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Hematologic malignancies comprise a diverse range of blood, bonemarrow, and

organ-related disorders that present significant challenges due to drug

resistance, relapse, and treatment failure. Cancer-associated fibroblasts (CAFs)

represent a critical component of the tumor microenvironment (TME) and have

recently emerged as potential therapeutic targets. In this comprehensive review,

we summarize the latest findings on the roles of CAFs in various hematologic

malignancies, including acute leukemia, multiple myeloma, chronic lymphocytic

leukemia, myeloproliferative neoplasms, and lymphoma. We also explore their

involvement in tumor progression, drug resistance, and the various signaling

pathways implicated in their activation and function. While the underlying

mechanisms and the existence of multiple CAF subtypes pose challenges,

targeting CAFs and their associated pathways offers a promising avenue for the

development of innovative treatments to improve patient outcomes in

hematologic malignancies.

KEYWORDS

cancer associated fibroblast (CAF), hematologic malignancies, crosstalk,
chemoresistance, therapeutic target
Introduction

Hematologic malignancies encompass a diverse array of blood, bone marrow, and

organ-related disorders. Presently, leukemias and lymphomas can be treated using drugs or

drug combinations, such as chemotherapy, targeted therapies, immunotherapy, immune

checkpoint inhibitors, and chimeric antigen receptor-T (CAR-T) cells. These treatments

have significantly enhanced patient prognoses. However, emerging drug resistance poses a

major challenge, leading to relapse and treatment failure (1).
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CAFs constitute the largest proportion of stromal cells in the

tumor microenvironment (TME) (2). The origin of CAFs remains a

subject of debate, with fibroblasts andmesenchymal stem cells (MSCs)

from bone marrow (BM) and adipose tissue reservoirs believed to be

their primary source (3). No specific markers exist for CAFs, although

elevated alpha-smooth muscle actin (aSMA) expression is considered

indicative of activated CAFs (4). Exhibiting enhanced proliferative and

migratory capabilities, CAFs significantly influence tumor progression

(5). Numerous studies have established the critical role of CAFs in

solid tumors such as pancreatic, breast, colon, gastric, and liver

malignancies (6–10). Further research has also explored targeting

mechanisms like the TGFb signaling pathway and the JAK/STAT

signaling pathway (11, 12). The significance of CAFs in tumor

progression and drug resistance is increasingly acknowledged,

making them a focal point of recent research. Promisingly, several

CAF-targeting therapies have entered clinical trials (5, 13).

The intricate interplay between CAFs and cancer cells is crucial

for their interaction and is evident in hematologic tumors as well

(Figure 1). For instance, bone marrow stromal cells can adopt CAF

phenotypes, with the latter secreting various cytokines to stimulate

tumor cell growth, infiltration, and endosteal niche reconstruction.

Concurrently, TME remodeling provides tumor stem cells

additional time for clonal reproduction, resulting in the

continuous emergence of new genetic mutations that drive disease

progression. This CAF-mediated remodeling also contributes to

drug resistance, relapse, and tumor cell progression. In this article,

we provide a comprehensive review of recent literature and

summarize the roles of CAFs in hematologic tumors, as well as

their potential value in disease treatment.

CAFs in acute leukemia (AL)

AL is characterized by the abnormal differentiation and

proliferation of hematopoietic stem cells, which impedes normal
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hematopoiesis (14). Zhai et al. found that the presence of

abundant reticulin fibers was associated with poor outcomes in

acute myeloid leukemia (AML) (15). Their study showed that

CAFs expressing elevated levels of FSP1, aSMA, or FAP protein

were extensively distributed within the bone marrow (BM) of

AML patients. They also proposed that CAFs could potentially

shield leukemia cell lines (THP-1/K-562) from chemotherapy

(15). By targeting growth differentiation factor-15 (GDF15) or

suppressing GDF15 expression, the sensitivity of leukemic cells to

chemotherapy increased, suggesting that GDF15 secretion by

CAFs may play a crucial role in mediating the chemoprotective

effects of CAFs (15).

