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Metabolomics analysis revealed the metabolic heterogeneity of cervical cancer

(CC) cell lines C33A and CaSki, and their molecular mechanisms were explored.

Using the modified Bligh-Dyer method, the endogenous metabolites of C33A

and CaSki cells were divided into polar and nonpolar fractions. The metabolites

were analysed by ultra-performance liquid chromatography-quadrupole-time-

of-flight mass spectrometry (UPLC-Q-TOF-MS). Then, the differential

metabolites were screened by combining multivariate statistical analysis and

volcano maps, and functional enrichment and pathway analysis of the differential

metabolites were performed. Finally, association analysis was carried out in

combination with transcriptomics, and the important differential metabolisms

were experimentally verified by real-time PCR (RT−qPCR) and oil red staining.

The results showed that between the C33A and CaSki cell lines, there were

significant differences in amino acids, nucleotides and lipids, such as in threonine,

arachidonic acid and hypoxanthine, in the metabolic pathways. These

compounds could be used as markers of differences in cellular metabolism.

The heterogeneity of lipid metabolism accounted for 87.8%, among which C33A

cells exhibited higher contents of fatty acid polar derivatives, while CaSki cells

showed higher contents of free fatty acids and glycerides. Based on correlation

analysis of the above metabolic differences in HPV pathways as well as lipid

metabolism-related genes, p53 and the genes involved in lipid metabolism

pathways, such as Peroxisome Proliferator Activated Receptor Gamma(PPARG)

and stearoyl-CoA desaturase (SCD), are relevant to the metabolic heterogeneity

of the cells. The differential expression of some genes was validated by RT−qPCR.

CaSki cells showed significantly higher glyceride levels than that of C33A cells, as

verified by oil red O staining and glyceride assays. The above results showed that

the metabolomic differences between C33A and CaSki cells were relatively

obvious, especially in lipid metabolism, which might be related to the
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decreased expression of PPARG and p53 caused by HPV E6. Further studies on

the molecular mechanism of lipid metabolism heterogeneity in cervical cancer

cell lines with or without HPV could provide a new reference for the

development of CC and individualized treatments of tumour patients.
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1 Introduction

Cervical cancer (CC) is among the three most common

gynaecological tumours, and over half a million new cases are

diagnosed per year for women worldwide. Persistent high-risk

human papilloma virus (HR-HPV) infection is a well-established

causative factor in most CCs (1). The pathogenic mechanism of

cervical squamous cell carcinoma (CSCC) caused by HPV16

infection, which accounts for 50-60% of cases (2), is mainly due

to p53 degradation mediated by the encoded E6 protein (3).

However, CC without HPV infection is usually related to the

functional mutation of p53 (4). CC primarily metastasizes

through lymphatic vessels or direct metastases. Radical

hysterectomy, radiotherapy and postoperative cisplatin-based

combination chemotherapy are the main therapeutic regimens.

However, more than 30% of patients show resistance to

radiotherapy, and the recurrence rate of early CC may be greater

than 5% within 4.5 years (5, 6). The current standard of

radiotherapy for locally advanced cervical cancer (LACC) as well

as clinical outcomes has not improved in over 30 years. Multiomics

studies have largely broaden our recognition of cancer metabolism.

CC induced by oncogenic viruses in carcinogenesis can remain in a

precancerous state for several years. Studies aimed at metabolic

phenotype of CC will enhance our knowledge on the disturbance of

viruses with host cells and the development of CC with or

without HPV.

Metabolomics is a field of omics following genomics,

transcriptomics, and proteomics that aims to characterize the

metabolic profiles of cells, body fluids, or tissues to identify the

different metabolites and explore the underlying biological

mechanisms (7). The endogenous metabolism of cells is changed

during tumour progression. Metabolomics is increasingly being

used to discover the key molecular changes behind tumorigenesis;

thus, elucidating the various omics differences in model cells is

essential. Although transcriptome and proteomic differences in CC

cell lines have been reported frequently (8–12), metabolomics has

only been reported once. Kalliopi I. Pappa et al. conducted

metabolomic analysis using ultra-performance l iquid

chromatography (UPLC) and high-resolution mass spectrometry

(MS) and found that both HeLa and Siha cell lines exhibit Warburg

metabolic characteristics and purine salvage pathway activity; in

contrast, C33A cells synthesize cytidine through a novel mechanism

(13). In this study, we focused on the metabolic differences in polar
02
and nonpolar metabolites of an HPV16-positive CC cell line CaSki

established from small intestinal mesenteric metastasis cells and a

HPV negative CC cell line C33A. C33A cells tested negative for

HPV DNA and RNA. The 273rd codon encoding the p53 protein

was changed from arginine to cysteine due to a point mutation.

CaSki cells with HPV can lead to p53 degradation. As a recognized

tumour suppressor gene, p53 plays a very important regulatory role

in the regulation of lipid metabolism in normal cells. The decrease

in p53 certainly leads to an imbalance in lipid metabolism in

cells (14).

In this study, we adopted UHPLC-quadrupole-time-of-flight

mass spectrometry to investigate the metabolomics of CC cell lines

between C33A and CaSki to identify the key metabolic changes

specific to HPV. We used available transcriptome data to identify

the differentially expressed genes that reflect tumour-specific

metabolic alterations and further validated them through

experiments on corresponding metabolic and genetic changes.

