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Hepatocellular Carcinoma (HCC) is one of the most common cancers and a

leading cause of cancer related death worldwide. Until recently, systemic therapy

for advanced HCC, defined as Barcelona Clinic Liver Cancer (BCLC) stage B or C,

was limited and ineffective in terms of long-term survival. However, over the past

decade, immune check point inhibitors (ICI) combinations have emerged as a

potential therapeutic option for patients with nonresectable disease. ICI

modulate the tumor microenvironment to prevent progression of the tumor.

Radiotherapy is a crucial tool in treating unresectable HCC and may enhance the

efficacy of ICI by manipulating the tumor microenvironment and decreasing

tumor resistance to certain therapies. We herein review developments in the field

of ICI combined with radiotherapy for the treatment of HCC, as well as look at

challenges associated with these treatment modalities, and review future

directions of combination therapy.
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Introduction

Hepatocellular Carcinoma (HCC) is one of the most common cancers and a leading

cause of cancer-related death worldwide (1). Risk factors for HCC include hepatitis B virus

(HBV), hepatitis C virus (HCV), non-alcoholic fatty liver disease (NAFLD), alcoholic

cirrhosis, tobacco use, and inherited disorders such as hemochromatosis, Wilson’s disease,

and alpha-1 antitrypsin deficiency (2). Treatment options for HCC are various and depend

on extent of tumor burden, underlying liver disease, and performance status. Options for

treatment include resection, transplantation, locoregional and systemic therapies. Given

various treatment options, a multi-disciplinary approach to care is essential, with surgical
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resection or transplant offering the best chance for cure.

Unfortunately, many patients are not eligible for surgery given

the advanced stage of disease at diagnosis. Consequently, HCC has a

poor prognosis with five-year survival of 20-40% (3, 4).

Until recently, systemic therapy for advanced HCC was limited

to tyrosine-kinase inhibitors (TKI) and ramucirumab (for AFP >

400ng/ml) and were ineffective in improving long-term survival.

First line systemic therapy consisted of sorafenib, a tyrosine kinase

inhibitor (5). However, over the past decade, immune check point

inhibitors (ICI) combinations have emerged as a potential

therapeutic option for patients with advanced stage disease,

defined as Barcelona Clinic Liver Cancer (BCLC) stage B or C.

ICI have a proven benefit in a multitude of other malignancies such

as melanoma, breast, and colon cancer among others, but only

recently has been this success been extrapolated to HCC (6–8). The

IMbrave 150 trial demonstrated that, compared to sorafenib, the

combination of atezolizumab (PD-L1 inhibitor) and bevacizumab

(VEGF inhibitor) had improved overall (OS) and progression free

survival (PFS) in patients with unresectable HCC (9). Additionally,

the CheckMate 040 trial showed promise in the use of nivolumab

(PD-1 inhibitor) and ipilimumab (anti-CTLA-4) with combination

therapy having favorable objective response rates (ORR) among

patients who had previously been treated with sorafenib (10).

The tumor microenvironment and its interaction with host

immune cells plays an integral role in preventing cancer

progression. Cirrhosis and chronic inflammation from viral

hepatitis, alcohol or NAFLD can lead to changes in the hepatic

immune response that favor carcinogenesis, which is part of

the pathophysiology of HCC. ICI modulate the tumor

microenvironment to prevent progression of tumor disease.

Immunotherapy has demonstrated improvement in survival after

chemoradiation, and it is now considered standard of care in certain

cancers, such as non-small cell lung cancer (11). Recently,

radiotherapy, in addition to ICI, has demonstrated potential in

the treatment of advanced HCC. Radiotherapy is a crucial tool in

the treatment of unresectable HCC, and the combination of

radiotherapy with sorafenib has demonstrated improved OS and

PFS (12). Radiotherapy may enhance the efficacy of ICI by

manipulating the tumor microenvironment and decreasing tumor

resistance to certain therapies (13–15). Given this, the objective of

the current review is to highlight developments in the field of ICI

combined with radiotherapy for the treatment of HCC, characterize

challenges with these treatment modalities, as well as highlight

future directions of combination therapy.
Methods

A comprehensive review of the literature was conducted in the

PubMed database for studies published between January 2010

through February 2023. The following keywords and MESH

terms were included in the search: “radiotherapy,” “immune

checkpoint inhibitor,” “hepatocellular carcinoma.” Records were

excluded if not written in English or if the full report was not

available; reviews that were not systematic in nature (n=17), as well

as reports that did not include level 1 data (n=49) were also
Frontiers in Oncology 02
excluded. A total of 20 studies were included in the final