Pan et al. carried out a series of investigations on CAFs in B-cell

acute lymphoblastic leukemia (B-ALL) (16). They discovered that in

newly diagnosed and relapsed B-ALL patients, bone marrow

mononuclear cells had a higher percentage of CAF markers

aSMA and FAP (16). Additionally, when BM-MSCs were co-

cultured with leukemia cells, they adopted a CAF phenotype,

which led to increased production of tumor-promoting growth

factors and reduced daunorubicin-induced damage to B-ALL cells

(16). Notably, while the chemoprotective effects of MSCs and CAFs

on B-ALL were somewhat similar, CAFs proved to be more effective

than MSCs in promoting the aggressiveness of B-ALL cells (16).

Subsequent research indicated that the overexpression of TGF-

b plays a critical role in promoting the differentiation of BM-MSCs

into CAFs, which may be dependent on the SDF-1/CXCR4 pathway

(16, 17). The TGF-b receptor inhibitor LY2109761 and the CXCR4

antagonist AMD3100 both reduce CAF activation, offering a novel

approach for chemotherapeutic regimens in AL (16–18). Li et al.

isolated and cultured the first fibroblast tumor cell line, HXWMF-1,

derived from CAFs in a 6-year-old B-ALL patient. They found

compelling evidence that leukemic cells could potentially induce the

malignant transformation of CAFs in a BALB/c nude mouse

model (19).
FIGURE 1

The crosstalk between CAF origins, CAFs and hematological malignancies. CAFs can emanate from a wide array of origins, encompassing
mesenchymal stem cells, normal fibroblasts, myofibroblasts, endothelial cells, adipocyte pericytes, monocytes and macrophages, each exhibiting
distinct phenotypes. The crosstalk between CAFs and hematological malignancies plays an important role in the development of blood cancer.
Hematological malignancies are capable of facilitating the conversion of these diverse CAF origins into activated CAFs via numerous paracrine
pathways. Subsequently, these activated CAFs can enhance the malignant phenotype of hematological malignancies through paracrine routes.
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CAFs in multiple myeloma (MM)

MM is a disorder characterized by malignant plasma cell

proliferation. The TME plays a substantial role in MM

pathophysiology by secreting various cytokines that promote

plasma cell survival, proliferation, and treatment resistance (20).

Notably, the expression of CAF markers (FSP1, aSMA, FAP) in the

bone marrow (BM) of patients with active MM was significantly

higher (21). MM cells were found to induce CAF proliferation and

enhance MM cell adhesion, proliferation, and apoptosis inhibition

(21). The interaction between the two may be mediated through the

SDF-1a/CXCR4 axis and integrins (21). Ciavarella et al. discovered

that the activation levels of CAFs in MM patients at different clinical

stages correlated with the expression of the fibrinolytic system (22).

Compared to patients in the quiescent phase, CAFs in active MM

patients exhibited higher transcriptional levels of u-PAR and u-PA.

Selectively silencing u-PAR significantly suppressed CAF

phenotype and function (22). Meanwhile, Kanehira et al.

demonstrated that lysophosphatidic acid receptors 1 and 3

influenced the transition of MSCs to CAF differentiation,

resulting in distinct outcomes (23).

Several targeted therapies for MM have emerged, but most have

encountered drug resistance. For example, bortezomib, the first

protease inhibitor approved by the FDA for MM treatment, has

demonstrated limited efficacy in most patients due to the

development of drug resistance (24). Several studies have

investigated the vital role CAFs play in this issue. In vitro

experiments indicated that CAFs from bortezomib-resistant

patients inhibited bortezomib-induced apoptosis in MM cells. It is

well-known that cellular autophagy contributes to drug resistance.

When bortezomib-resistant CAFs are exposed to bortezomib, the

autocrine TGF-pathway, which fosters autophagy, may become

activated. Conversely, using TbR-I/II inhibitors to block Smad2/3

and autophagic pathways may help counteract MM resistance (25).

CAR-T treatments targeting BCMA can detect and eradicate

malignant plasma cells in MM patients, making them a promising

therapeutic option. A study by Sakemura et al. revealed through ex

vivo experiments that MM-CAFs inhibited antigen-specific

proliferation of BCMA CAR-T cells via TGF-b secretion,

consequently dampening their anti-myeloma activity (26).