Finally, we integrated our metabolic and transcriptome data to

reveal the clearly disrupted pathways at the metabolic and

transcriptional levels and to identify the potential biomarkers that

may contribute to the diagnosis and prognosis of CC, providing a

theoretical basis for individualized treatment of patients with

clinical tumours.
2 Results

2.1 Typical total ion counting (TIC) and
methodological verification

Figure 1 depicts the TIC of hydrophobic(polar) and hydrophilic

(nonpolar) components of the QC group with more

chromatographic peaks and better resolution (R) as well as

response. The relative standard deviation (RSD) of retention time

and peak area for over 85% ions in QC samples were less than 1.0%

and 15.0%, respectively, indicating the good stability of the samples

and instrument system.
2.2 Multivariate statistical analysis

We performed unsupervised principal component analysis

(PCA) to verify the quality control (QC) of the metabolic data.
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The results showed that all C33A, CaSki and QC samples were at

95% Hotelling’s T-squared ellipse and significantly separated into

clusters (Figure S1) without any outliers in these samples.

To obtain a more objective statistical estimation and specific

loadings, OPLS-DA for a model discriminating between the

samples was conducted based on PCA (Figure 2). The OPLS-DA

scatter plot of all models (R2Y(cum)≥0.99, Q2 (cum)≥0.949)

presented good R-squared and predictive ability. Partial

permutation test results (200 times) showed intercepts of R2

≤0.908 and Q2 ≤-0.442 in all the models. If all blue Q2 values

were lower than the value of the original point or the blue regression

line of the Q2 point intersected the vertical axis at or below 0

according to the criterion, these PLS-DA models exhibited a lower

risk of overfitting. The above results suggested that PLS-DA models

could identify the differentially enriched metabolites between the

C33A and Caski groups and thus output VIP values of

each variable.
2.3 Analysis of the metabolite differences
between C33A and CaSki

VIP values were generated on the premise of confirming the

reliability of the models. Volcano plots were constructed according

to the differential fold change of peak area with p value of t test

(Figure S2), metabolites with fold ≥ 1.50 or ≤ 0.67 and p value <0.05

were screened, and differential metabolites were determined in

combination with VIP ≥ 1.0.
Frontiers in Oncology 03
Based on information, such as the retention time, precise

molecular weight, and secondary fragments, differential

metabolites were identified through the Lipidview database and

Progenesis QI software. A total of 99 differential metabolites were

identified from the polar group, mainly including fatty acid (FA)

derivatives, amino acids and lysophospholipids (LPLs). A total of

114 differential metabolites were identified from the nonpolar

group, and these metabolites mainly included phospholipids (PL),

glycerides and their derivatives, in addition to a small amount of

amphiphilic molecules, such as sphingosine derivatives,

lysophosphatidic acid (lysoPA), and saturated and unsaturated

FAs (Figure 3; Table S1). Classical univariate ROC curve analysis

showed that threonine, arachidonic acid and hypoxanthine could be

used as biomarkers to identify C33A and CaSki cells (Tables S2, 3).

Among them, metabolites in the polar group with an over 10-fold

differences in expression are shown in Table S2, and those with an

over 10-fold difference in expression in the nonpolar group are

shown in Table S3.

MetaboAnalyst 5.0 software was used to analyse the heatmap of

polar and nonpolar differential metabolites. Considering the large

differences, the intragroup mean values of the top 25 metabolites

with the largest differences were selected for heatmap analysis

(Figures 4A, B). Overall, the levels of LPL, linoleamide, 3-

ketosphingosine, N-palmitoyl threonine and stearoylglycine in

CaSki cells were significantly lower than those in C33A cells,

while FA derivatives with less polar groups, such as sebacic acid,

pentadecenoic acid, octadecendioic acid, a-linolenic acid,

docosatrienoic acids, octadecanedioic acid, prostaglandin E1, oleic
A B

DC

FIGURE 1

Typical chromatogram. (A) hydrophobic components detected by positive ion mode (ESI+). (B) hydrophobic components detected by negative ion
mode (ESI−). (C) hydrophilic components detected by positive ion mode (ESI+). (D) hydrophilic components detected by negative ion mode (ESI−).
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acid, docosahexaenoic acid (DHA) and arachidonic acid, were more

highly expressed in CaSki cells than in C33A cells (Figure 4A).

Figure 4B also suggests that CaSki cells had higher triglyceride (TG)

contents than C33A cells, while the phospholipid derivatives with

polar groups were lower. All the differential metabolites in

Supplementary Table 1 were analysed together. According to their

composition characteristics, these differential metabolites could be

subdivided into 7 categories, including amino acids, saturated FAs,

unsaturated FAs, phospholipids and their derivatives, glycerides,

lysoFAs and other metabolites. The differences in the absolute

expression of the first six kinds of metabolites are shown in

Figures 4C–H. Most amino acids, including arginylleucine, L-

glutamic acid, L-phenylalanine and phenylpyruvic acid, exhibited

higher expression in C33A cells than in CaSki cells. Only threonic

acid was less expressed in C33A cells than in CaSki cells (Figure 4C).
Frontiers in Oncology 04
Except for a few TGs with fewer than 54 carbon atoms, such as TG