analysis (Figure 1).
Immune checkpoint inhibition
for HCC

ICI target inhibitory and stimulatory immunoreceptors, as well

as act as regulators of the immune system. ICI therapy has less

systemic side effects than cytotoxic chemotherapy with may have

more durable responses compared with targeted therapies (16).

Tumors cells are unique in their ability to downregulate

stimulatory immunoreceptors while upregulating inhibitory

immunoreceptors, thereby evading host immune cells and allowing

propagation of malignant cells (17). The tumor microenvironment

contributes to the suppression of many host innate and adaptive

immune cells (18). Among the most prominent and well-studied

immunoreceptors responsible for this evasion are PD-1 and PD-L1

and CTLA-4 (19–21). By blocking these immunoreceptors, ICI

enhance the antitumor function of host immune cells to curb the

spread of malignant cells (16).

Recent trials have demonstrated the efficacy of ICI compared to

systemic cytotoxic chemotherapy among patients with advanced

HCC. Initially, single agent monotherapy was utilized for treatment;

however, the CheckMate 459 study noted no improvement in OS or

PFS among patient treated with nivolumab (PD-1 inhibitor) versus

sorafenib (22). In turn, focus shifted to combination ICI therapy to

address tumor heterogeneity. As noted, the IMbrave 150 trial was a

landmark phase III multi-center global trial that compared

atezolizumab plus bevacizumab (Atezo-Bev) versus sorafenib

among patients with unresectable HCC. Importantly, Atezo-Bev

was associated with an improved one-year OS (67.2% Atezo-Bev

versus 54.6% sorafenib) and PFS (6.8 months Atezo-Bev versus 4.3

months sorafenib) (23). A recent update of the study from 2022

noted continued improvement in OS and PFS in the Atezo-Bev

group (9). Consequently Atezo-Bev was recommended as first line

treatment for advanced HCC according to the 2022 BCLC

guidelines (5).

Other studies of ICI have investigated tremelimumab, an anti-

CTLA-4 monoclonal antibody in combination with durvalumab, an

anti-PD-L1 monoclonal antibody. The phase III HIMALAYA trial

evaluated 1000 patients with unresectable HCC who had no prior

treatment who had preserved liver function with good performance

status (24). This study noted that combination therapy with

tremlimumab and durvalumab was associated with improvement

in ORR and OS versus sorafenib (ORR 20 vs 5% and OS 16.4 vs 13.3

months, respectively) (24). Additionally, the trial demonstrated the

inferiority of durvalumab monotherapy versus sorafenib. The safety

profiles were similar and main side effects were rash and

transaminitis (25). Overall, the HIMALAYA trial demonstrated

that tremelimumab and durvalumab may be an acceptable first line

alternative to Atezo-Bev.

Another combination therapy regimen of nivolumab, a PD-1

inhibitor, and ipilimumab, another CTLA-4 inhibitor was evaluated

in the CheckMate 040 trial (10). In this study, combination therapy

with these two drugs was compared with nivolumab monotherapy
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among 148 patients who had advanced HCC and had previously

been treated with sorafenib (10). Of note, there was improved ORR

and OS among patients in the combination group; however, there

were more side effects including hypothyroidism and adrenal

insufficiency. Nivolumab monotherapy has also demonstrated to

improve outcomes among patients with HCC, although its impact

seemed to be augmented by the addition of ipilimumab (22).