Simultaneously, targeting both MM cells and their CAFs with

CAR-T cells reduced drug resistance development and slowed

tumor progression, suggesting a new treatment approach (26).
CAFs in chronic lymphocytic
leukemia (CLL)

CLL is a cancer characterized by the uncontrolled growth of

mature lymphocytes in the blood, bone marrow, lymph nodes, and

spleen (27). In the context of CLL, CAFs play a critical role in

disease progress ion and interact ion with the tumor

microenvironment. CLL cells have the ability to activate the AKT

pathway and stimulate the proliferation of MSCs via platelet-

derived growth factor (PDGF) receptors (28). Furthermore, both
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bone marrow-derived MSCs and endothelial cells (ECs) can adopt a

CAF phenotype when exposed to CLL-derived exosomes (29).

These exosomes contain various molecular signals that can

influence the behavior of recipient cells. Recent research has

shown that CLL cells can trigger the transformation of BM-MSCs

into CAFs by releasing exosomes containing miR-146a, which in

turn inhibits USP16 (30). Additionally, a significant presence of

aSMA(+) stromal cells was identified in infiltrating lymph nodes,

further confirming the existence of numerous CAFs in CLL patients

(29) . CAFs play a cruc ia l role in shaping the CLL

microenvironment by influencing various immune cell functions.

They release cytokines and chemokines that contribute to T cell and

myeloid cell immunosuppression, and activate the AKT and NF-kB
pathways, all of which promote tumor progression (31).
CAFs in myeloproliferative
neoplasms (MPNs)

MPNs are malignant diseases characterized by excessive

proliferation within the myeloid lineage, and aSMA, a CAF

marker, is significantly elevated in MPN patients (32). Research

suggests that aSMA expression levels influence the self-renewal and

differentiation potential of MSCs, indicating a possible connection

between aSMA expression and MPN development and prognosis

(33). Primary myelofibrosis (PMF) is an MPN subtype

characterized by progressive myelofibrosis. The development of

myelofibrotic processes in PMF is currently believed to be

associated with excessive stimulation of MSCs by growth

factors (34).

In MPNs, lysyl oxidase (LOX), a stromal cross-linking protein,

contributes to increased bone marrow stromal deposition. The use

of a LOX inhibitor (BAPN) to decrease reticulin fibers supports

LOX’s role in myelofibrosis development (35). LOXL2 expression is

found to be elevated in MPN patients, especially those with PMF

(36). Higher levels of LOXL2 may contribute to MPN progression

by modulating the function of peripheral stromal cells that display a

cancer-associated fibroblast phenotype (36). Furthermore, LOXL2

is considered a key factor in driving the differentiation of

mesenchymal stem cells (MSCs) into CAFs (37). These

discoveries provide novel perspectives for targeted MPN

treatments. Simtuzumab, a monoclonal antibody that inhibits

LOXL2, is currently being tested in phase II clinical trials (38).

In PMF patients, there is a significant expansion of clonal

tumorigenic fibroblasts, a particular type of CAFs, which are

functionally different from normal fibroblasts. This difference may

be associated with JAK2 signaling, and these fibroblasts contribute

to the progression of myelofibrosis (34). On the other hand, the

fibroblast differentiation inhibitor SAP (PRM-151) substantially

increases the survival rate of NSG mice transplanted with PMF

bone marrow cells and reduces the development of myelofibrosis

(34). Longhitano et al. found that exposure to IGFBP-6 leads to an

increased expression of CAF markers (aSMA, FAP, TGF-b) in HS5

cells. Their research suggests that IGFBP-6 triggers the

differentiation of MSCs into CAFs and indicates a connection
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between the IGFBP-6/SHH/TLR4 axis and alterations in the PMF

microenvironment. This offers new perspectives on the

pathogenesis of fibrosis in PMF patients (39).
CAFs in lymphoma

Lymphoma is the most prevalent hematologic malignancy,

divided mainly into non-Hodgkin’s lymphoma (90%) and

Hodgkin’s lymphoma (10%) (40). CAF-like cells and their

precursors are present in secondary lymphoid organs (SLOs) before

lymphoma onset, playing a crucial role in the progression of

malignancies. For example, fibroblastic reticular cells (FRCs) form

the structural foundation of SLOs and are essential for organ

development, T and B cell compartmentalization, and adaptive

immune response involvement. This provides a supportive

microenvironment for the proliferation of malignant B cells (41).