(52:9) and TG (53:8), most diglycerides (DGs) and TGs were more

highly expressed in CaSki cells than in C33A cells. The analysis of

the correlation between the carbon atom number of triglycerides

and cell expression differences showed that TAG with carbon atom

numbers between 50 and 53 had higher expression in C33A cells,

while those between 54 and 62 showed higher expression in CaSki

cells (Spearman correlation coefficient r = -0.676, significance of

two-tailed T test p=0.000, Figure S3). FA derivatives, such as 2-

aminomuconic acid, N-myristoyl methionine, N-palmitoyl

glutamine, N-palmitoyl threonine, N-stearoyltaurine,

palmitoleamide, palmitoylglycine, stearoylethanolamide,

stearoylglycine and tetradecanoylcarnitine, were present in high

amounts in C33A. Saturated FAs with two carboxyl groups,

hexadecanedioic acid, octadecanedioic acid, pentadecanoic acid,
A

B

D

C

FIGURE 2

PLS-DA score plots(left) with corresponding permutation test plots (right) derived from (A) hydrophobic components detected by positive ion mode
(ESI+). (B) hydrophobic components detected by negative ion mode (ESI−). (C) hydrophilic components detected by positive ion mode (ESI+).
(D) hydrophilic components detected by negative ion mode (ESI−) in LC–MS metabolite profiles between C33A and CaSki.
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A B C

FIGURE 3

The sector graphs of differential metabolites. Differential metabolites were determined by the use of Lipidview database and Progenesis QI software.
Cluster analysis of differential metabolites in the polar group (A) as well as the nonpolar group (B). (C) Cluster analysis of total lipid metabolites in
the metabolome.
A B

D E

F G H

C

FIGURE 4

The differential clusters and heat map analysis of all metabolites. The heat map analysis of differential metabolites in the polar group (A) and
nonpolar group (B). The differential expression analysis of amino acids and derivatives (C), DAG and TAG (D), saturated FAs and derivatives (E),
unsaturated FAs and derivatives (F), lysoFAs and derivatives (G), phospholipids and derivatives (H).
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tetradecanedioic acid and undecanedioic acid, were at a relatively

high level in CaSki (Figure 4E). Furthermore, unsaturated FAs that

are abundant in C33A cells, such as 3,5-tetradecadiencarnitine,

sphingosine, oleoylethanolamide, N-oleoyl tyrosine and linoleoyl

ethanolamide, are usually modified by polar compounds. However,

those in CaSki cells, such as sciadonic acid, eicosapentaenoic acid,

2-hydroxylinolenic acid, a-linolenic acid, docosahexaenoic acid, 9-
hydroxylinoleic acid, arachidonic acid, docosatrienoic acid, oleic

acid and prostaglandin E1, were not modified or only hydroxyl

groups were added to the unsaturated FA chain (Figure 4F). In-

depth analysis of 12 kinds of w-3 and w-6 FAs and their derivatives

showed that only linoleamide (w-6) and N-arachidonoylglycine (w-
6) had high levels in C33A cells. Compared to CaSki cells, the

expression of LPL, which was abundant in C33A cells, was generally

not lower; the most significant differences were observed in LysoPA

(16:0), LysoPC (18:0), LysoPC (18:1), LysoPE (18:1) and LysoPS

(18:2) (Figure 4G). Phospholipids and derivatives of PA (38:2), PA

(34:0), PE (32:1) and PI (40:6) were highly expressed in C33A cells,

while PC (40:7), PC (40:9), PC (42:6), PC (42:8), PE (44:1) and PE

(44:2) were highly expressed in CaSki cells (Figure 4H). Based on

the integrated metabolic data, we found that the metabolic

differences between C33A and CaSki cells were mainly focused on

lipids. Statistical correlation between the polar distribution of FA

metabolites and up/downregulated gene expression in C33A and

CaSki cells suggested that most polar and nonpolar FAs (such as

triglycerides and diglycerols) had a C33A/CaSki ratio of less than 1.

However, most FA derivatives with other polar groups (such as

linoleoyl ethanolamide, glycerophosphatidic acid (PA),

phosphatidylcholine (PC), phosphatidylglycerol (PG),
Frontiers in Oncology 06
phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidyl

ethanolamine (PE) and LPL derivatives) had a C33A/CaSki ratio

of greater than 1. The results above were statistically significant

(Spearman correlation coefficient r=0.791, significance of two-tailed

T test p=0.000, Figure S4). That is, C33A cells had a higher content

of FA derivatives and stronger polarity than that of CaSki cells.

Compared with C33A cells, CaSki cells had a higher content of

simple FA chains and weaker polarity.
2.4 Enrichment and metabolic pathway
analysis of C33A and CaSki

Enrichment and metabolic pathway analyses were carried out

using MetaboAnalyst5.0 software. The overview of enriched

metabolite sets (top 25) is represented by a bubble diagram. The size

and colour of the bubble suggest the enrichment ratio and p value,

respectively (Figures 5A, B). The metabolic pathway analysis directly

indicated that metabolic pathways with the maximum difference

between C33A and CaSki were determined with a pathway impact

value ≥0.1 as the standard (Figures 5C, D). The results of polar group

enrichment analysis showed that C33A and CaSki cells showed

significant differences in the biosynthesis of aromatic amino acids

(phenylalanine, tyrosine and tryptophan) and unsaturated FAs, as well

as phenylalanine metabolism, while linoleic acid metabolism and

unsaturated FA biosynthesis were observed in the nonpolar group.