Another study assessed pembrolizumab monotherapy as second

line treatment for advanced HCC among patients previously treated

with sorafenib; OS, ORR, and PFS) were all improved versus

placebo (26). As such, pembrolizumab, a anti PD-1 monoclonal

antibody, has been approved in the United States as second line

therapy for advanced HCC previously treated with sorafenib (27).
Radiotherapy for HCC

Radiotherapy (RT), including external beam radiotherapy

(EBRT) and stereotactic body radiotherapy (SBRT) and

radioembolization (RE), has evolved over the years to play a

crucial role in the treatment of certain cancers, including lung

and rectal cancer (28, 29). RT’s role in the treatment of unresectable

HCC compared to or in combination with other locoregional

therapies continues to emerge, with SBRT and RE options being

used in select patients with intermediate and advanced stage HCC

(30, 31). Early RT techniques, such as EBRT damaged not only the
Frontiers in Oncology 03
HCC but also surrounding healthy liver parenchyma, leading to

liver insufficiency and radiation induced hepatitis (32). Additional

adverse effects from EBRT included ulcers, gastrointestinal

bleeding, and pneumonitis (33). More modern techniques have

allowed radiation oncologists to target more focal areas of the liver

limiting damage to surrounding healthy tissue/viscera. Techniques

such as SBRT, in which there is a limited number of high dose RT

fractions delivered to a focused area of tumor, minimizes the

amount of extraneous radiation to other healthy tissue (34). RE

or selective internal radiation therapy is another recent technique

that provides focused radiation via radio-labeled Yttrium-90

microspheres directly into the hepatic artery (35). HCC is a

hypervascular tumor, with tumor being preferentially supplied by

the hepatic arteries and normal hepatocytes receiving their blood

supply from the portal vein (36). Consequently, radiation

preferentially travels to the tumor via the hepatic arteries (37).

Study on SBRT has increased over the past decade. Wahl et al.

compared 224 patients with unresectable HCC without metastases

treated with SBRT versus radiofrequency ablation (RFA),

demonstrating lower local progression in the SBRT group at one

and two years and equivalent OS over the same time (38). Another

phase III trial compared proton beam radiotherapy to

radiofrequency ablation in patients with recurrent HCC and

showed proton beam radiotherapy was non inferior in terms of 2

year PFS (39). Local control rates for advanced HCC treated with

SBRT range from 68-95% three years after treatment (40–42). SBRT
FIGURE 1

PRISMA Flow Diagram.
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has been used as bridge to transplant, with comparable outcomes to

RFA and Transarterial chemoembolization (TACE) (43). Data have

suggested a benefit of SBRT among patients with advanced HCC

with portal vein tumor thrombus or inferior vena cava tumor

thrombus (44, 45). Additionally, the recent NRG/RTOG 112

phase III clinical trial, showed improved OS, PFS, and quality of

life at 6 months without increase in adverse effects for patients with

unresectable HCC treated with SBRT followed by sorafenib

compared to sorafenib alone (12). Of note, only patients with a

limited burden of extrahepatic disease were eligible for enrollment.

Although the National Comprehensive Cancer Network (NCCN)

includes radiation as an option for patients who are not eligible for

transplant there is still a paucity of data directly comparing SBRT to

other locoregional therapies (37, 46). SBRT is contraindicated in

patients without adequate residual normal liver volume outside the

radiation field and in patients with Child-Pugh class B and C

cirrhosis (47).

RE has also been studied among patients with advanced HCC.

In fact, several randomized trials have compared RE versus

sorafenib. Neither The SIRveNIB nor the SARAH trial showed

improvement is OS, however the SIRveNIB trial demonstrated

superiority of RE over sorafenib in terms of PFS and time to

progression, although the SARAH trial noted no difference in PFS

(48, 49). Additionally, a different recent randomized controlled trial

noted that RE and sorafenib was not associated with improvement

in OS versus sorafenib alone (50). The STOP-HCC trial is an

ongoing phase III clinical trial that is investigating RE plus

sorafenib versus sorafenib alone, which is still enrolling

patients (51).
Challenges to monotherapy with ICI
or radiotherapy for HCC

While ICI and RT have a proven benefit in the treatment of

advanced HCC, these treatments can be associated with clinical

challenges. For example, while ICI has demonstrated initial success

relative to many cancer types, patients can develop resistance with

use (52, 53). Although there are limited data on ICI resistance,

several mechanisms for resistance have been proposed. The most

studied is Beta-catenin activation secondary to mutation in

CTNNB1 gene, which may lead to increased apoptosis in liver

cells via nuclear factor kB and decreased recruitment of dendritic

cells leading to tumorgenesis (54, 55). Other pathways of resistance

include downregulation of antigen processing and presentation via

HLA deletion, downregulation of cytokines and signaling pathways

(example loss of JAK1/2 function), tumor infiltrating lymphocyte

(TIL) exclusion via deletion of PTEN gene and VEGF upregulation,

and expression of other coinhibitory checkpoint receptors (56–62).