Numerous studies indicate that CAFs can aid lymphocyte survival by

enhancing glycolysis (42, 43). Metabolic analyses have shown that

elevated concentrations of CAF-secreted pyruvate decrease

intracellular ROS production in primary lymphoma cells, augment

tumor cell dependence on the citric acid cycle, and boost tumor cell

survival (44). Furthermore, CAFs modulate the expression of the

pyrimidine transporter protein ENT2 in tumor cells by secreting

exosomes containing miR-4717-5p, resulting in chemoresistance (43).

Diffuse large B-cell lymphoma (DLBCL), the most prevalent

lymphoma type, triggers the activation process of CAFs. Activated

CAFs display a compensatory suppressive response by increasing

PD-L1 expression and reducing the lytic-killing activity of CD8 T

cells against tumor cells (45, 46). These findings offer a fresh

perspective on the disease’s initiation. Two CAF subtypes have

been identified in adult T-cell leukemia/lymphoma (ATLL): CAFs/

EGRhigh and CAFs/EGRlow. CAFs in ATLL were found to

significantly contribute to CD4 T-cell proliferation
Frontiers in Oncology 04
(47). Additionally, CAF/EGRhigh influences CD8 and NKT cell

expansion through EGFR (47). These findings suggest potential

avenues for targeted therapy.
CAF-related targets and pathways in
hematologic malignancies

CAFs have emerged as critical contributors to hematologic

malignancies, influencing tumor progression and drug resistance.

While the underlying mechanisms of CAF activation and function

in hematologic malignancies are not yet fully understood, recent

research has highlighted several potential therapeutic targets and

pathways (48). Targeting CAFs and their associated pathways could

provide an innovative approach to treating hematologic

malignancies and enhancing patient outcomes. As research into

the interplay between CAFs and hematologic malignancies

continues, there is a promising prospect for developing novel

treatments that target CAFs and improve clinical outcomes

for patients.

Table 1 provides a summary of the latest research advancements

in CAF-related targets and pathways within the context of

hematologic malignancies.
Discussion

In recent years, the understanding of cancer biology has

expanded, leading to the identification of various cellular and

molecular players involved in tumor progression. One such player

is CAFs, which have been implicated in the progression of solid

tumors. However, their role in blood cancers remains

underexplored. In this discussion, we will delve into the potential
TABLE 1 Passways/targets associated with CAFs in hematological malignancies.

Target/
Pathway

Hematologic
Malignancy

Discovery/Advancement

TGF-b signaling
pathway

AL, MM Overexpression of TGF-b induces differentiation of BM-MSCs into CAFs; TGF-b receptor inhibitors reduce CAF activation
(16–18)

JAK/STAT
signaling
pathway

AL, PMF Clonal tumorigenic fibroblasts in PMF patients have functional differences associated with JAK2 signaling; targeting the JAK/
STAT pathway may provide a new approach for AL treatment (34)

SDF-1/CXCR4
pathway

AL, MM The activation of BM-MSCs into CAFs is dependent on the SDF-1/CXCR4 pathway; CXCR4 antagonists may reduce CAF
activation (16, 21)

Autophagy MM Bortezomib-resistant CAFs may foster drug resistance through the autocrine TGF-b pathway and autophagy; blocking the
TGF-b pathway may counteract drug resistance (25)

LOX/LOXL2 MPN LOXL2 drives MSC differentiation into CAFs and contributes to MPN progression by modulating peripheral stromal cells;
LOX inhibitors and LOXL2 inhibitors are being tested for targeted MPN treatment (35–37).

PD-1/PD-L1
pathway

DLBCL Activated CAFs increase PD-L1 expression and reduce CD8 T cell lytic-killing activity against tumor cells (45, 46)

SHH/TLR4 axis MPN IGFBP-6 may trigger the differentiation of MSCs into CAFs via the IGFBP-6/SHH/TLR4 axis (39)

Exosomal miR-
4717-5p

Lymphoma CAFs modulate ENT2 expression in tumor cells by secreting exosomes containing miR-4717-5p, resulting in
chemoresistance (43)
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involvement of CAFs in blood cancers and evaluate their suitability

as a promising therapeutic target.