Consistent with this conclusion, KEGG analysis also suggested that the

differences between C33A and CaSki in the polar group were mainly

concentrated on aromatic amino acid biosynthesis (impact=1.0000),
A B

DC

FIGURE 5

Metabolic enrichment and pathway analysis of C33A and CaSki. Metabolic GO enrichment analysis of enriched metabolite sets (Top25) in the polar
group (A) and nonpolar group (B). Metabolic pathway analysis of the polar group (C) and nonpolar group (D). The horizontal axis represents the
pathway impacts and vertical axis represents the -log10(p-value).
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phenylalanine metabolism (impact=0.6190), D-glutamine and D-

glutamic acid metabolism (impact=0.5000), a-oleic acid metabolism

(impact=0.3333) and arachidonic acid metabolism (impact=0.3135),

while glycerophospholipid metabolism (impact=0.3562), linoleic acid

metabolism (impact=1.0000) and arachidonic acid metabolism

(impact=0.3145) were enriched in the nonpolar group.
2.5 Transcriptomic analysis and correlation
analysis with metabolomics

Based on the known transcriptome differences between C33A

and CaSki cells in the GEO database, more than 10,000 genes were

statistically significant (p < 0.05) (Table S4). Although the

transcriptome pathway analysis could not obviously reveal the

lipid metabolism-related pathway, it was observed that the

pathway of “human papillomavirus infection” was significantly

downregulated in C33A cells compared with CaSki cells

(p=7.41e-08), indicating that the transcriptome data obtained were

reliable (Figure S5). Through the KEGG and SMPDB websites, we

screened P53-related genes and analysed their association with

metabolomics. The results showed that P53 pathway-related genes

were not directly related to metabolomics. The correlation analysis

of HPV-related genes, consistent transcriptomic differential genes

associated with metabolomics, showed that only seven HPV

pathway genes (PTGS2, P53, GNAS, BAX, TNF, VEGFA, and

PTEN) were related to lipid synthesis (Figure S6; Table S5). A

total of 391 genes related to metabolic pathways, such as

glycerolipid metabolism, unsaturated FA metabolism, linoleic acid

metabolism and arachidonic acid metabolism, were screened by the

same method, and 244 genes were consistent with transcriptome

differences (Figure 6A). The 244 genes and 213 differential

metabolites were input into the “Network Explorer” module of

the MetaboAnalyst5.0 website to analyse the interaction between

genes and metabolism in the “Gene−Metabolite Interaction

Network” (Figure 6B; Table S6), demonstrating that there were 95

genes involved in lipid metabolism. The top 10 most relevant genes
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were FA desaturase 2 (FADS2), arachidonate lipoxygenase 3

(ALOXE3), peroxisome proliferator activated receptor-g (PPARG),
stearoyl-CoA desaturase (SCD), peroxisome proliferator activated

receptor-a (PPARA), galactosidase-a (GLA), stearoyl-CoA

desaturase 5 (SCD5), long chain FA CoA ligase 1 (ACSL1),

lecithin-cholesterol acyltransferase (LCAT) and FA synthase

(FASN). Except for the unknown functional correlation of GLA,

the other 9 genes were related to FA metabolism, which further

confirmed the difference in lipid metabolism between C33A and

CaSki cells.
2.6 Lipid metabolism gene validation, oil
red assay and total glyceride detection

Real-time fluorescent quantitative PCR primers were designed

for the single functional genes of Table S7 related to metabolism,

and the differences in lipid metabolism genes between C33A and

CaSki cells were detected (Figure 7A). Compared with C33A, the

expression of other genes except for prostaglandin peroxide

synthase 2 (PTGS2) was downregulated in CaSki cells, and the

function related to lysoFA synthesis, FA decomposition,

desaturation, intake, transportation and metabolism. The results

indicated that CaSki contained notably higher TG content than that

of C33A (Figure 7B). In addition, the oil red assay also confirmed

that the lipid content of CaSki was significantly higher than that of

C33A (Figures 7C, D).
3 Discussion

Metabolomics of tumours is a high-throughput technique used

to study the endogenous metabolic changes in the body from the

whole and multiple perspectives (7), as well as to clarify the

tumorigenesis and development of diseases. Although metabolic

biomarkers related to CC have been widely reported, the differences

in cell metabolism that distinguish CC with or without HPV have
A B

FIGURE 6

Gene and metabolism correlation analysis. (A) Relevant genes associated with different lipid metabolic pathways. (B) Correlation analysis of
metabolomic and transcriptomic differential genes.
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not been studied until now. By analysing the metabolites of C33A

and CaSki cells, a total of 99 metabolites were yielded from the

positive and negative ion groups of polarity, which were mainly FA

derivatives, amino acids and LPLs. A total of 114 different

metabolites were confirmed from the positive and negative ion

groups of the nonpolarity, mainly phospholipids, glyceride and

their derivatives, in addition to a small amount of sphingosine

derivatives, lysoFAs, saturated and unsaturated FAs, etc. Regarding

amino acid metabolism, the expression of C33A was upregulated in

almost all the differential amino acids compared to CaSki, and only

threonic acid showed the opposite trend. GO and KEGG analyses

indicated that these differences were largely associated with the

biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as

the metabolism of phenylalanine. Notably, the threonine content in

C33A cells was significantly lower than that in CaSki cells (average

of C33A/CaSki = 0.0765). However, N-palmitoyl threonine in C33A

cells was dramatically higher than that in CaSki cells (average of

C33A/CaSki = 431.9820). We speculated that CaSki cells cannot

synthesize threonine well into N-palmitoyl threonine, and the

function of the latter remains unknown. Threonine participates in

lipid metabolism, and several studies have shown that threonine

may be a positive regulator of lipid metabolism disorders (15–17).

