of 0.63 also fell within

its 95% CI estimate in the discovery cohort, meeting our

generalizable objective. Interestingly, these results were

comparable to Clinical + PD-L1 currently used in routine

oncology practice. Moreover, both models also depicted a lower

bound on the 95% CI of these models that was greater than 0.50 in

the discovery cohort, confirming the predictive value of these

models. Third, using both models, the addition of PD-L1 did not
Frontiers in Oncology 07
increase the performances (similar AUC) or the generalizability

(Supplementary Figures 5A–D).

Finally, to provide valuable insights for future research to be

leveraged as part of prior information for statistical study design, we

conducted an exploratory assessment of non-inferiority using

permutation analyses. Indeed, it is important to note that our

study was not specifically designed or adequately powered for

standard non-inferiority testing. Nonetheless, our findings

indicate that the AUC of the Clinical + DeepRadiomics model

was not statistically lower than the AUC of the Clinical + PD-L1

model (mean difference across permutations: 0.00035; p-

value: 0.617).
Discussion

Radiomics represent a promising non-invasive biomarker for

patients amenable to ICI; however, generalizability especially in

various centers represent the major limitation (10, 19). In this large

study of advanced NSCLC treated with ICI across four institutions,

we demonstrated that a risk prediction model that combined

Clinical + DeepRadiomics was generalizable and was non-inferior

to the Clinical + PD-L1 model currently used by oncologists to

predict PFS-6 months.

Importantly, our results showed that, after generalizability,

DeepRadiomics methods had a better performance than the

PyRadiomics pipeline. This could be explained by our proposed

combination of traditional harmonization techniques, which,

together with a generalization-optimizing AI framework,

overcomes these limitations of previous models that did not

generalize and enables clinical utility. Our AI framework involves
A

B

FIGURE 3

(A) Principal component analysis (PCoA) of DeepRadiomics representation of various CT-scan acquisition parameters (Slide thickness, Manufacturer,
Kernel, and Site) prior to image harmonization. (B) PCoA of DeepRadiomics representation of various CT-scan acquisition parameters (Slide
thickness, Manufacturer, Kernel, and Site) after image harmonization. DeepRad, DeepRadiomics.
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two automated steps: the discovery of relevant imaging features using

DeepRadiomics that delivers informative, reproducible, and stable

compressed representation of an imaging data space, and a global

hyperparameter search that iteratively loops over all combination of

the three methods used in our modeling process: (a) feature selection

that chooses the best algorithm that identifies features to include in

the model, maintaining the most “informative” features, and

removing noisy “non-informative,” irrelevant and redundant

features; (b) model selection that determines which machine

learning estimator to use; and (c) hyperparameter tuning, which

defines the optimum hyperparameter values to use for each

estimator. While computationally intensive, this global search

allows for the data-driven exploration of the somewhat

unpredictable interplay between models and features (23).

Consequently, we avoided radiomics features that were

independently selected from other factors and/or not solely derived

from the training portion of the data (in the machine learning

training–validation–test sense), typically subject to an often-

overlooked look-ahead bias and loss of future generalizability,

addressing the problem of inappropriately applying cross-validation

methods to feature selection (37).

However, the addition to our signature combining DeepRadiomics

+ Clinical was not improved by the implementation of a third

parameter such as PD-L1. This could be explained by the limited
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discovery dataset available in this trial, which would otherwise be

necessary to increase model parameters with sufficient examples for

machine learning. Altogether, we obtained strong AUC in the

discovery cohort independent of PD-L1 expression; however, there

was no evidence of generalizability in the validation cohorts. This

observation confirms that in the absence of homogeneous PCoA,

radiomics validation is limited.

Furthermore, we acknowledge limitations in this study. First,

although the CT scans were obtained from four institutions, only

two physicians (a radiation oncologist and a radiologist) performed

the image segmentations, reducing inter-observer variabilities.

Second, the use of PyRadiomics is limited by the radiomic

features being extracted from segmented ROI that required at

least some degree of direct planimetry (and therefore additional

physician time), subject to inter-annotator variability (38). This

limitation was not present for the DeepRadiomics method we

proposed, which does not require a segmentation input. Third,

the validation cohort baseline characteristics had more patients

treated with first line, which could decrease the performance of our

model. Indeed, prior chemotherapy could impact the image

features. Also, combination treatment such as chemotherapy with

immunotherapy could modify the reproducibility of our model.