To begin, it is essential to understand the role of CAFs in the

tumor microenvironment. CAFs are key stromal cells that modulate

the extracellular matrix, support angiogenesis, and produce a

myriad of growth factors and cytokines. These actions contribute

to the tumor-promoting milieu, ultimately enhancing cancer cell

survival, proliferation, and metastasis. Given their critical role in

solid tumors, it is plausible to assume that CAFs may have similar

functions in blood cancers.

Blood cancers, such as leukemia, lymphoma, and myeloma,

arise from the malignant transformation of cells in the blood, bone

marrow, or lymphatic system. Although these cancers lack the solid

tumor architecture, they still interact with the surrounding

microenvironment, which may include CAFs. For instance,

interactions between leukemia cells and bone marrow stromal

cells, including fibroblasts, have been reported to support

leukemia cell survival and contribute to therapeutic resistance.

This suggests that CAFs could be critical players in the

pathogenesis of blood cancers.

Targeting CAFs as a therapeutic strategy in blood cancers may

have several advantages. First, as stromal cells, CAFs are genetically

more stable than cancer cells, making them less likely to develop

resistance to targeted therapies. Second, by disrupting the crosstalk

between CAFs and cancer cells, the tumor-promoting

microenvironment could be altered, potentially enhancing the

efficacy of existing treatments. Finally, targeting CAFs may have a

synergistic effect when combined with other therapies, leading to

improved clinical outcomes.

However, it is important to consider the challenges and

limitations associated with targeting CAFs in blood cancers. One

of the primary challenges lies in the heterogeneity of CAFs, as they

can originate from various cell types and exhibit diverse phenotypes

and functions. This complexity may hinder the development of

specific CAF-targeted therapies and could necessitate the

identification of common signaling pathways or markers that can

be targeted across different CAF subpopulations (4, 5). Cancer

boasts a multifaceted biological composition and structure,

encompassing cancerous cells, stromal cells, and the extracellular

matrix (49). Historically, the majority of treatments have primarily

aimed at cancer cells themselves (49). However, recent research has

shed light on the significant influence the TME has on the behavior

of cancer cells and their response to therapies (49, 50). Notably,

CAFs, which constitute the most prevalent type of stromal cells

within the TME, play a crucial yet understated role in the inception,

progression, and metastasis of cancer (49). Consequently, focusing

research on TME and CAF markers has emerged as a pivotal

component of innovative strategies for the design and discovery

of next-generation cancer drugs (49). However, unlike the case with

solid tumors, the study of the tumor microenvironment and CAF

markers in fibroblasts associated with hematological malignancies is

still in its early stages (49, 51, 52). This remains an important area

for future exploration and research.

Another challenge is the potential for off-target effects, given

that CAFs share similarities with normal fibroblasts. Developing

therapies that selectively target CAFs without affecting healthy
Frontiers in Oncology 05
fibroblasts is essential to minimize adverse side effects.

Furthermore, the dynamic nature of the tumor microenvironment

and the reciprocal interactions between CAFs and cancer cells may

result in compensatory mechanisms that limit the efficacy of CAF-

targeted therapies. Therefore, understanding the molecular

mechanisms underlying these interactions is crucial for the

development of effective treatment strategies (53).

In light of these challenges, future research should focus on

elucidating the molecular and cellular mechanisms that govern

CAFs’ involvement in blood cancers. High-throughput screening

technologies, such as single-cell RNA sequencing, could provide

valuable insights into the heterogeneity of CAF populations and

identify potential therapeutic targets (54–56). Additionally, the

development of advanced in vitro and in vivo models that more

closely mimic the tumor microenvironment will be essential for

evaluating the safety and efficacy of novel CAF-targeted therapies.

Moreover, the potential synergistic effects of combining CAF-

targeted therapies with other treatment modalities, such as

chemotherapy, immunotherapy, and targeted therapies, should be

investigated. This combinatorial approach may help overcome

potential resistance mechanisms and improve clinical outcomes

for patients with blood cancers.

In summary, the targeting of CAFs in blood cancers presents a

promising therapeutic strategy, but it is not without challenges.

Future research should address the limitations and obstacles

associated with CAF-targeted therapies and explore the potential

benefits of combining these treatments with existing therapies. By

deepening our understanding of CAFs’ role in blood cancers and

overcoming the hurdles associated with their targeting, we may be

able to unlock new, more effective treatment options for patients

suffering from these malignancies.
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