Additionally, the results of polarity group analysis showed that the

expression of 4-ketoretinol, hypoxanthine and thymidine was

downregulated in C33A compared with CaSki. Conversely, AMP,

pantothenic acid, folinic acid and tryptamine were upregulated in

C33A compared to CaSki. AMP, hypoxanthine and thymidine are
Frontiers in Oncology 08
mainly involved in nucleotide metabolism, while 4-ketoretinol,

pantothenic acid and tryptamine are primarily involved in lipid

metabolism. According to the above metabolic differences, we

deduced the overall metabolic differences between C33A cells and

CaSki cells, as shown in Figure 8. As we know, the TCA cycle is the

center of metabolism, and the intermediate products of the cycle are

important substrates for the synthesis of amino acids (such as

threonine, tyrosine and glutamic acid, etc.). Acetyl-coA produced

by the TCA cycle is the most important substrate in fatty acid

synthesis. and oxaloacetic acid produces pyruvate through

decarboxylation, which can further generate a-phosphoglycerol,
which participates in lipid metabolism as a substrate for glycerol

ester synthesis, or converted into glucose 6-phosphate, which in

turn produces ribose through the pentose phosphate pathway and

participates in nucleotide metabolism. Of course, glutamate and

other substances in amino acid metabolism are also important

substrates for base synthesis. The differences in metabolites and

enzyme activity ultimately lead to significant metabolic differences

between C33A and Caski cells on the layers of nucleic acid, lipid,

and amino acid.

Lipid metabolism changes represented by FA synthesis (FAS)

and FA oxidation (FAO) have been increasingly recognized as an

important metabolic recombination phenomenon in tumour cells.

Tumour cells can also hydrolyse the reserved FAs to maintain cell

growth when needed. FAs obtained by FA hydrolysis are

decomposed through the mitochondrial FA b-oxidation pathway

to produce a large amount of acetyl-CoA to meet the energy
A B

DC

FIGURE 7

Validation of lipid metabolism of C33A and CaSki. (A) Differential expression of the genes related to lipid metabolism through RT-qPCR.
(B) Detection of differences in triglyceride metabolism. Oil red O staining of C33A (C) and CaSki (D) cells. *mean p < 0.05.
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demand of rapid cell proliferation. The generated acetyl-CoA can

enter the tricarboxylic acid (TCA) cycle or be transported to the

cytoplasm as citric acid to synthesize FAs. Excess acetyl-CoA can be

esterified with cholesterol or diacylglycerol (DAG) to form

cholesterol esters (CE) or triacylglycerol (TG) and be stored as

lipid droplets (18). Enrichment pathway analysis of lipids showed

that differential metabolites of C33A and CaSki cells were associated

with the metabolism of glycerophospholipids, linoleic acid and

arachidonic acid. The glycerophospholipids above then

decompose one molecule of the FA chain under the exposure of

phospholipase to become LPLs. Hydrophobic triglycerides and their

derivatives constitute an important component of the cell

membrane, and their content accounts for nearly 50% of the total

amount of the cell membrane. Different membrane lipid

compositions in cells may be a sign of lipid metabolism changes.

Our omics analysis demonstrated that phospholipids and

derivatives such as PA (38:2), PA (34:0), PE (32:1) and PI (40:6)

were highly expressed in C33A cells. PC (40:7), PC (40:9) and PC

(42:6) showed upregulated expression in CaSki cells .

Correspondingly, LPLs were generally expressed at high levels in

both CaSki and C33A cells, and their expression in C33A cells was

usually higher than that in CaSki cells, with the most significant

differences in LysoPA (16:0), LysoPC (18:0), LysoPC (18:1), LysoPE

(18:1) and LysoPS (18:2). LPLs are produced by the hydrolysis of

phospholipid-related substances under the catalysis of

phospholipase, resulting in the loss of one molecule of FAs. The

activity of phospholipase affects its content, but too many LPLs,

such as lysophosphatidylcholine (LPC), are harmful to cells and

lead to inflammation, oxidative stress damage and cell apoptosis. In

cell culture, apoptosis or inflammation caused by high levels of
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LPCs did not occur in C33A cells. It is possible that other kinds of

LPLs disrupt the effect of LPCs.

Another manifestation of lipid metabolic heterogeneity in both

CC cell lines (CaSki and C33A) is the difference in the metabolism

of unsaturated FAs, which are also known as essential FAs. Linoleic

acid and arachidonic acid are unsaturated FAs, which are further

divided into monounsaturated and polyunsaturated FAs. Oleic acid

and linoleic acid are the most common monounsaturated FAs

(MUFAs) and are universally good for health. In contrast, there

are four major types of polyunsaturated FAs (PUFAs) (w-3, w-6, w-
7 and w-9). Studies have indicated that w-6 PUFA metabolites

derive inflammatory factors, such as prostaglandin E2 (PGE2) and

leukotriene B4 (LTB4), which can stimulate organisms to produce

inflammatory cytokines and thus form a microenvironment that

promotes tumour growth. The metabolites produced by w-3 PUFAs
are anti-inflammatory factors, such as prostaglandin E3 (PGE3) and

leukotriene B5 (LTB5), which inhibit the production of cell

inflammation and the growth of tumours. We analysed the

differences in the metabolism of w-3 and w-6 in C33A and CaSki

cells and found no statistical significance in the distribution and

content of PUFAs in the two types of cells. However, recent studies

have shown that overwhelming PUFA peroxidation is among the

main inducers of iron apoptosis (19). Li H et al. studied the

metabolomics differences in different cell lines and found that

triglycerides (TAG) containing PUFAs can be obviously divided

into two clusters. One contained polyunsaturated triglycerides

(PUFAhigh) with more unsaturated double bonds (more than 4),

and the other comprised monounsaturated triglycerides (MUFAlow)

with fewer unsaturated double bonds. Analysis revealed that the

number of unsaturated FAs in triglycerides with metabolic
FIGURE 8

Schematic overview of the correlation analysis of global metabolism in differential metabolites. Violin plots indicate the metabolites detected in our
research. The horizontal axis represents different metabolites and vertical axis represents the intensity rate of metabolites.
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differences in C33A and CaSki cells was not less than 4, but the

number of TAG carbon atoms in C33A cells was shorter than that

in Caski cells (20).