Nevertheless, the DeepRadiomics method and the AI

generalizability framework were able to mitigate this challenge.
A

B D

C

FIGURE 4

Receiver operating characteristic (ROC) curves for PFS-6 months prediction models with (A) Clinical (age, ECOG status, smoking status, and line of
treatment) + PyRadiomics after harmonization, (B) Clinical + DeepRadiomics after harmonization in the discovery cohorts, (C) Clinical +
PyRadiomics after harmonization, and (D) Clinical+ DeepRadiomics after harmonization in the validation cohorts. PyRad, PyRadiomics; DeepRad,
DeepRadiomics.
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Lastly, with a primary objective to assess model generalizability, we

eventually lacked the power to undertake non-inferiority testing.

Our current results would indeed motivate further investigation in

that direction, on another larger cohort of patients.

In conclusion, this radiomics generalizability study was able to

demonstrate that a DeepRadiomics signature with harmonization

developed in a discovery cohort from various centers could

overcome the negative impact of variable CT acquisition

parameters and then could be validated in an independent cohort.

This DeepRadiomics harmonization signature warrants further

improvement and validation in external cohorts of patients with

NSCLC treated with ICI and opens a new non-invasive

biomarker strategy.
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PJ). VM holds a salary support award from the Fonds de recherche

du Québec – Santé (FRQS: Quebec Foundation for Health

Research). This project was supported by the FRQS, a start-up

fund from the Quebec Heart & Lung Institute Research Center,

along with the Foundation grant from the Quebec Heart & Lung

Institute Research Center.
Frontiers in Oncology 09
Acknowledgments

We thank the Quebec Respiratory Health Research Network-

IUCPQ site Biobank for providing clinical data and tissue from the

IUCPQ cohort.
Conflict of interest

Author BR reports research funding with the company Imagia.

Authors KP, CL-K, FD, LJ, FR, KK, DH, and FIC were Imagia

employees at the time of the study.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1196414/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Flow chart diagram of exclusion and final studied cohorts.

SUPPLEMENTARY FIGURE 2

Receiver operating characteristic (ROC) curves for the prediction models

without radiomics and only with (A) clinical (age, ECOG status, smoking
status, and line of treatment) + immunohistochemistry PD-L1 tumor

expression, (B) representing clinical alone and (C) immunohistochemistry

PD-L1 tumor expression in the discovery and (D-F) validation cohorts.

SUPPLEMENTARY FIGURE 3

(A) Receiver operating characteristic (ROC) curves for the prediction models

with, clinical (age, ECOG status, smoking status, and line of treatment) +
PyRadiomics before harmonization or clinical + DeepRadiomics before

harmonization in the discovery cohorts (B) ROC curves of clinical +

PyRadiomics before harmonization and clinical + DeepRadiomics before
harmonization in the validation cohorts. (C,D) similar ROC curves but with

the addiction of PD-L1 for the discovery and validation cohorts respectively.

SUPPLEMENTARY FIGURE 4

(A) Principal component analysis (PCoA) of DeepRadiomics features after

normalization depicted by the VGG16 backbone network input of 24 pixels

(B) PCoA of DeepRadiomics features stratified by outcome PFS-6 months.

SUPPLEMENTARY FIGURE 5

Receiver operating characteristic (ROC) curves for PFS-6 months prediction

models with (A) Clinical (age, ECOG status, smoking status, and line of
treatment) + PyRadiomics + PD-L1 after harmonization in the discovery cohort

(B) Clinical + PyRadiomics + PD-L1 after harmonization in the validation cohort

and (C) clinical + DeepRadiomics + PD-L1 after harmonization in the discovery
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cohort (D) clinical + DeepRadiomics + PD-L1 after harmonization in the validation
cohort. PyRad, PyRadiomics; DeepRad, DeepRadiomics.

SUPPLEMENTARY TABLE 1

– Generalizability of the performance of the prediction models using

Nagelkerke’s R, Bier’s score and area under the curve (AUC) as measures of
AI-model calibration.
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SUPPLEMENTARY TABLE 2

– Determination of the Sensitivity and Specificity of the Model in discovery
and validation cohorts using the Yonden’s index.

SUPPLEMENTARY TABLE 3

- Baseline characteristics of computed tomography scan characteristics in
the discovery and validation cohorts.
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challenges for the implementation of computational medical imaging (radiomics) in
oncology. Ann Oncol (2017) 28(6):1191–206. doi: 10.1093/annonc/mdx034

10. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A
radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1
or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort
study. Lancet Oncol (2018) 19(9):1180–91. doi: 10.1016/S1470-2045(18)30413-3

11. Castello A, Castellani M, Florimonte L, Urso L, Mansi L, Lopci E. The role of
radiomics in the era of immune checkpoint inhibitors: a new protagonist in the jungle
of response criteria. J Clin Med (2022) 11(6):1740. doi: 10.3390/jcm11061740
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