Although these mechanisms have been validated in other types of

cancer such as lung and colorectal, these mechanisms have yet to be

fully elucidated in HCC.

RT also can have several challenges in the treatment of HCC.

For example, there are no consensus guidelines regarding use of RT

for treatment of HCC, although most recent NCCN guidelines
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ablation or embolization if these therapies have failed or are

contraindicated (63). While some clinicians recommend RT for

patients with well compensated liver function and patients who

have adequate liver volume outside radiation field, there are several

relative contraindications to RT. Contraindications may include

patients with Child-Pugh Class B or C.

Complications of RT vary from transient to life threatening.

Common short term adverse effects include fatigue and nausea

while longer term effects include sequela of hepatic injury such as

ascites, transaminitis, and, thrombocytopenia (64). In certain rare

cases, biliary stenosis can occur as well as radiation induced

hepatitis. Additionally, radiation injury to nearby structures such

as the stomach, small bowel, colon, ribs, diaphragm can also occur

(65, 66). In addition, there are adverse effects associated with ICI

therapy. In first line therapy of HCC, atezolizumab has been

associated with adverse effects including skin rash, electrolyte

abnormalities, anemia, and transamnitis; bevacizumab has been

associated with hypertension, abdominal pain, and diarrhea.

Serious adverse effects of acute coronary syndromes, vasculitis,

and immune mediated myocarditis, as well as immune mediated

rashes such as Stevens-Johnson syndrome, and toxic epidermal

necrolysis may be associated with nivolumab (67–69).
Combination of ICI and radiotherapy
for HCC

Given the potential benefits of both ICI and RT alone in the

treatment of HCC, combination therapy with the two modalities is

actively being explored. The basis for this combination approach is

a hypothetical synergistic effect, which may augment the efficacy of

each treatment. RT for cancer is thought to cause irreversible

damage to tumor cell DNA thereby initiating cell apoptosis (70).

Additionally, the immune system’s role in controlling tumor growth

is well established, as it has been demonstrated that cancer survival

has been associated with T cell infiltration into the tumor, as well as

increased risk of cancer developing in immunosuppression patients

(71–73). However, recently, RT’s role in inducing an immune

response has become an area of interest with data suggesting that

RT augments the efficacy of ICI by impacting the tumor

microenvironment (13). The mechanism by which this synergistic

effect occurs, however has not been well elucidated.

One proposed mechanisms involves RT-induced direct tumor

cell death that stimulates a tumor-specific immune response and

modification of the local tumor microenvironment and increased

immune cell migration into the tumor (74–76). In addition, by

eliminating tumor cells, intracellular contents including antigens

and damage-associated molecular patterns are released, which

further induce an immune response and lymphocyte infiltration

that can augmentate the effect of ICI (14, 77). In particular, CD8+

T-cells and dendritic cells seem crucial to this immune response

whereas CD4+ T-cells and macrophages are not as integral (78, 79).

Du et al. noted that cyclic guanosine monophosphate-adenosine

monophosphate synthase (cGAS) stimulates the interferon gene
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(STING) pathway and is crucial in RT-induced antitumor immune

responses via increased immune check point PD-L1 expression

(80). In a study by Kim et al. that compared combination of RT and

anti-PD-L1 immunotherapy versus RT or anti-PD-L1 alone in a

murine HCC model, there was less tumor growth and longer

survival. The authors noted that radiation upregulated PD-L1

expression through IFN-gamma/STAT3 signaling, which might

augment the action of immunotherapy (81). In a separate study,

Yoo et al. also reported that combination therapy decreased tumor

size in a murine HCC model (82). A propensity score matching

study compared the combination of anti-PD-1, antiangiogenic

therapy and RT (n=54) versus anti-PD-1 and anti-angiogenic

therapy alone (n=143) (83). The data demonstrated that the

addition of RT improved ORR (42.6% vs 24.5%), median OS

(20.1 vs 13.3 months), and PFS (8.7 vs 5.4 months) (83). Similar

findings using combination therapy have been reported in other

cancer types such as breast and colon cancer (84, 85). This finding

has been attributed this to the abscopal effect, which is the

deterioration of tumors outside the radiation field during or after

RT (86).