RT−qPCR analysis of lipid metabolism-related genes in C33A

and CaSki cells showed that the expression of PTGS2 was

upregulated in CaSki cells, but the NAPEPLD, LCAT, PPARG,

SCD, SCD5, FADS2, FABP7, CPT1A, ACSL1 and CD36 genes

were downregulated compared with C33A cells. PTGS2 is a key

rate-limiting enzyme that catalyses the synthesis of prostaglandin

from arachidonic acid. The tendency of mRNA expression

corresponded with the metabolomics results. The NAPEPLD gene

is a kind of phospholipase type D enzyme. The function of LCAT is

to transfer the unsaturated FA located in C2 of lecithin, which can

raise high-density lipoprotein (HDL) levels in the blood to free

cholesterol and then generate lysolecithin as well as cholesterol

ester. To overcome lipotoxicity, cancer cells overexpress different

subtypes of stearoyl-coenzyme A desaturase (SCD). The SCD1 and

SCD5 genes are both members of the fatty acid desaturase (FADS)

family, encoding some proteins involved in FA biosynthesis that

catalyse stearic acid and palmitic acid to produce MUFAs (such as

oleic acid and palmitoleic acid). When the cells are free of

exogenous lipid intake, the inhibition of SCD1 induces ferroptosis

and cell apoptosis (21). However, metabolomics showed that oleic

acid, linolenic acid and arachidonic acid levels in CaSki cells were

significantly higher than those in C33A cells, possibly because

oleoyl glycine, oleoylcarnitine, oleoylethanolamide and N-oleoyl

tyrosine were significantly higher in C33A cells than in CaSki cells.

Oleic acid in C33A cells was rapidly converted into the above oleic

acid derivatives and subsequently responsible for lower oleic acid

levels in the cells. FADS2 is involved in the biosynthesis of PUFAs

from essential PUFA precursors, such as linoleic acid and a-
linolenic acid. FABP7 binds to long-chain FAs and other

hydrophobic ligands. The role of FABPs includes FA uptake,

transportation and metabolism, while CD36 accelerates FA

absorption and transportation. PPARG is a key regulator of

adipocyte differentiation and is also closely associated with

obesity, diabetes, atherosclerosis and cancer (22). Carnitine

palmitoyltransferase 1 (CPT1) converts FA chains into

acylcarnitine and shuttles in mitochondria for oxidation and

energy production, thereby reducing TG content (23). The results

of RT−qPCR also confirmed that CPT1A was highly expressed in

C33A cells.All the above data indicate abnormal lipid metabolism in

Caski cells. However, given the cellular heterogeneity between

C33A and Caski, it is difficult to answer the correlation between

lipid metabolism abnormalities in Caski cells and the integration of

HPV DNA into the genome, Recently, Yang et al (24). reported that

Caski cells were subjected to whole genome sequencing using the

Nanopore Long Read Sequencing method. The sequencing results

showed that there were 448 HPV integrations in the genome of

Caski cells, GO analysis of HPV integration site genes showed that

this integration led to significant changes in the plasma membrane

of Caski cells (Figure S7). One of these integrations is right between

GSTM5P1 and PPARG (Table S8), Coincidently, our RT-qPCR

analysis showed that HPV integration led to downregulation of

PPARG expression. whether HPV genes drive downregulation of
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PPARG expression deserves further research and clarification.

PPARG is a key upstream regulatory gene in lipid metabolism

(22). The change in its expression may be the root cause of

abnormal lipid metabolism in Caski cells. In addition, HPV E6

regulates lipid metabolic pathways in part because of its interaction

with p53. p53 is directly related to lipogenesis and carcinogenesis.

Unrelated to tumour inhibition, p53 also functions as a novel

regulatory factor of liver lipid metabolism through microarray

analysis of human hepatogenic cells. Namely, p53 genes

regulating lipid metabolism were found to affect systemic lipid

homeostasis and the development of atherosclerosis from

intracellular ceramide and FA metabolism to the regulation of

systemic lipid absorption and lipoprotein metabolism (25). P53 is

a kind of lipid regulatory inhibitor that restrains the lipogenesis of

sterol-regulatory element binding protein 1c (SREBP1C) (26). In

contrast, p53 deficiency promotes lipid accumulation (27). HPV E6

indirectly binds to p53 in host cells through ubiquitination

degradation, which damages the normal apoptosis and cell cycle

regulation mechanism mediated by p53. Therefore, p53 deficiency

in HPV E6-infected cell lines may reconstruct lipid homeostasis in

tumour cells. We found that the majority of DG, TG and FAs (such

as eicosapentaenoic acid, arachidonic acid, oleic acid, and

hexadecanedioic acid) were expressed at a higher level in CaSki

than in C33A. This high expression is usually coupled with p53

mutations in HPV-negative CC (4). Approximately 50% of human

cancers carry mutant forms of p53 that not only negate the

anticancer properties of wild-type p53 but also promote cancer

progression (28). In addition, mutated p53 increased the expression

of genes involved in FA synthesis (such as fatty acid synthase,

FASN). Since the mevalonic acid pathway is associated with

malignant characteristics (29–31), its disorder is correlated with

mutated p53 and poor prognosis in breast cancer patients.

Therefore, we can preliminarily determine that the genotype of

CC is associated with poor prognosis by recognizing the differences

in lipid metabolites after the interaction between p53 and different

types of CC.

We conducted metabolic profile analysis of the CC cell lines

C33A and CaSki with or without HPV and first demonstrated

significant differences in amino acid, nucleotide and lipid

metabolism. Correlation analysis between cellular differential

molecules and transcriptomic data showed that transcription

differences of lipid genes could commendably reflect lipid

metabolism differences in metabolomics in C33A and CaSki. We

hypothesized that CaSki cells can reduce the expression of p53

protein, which promotes the synthesis of TG and inhibits lysoFAs as

well as polar FA derivatives by regulating lipid metabolism through

HPV16 E6. Although there are mutations in the p53 gene of C33A

cells, the single site mutation limits the maintenance of p53 in

normal FA metabolism. The above conclusions still must be

confirmed by further studies. In conclusion, we performed lipid

metabolism analysis of CC systems with and without HR-HPV by

integrating metabolomics and transcriptomic data, which could

facilitate the development of novel therapeutic targets and

biomarkers for this disease. Future studies with many patients are

necessary to verify these findings and investigate the potential
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clinical application of this knowledge in CC, in which the high lipid

metabolism of CaSki could also provide new directions for the

treatment of CC with HR-HPV infection.
4 Materials and methods

4.1 Instruments and reagents

Acquity™ ultrahigh-performance liquid chromatography

(UPLC) system, Xevo G2-XS Q/TOF mass spectrometer (MS),

Progenesis QI software and Acquity™ UPLC HSS T3

chromatographic column (100 mm×2.1 mm, 1.8 mm) (Waters,

USA); SIMCA software (Umetrics, Sweden); 5427R centrifuge

(Ebender AG, Germany); Milli-Q ultrapure water system

(Millipore, USA); Chromatography used methanol, acetonitrile,

isopropyl alcohol and ammonium acetate (Merck, Germany);

FBS, DMEM, RPMI 1640 and penicillin/streptomycin (Gibco,

South America); PBS (Biyuntian, China); SYBR GREENI PCR

Mix and reverse transcription kit (Vazyme, China); RNA

extraction kit (Tiangen, China); Triglyceride detection kit

(Elabscience, China); Oil red O staining solution (Solarbio, China).
4.2 Cell culture and sample preparation

C33A (HPV negative) and CaSki (HPV16) cervical cell lines

were purchased from American Tissue Culture Collection (ATCC).

C33A cells were cultured in Dulbecco’s modified Eagle medium

(DMEM), and CaSki cells were cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium. The medium was supplemented

with 10% (v/v) foetal bovine serum (FBS) and 1% penicillin

−streptomycin. We cultured the cells at 37°C and 5% CO2 for

proliferation. Cells were harvested for the assay until they reached a

cell density of approximately 1×107 cells/mL. The culture medium

was discarded and washed twice with precooled PBS solution. The

cells were rapidly quenched in liquid nitrogen, and 600 mL of

precooled methanol/water (4:1, v/v) was added to the culture flasks.

The cells were carefully scraped out with a cell scraper, suctioned

into a 2 mL centrifuge tube and washed again. The cells were finally

stored at -80°C for subsequent testing.

The hydrophobic and hydrophilic components of the

formulation were separated by the modified Bligh–Dyer method

(32), briefly, Cell cultures were concentrated and dried under

vacuum, and then 350 mL of precooled methanol/water (2:1, v/v)

and methylene chloride were added and mixed for 2 min. Cell

suspensions were centrifuged at 4°C and 14000 r/min for 10 min,

separating the upper and lower layers. The supernatant was

analysed by adding 100 mL acetonitrile/water (2:1, v/v) to the

upper layer for dissolution. The lower layer was dissolved in 500

mL of isopropanol/acetonitrile/water (2:1:1, v/v) in a vortex and

diluted for analysis.
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4.3 Chromatography and mass spectrum
conditions

Upper layer (polar parts): For metabolite profiling, The mobile

phase is 0.1% acetonitrile formate (A) and 0.1% formate water

Solution (B), The solvent gradient was as follows: 0.0-3.5 min, 2-3%

solvent A; 3.5-7.5 min, 3%-35% solvent A; 7.5-14.5 min, 35%-100%

solvent A; 14.5-17.5 min, 100% solvent A. The flow rate was 0.4 mL

min-1. The chromatographic column temperature was maintained

at 40°C.

Lower layer (nonpolar parts): For metabolite profiling, mobile

phase A was isopropanol/acetonitrile (9:1, v/v), and mobile phase B

was acetonitrile/water (3:2, v/v), with both solvents containing 0.1%

methanoic acid and 10 mM ammonium formate. The solvent

gradient was as follows: 0.0-2.8 min, 30%-43% A; 2.8-3.3 min,

43%-50% A; 3.3-9.0 min, 50%-70% A; 9.0-14.0 min, 70%-99% A;

14.0-16.0 min, 99% A. The flow rate was 0.35 mL min-1. The

chromatographic column temperature was maintained at 40°C.

The temperature of electron spray ionization (ESI) we used was

110°C. The capillary voltage was 3.0 kV (-3.0 kV). The cone voltage

of the samples was 40 V (-40 V). The desolvation gas (N2) flow was

800 L/h with a temperature of 450°C. The cone gas (N2) flow was 40

L/h, and the scanning range was m/z 50-1000. Leucine enkephalin

was used for real-time recalibration of the mass axis. The data

collection mode is MSe (waters_connect platform).
4.4 Data processing and statistics

All MS data, including retention times, m/z and ion intensities,

were extracted using Progenesis QI software (Waters, Milford, MA,

USA), which was applied for noise reduction (NR), peak picking

(create markers) by automatic default setting, peak alignment by a

reference QC sample with full spectrum and normalization to all

components. The matrix was then analysed through principal

component analysis (PCA) and orthogonal partial least squares

discriminant analysis (OPLS-DA) using SIMCA-P+ software

(version 14.0, Umetrics, Sweden). Differential metabolites were

identified using the LipidView™ database and Progenesis QI

software (Waters, Milford, MA, USA). Volcano plots were

constructed by R studio. The raw UPLC-Q-TOF-MS data used in

this study have been deposited to the MetaboLights Consortium

(https://www.ebi.ac.uk/metabolights/studies) with the dataset

identifier MTBLS7515.

The metabolome data were imported into MetaboAnalyst

(https://www.metaboanalyst.ca/, Last accessed January 16, 2023).

The parameters “normalization by sum”, “log transformation (base

10)” and “auto scaling (mean-centred and divided by the standard

deviation of each variable)” were applied for data normalization,

logarithmic transformation and standardization scaling. The

differences in metabolite expression were analysed in depth, and

heatmap analysis and biomarker analysis (classical univariate ROC
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curve analyses) were conducted according to metabolites.

MetaboAnalyst “Network Explorer” was also used for gene and

metabolite association analysis.

The transcriptome data of CaSki (GSE158033) and C33A

(GSE48926) were downloaded from NCBI GEO DataSets (https://

www.ncbi.nlm.nih.gov/). FastQC v0.11.9,TrimGalore v0.6.7

(Babraham Institute, UK) and cutadapt v1.18package (33) were

used for data quality control. Additionally, Salmon v1.5.2 (34) was

adopted to obtain quantitative gene expression information based

on the GRCh38 genome. The data of two groups were normalized

using the quantile normalization method. Limma v3.52.4 package

(35) was used for differential expression analysis. The differentially

expressed genes (| logFC | > 1 and FDR < 0.01) that were subjected

to GO and KEGG enrichment analysis through clusterProfiler

v4.4.4 (36) were screened according to the threshold value. The

bubble chart and histogram were constructed by GraphPad Prism

8.4.3 software(GraphPad Software, USA).
4.5 RNA extraction and RT−qPCR detection

RNA was extracted from C33A and CaSki cells without any

treatment. The RNA extraction procedure was carried out in strict

accordance with the kit instructions. Total RNA was reverse-

transcribed using a HiScript III 1st Strand cDNA Synthesis Kit

(+gDNA wiper) after concentration determination. The ChamQ

Universal SYBR qPCR Master Mix kit was used to detect the

expression differences of various FA synthesis genes. EF1A was

used as the internal reference gene. The cycle threshold (Ct) value

was obtained by RT−qPCR amplification. The relative gene

expression difference was calculated by the 2-DDCt method. The

primer sets used in the experiment are listed in Table S9).

The PCR system consisted of 10 mL of PCR Mix, 4 mL of

template cDNA, 0.5 mL of forwards and reverse primers and 5.5 mL
of ddH2O. PCR amplification conditions were initial denaturation

at 95°C for 30 s, 95°C for 15 s, 60°C for 60 s (fluorescence collection)

and 40 cycles in total. The melt curve procedures were 95°C for 30 s,

55°C for 15 s and 95°C for 15 s. The fluorescence was collected every

0.3°C.
4.6 Glyceride detection

The cell count was needed before glyceride detection.

Approximately 1×106 cells were collected, and 100 mL
isopropanol was added into the pellets for the mechanical

homogenate, centrifuged 10000 g at 4°C for 10 min, and then 10

mL supernatant was taken for the following experiments. The

experiment also included a group of standard and blank wells,

which were set in three duplicates, and 250 mL of enzyme working

mixture was added to each well and incubated at 37°C for 10 min.
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The OD values of each well were measured at 510 nm with a

microplate reader. The experiment was repeated three times. The

GPO-POD method of Elabscience® company was used for the

detection of glyceride.
4.7 Oil red O staining

The lipid content of the cells was measured using the Oil Red O

stain kit (Solarbio, China) in accordance with the corresponding

instructions. C33A and CaSki cells were fixed with oil red O

stationary liquid for 30 min in this assay until they reached a

confluence of 70%-80%. Then, the cells were stained with oil red O

staining solution for 15 min, and nuclei were dyed using Mayer

haematoxylin for 1-2 min. Oil red O buffer solution was added to

distilled water for microscope observation after 1 min.
4.8 Statistics and analysis

SPSS 22.0 software(IBM, USA) was used for statistical

processing of relevant data. All experiments were independently

repeated three times. One-way analysis of variance (ANOVA) was

used to compare the means of multiple groups, and the results are

presented as the mean ± SD. A p value < 0.05 was considered to

indicate a statistically significant result. Differential metabolites

were screened according to a variable importance in projection

(VIP) score of >1.0, multiples of change between groups < 0.5 or >

2.0, and p < 0.05 was considered significant. Spearman analysis was

used to analyse the correlation between the relative expression level

of cells and the difference in metabolites in the two groups. Plots

were constructed by Graphpad Prism 8.4.3 (GraphPad Software,

USA)in addition to the other software automatical ly

generated images.
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