The abscopal effect was first described for melanoma in the

1970s and has been linked to mechanisms involving the immune

system (87). The abscopal effect likely also plays a role in the

treatment of HCC, as demonstrated in murine models. For

example, Park et al. reported that RT increased antitumor

immune response and the addition of PD-L1 augmented this
Frontiers in Oncology 05
effect (88). RT causes cellular death and expression of tumor

antigens and damage associated molecular patterns (DAMPs),

which attract antigen presenting cells such as dendritic cells and

actives CD8+ T-cells (89). These cells infiltrate into the tumor

microenvironment and promote tumor cell death (15). RT also

upregulates immune checkpoint molecules (PD-1. PD-L1, and

CTLA-4), which dampens anti-tumor activity. ICI therapy is

proposed to block these molecules to restore cytotoxic and anti-

tumor activities of T-cells and (Anti-PD-1/PD-L1) dampen the

effects of regulatory T cells (90). This proposed synergist

mechanism transforms “cold” tumors with low immune cell

presence to “hot” tumor with more immune cell infiltration.

The use of triple therapy or combination fo PD-1/PD-L1 with RT

has been demonstrated to be safe and well tolerated in patients

with minimal treatment related adverse effects (91). Figure 2

demonstrates the abscopal effect (92).

Radiation induced DNA damage activates DNA damage repair

pathways that causes upregulation of CTLA-4 and PD-L1 expression

causing immunosuppression within the tumor microenvironment

and blunting the effects of ICI (81, 93). Ataxia telangiectasia and

Rad3-related protein (ATR), a kinase in the DNA damage repair

pathway, may be important in controlling immunosuppression in the

tumor microenvironment. Sheng et al. assessed AZD6738, an ATR

inhibitor, in a HCC murine model and demonstrated that AZD6738

increase radiotherapy stimulated CD8+T-cell infiltration and

activation and reversed the immunosuppressive effects of radiation
FIGURE 2

Mechanism of the abscopal effect. Radiotherapy (RT) can lead to immunogenic cell death and the release of tumor antigens by irradiated tumor
cells. These neoantigens are taken up by antigen-presenting cells (APCs), such as dendritic cells (DCs) and phagocytic cells. The APCs interact with
tumor antigens and then migrate to the lymph nodes where they present antigens to T cells, a process that is mediated by the MHC pathway and
other co-stimulatory signals, such as CD80 and CD28. After activation by multiple signals, T cells, especially the CD8+ T cells, are activated and
begin to propagate. As a result, activated effector T cells exit the lymph nodes and home to tumors, including primary tumors and non-irradiated
tumor metastases, to exert their effect of killing tumor cells. However, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) competitively
combines with CD80/86 and inhibits the activation of T cells. Following T cell activation, programmed cell death 1 (PD-1) receptors that are
expressed on the T cell surface bind primarily to programmed death-ligand 1 (PD-L1) and inhibit immune responses. The administration of immune
checkpoint blockades of CTLA-1, PD-1, and PD-L1 can enhance the anti-tumor immunity of RT (92).
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(94). As such, balancing the immune activation and suppression of

RT relative to its effect on ICI is a key concept of ongoing research in

the treatment of HCC. In particular, the synergistic effects of RT and

ICI in the treatment of HCC works may work in several ways. For

example, RT increases diffusion of immune cells into the tumor

microenvironment allowing anti-tumor effects, while simultaneous

anti-PD-L1, anti-PD1 and anti-CTLA-4 therapy can offset the

immunosuppressive consequences induced by RT (90).

Currently, prospective clinical data on the combination RT and

ICI in the treatment of HCC are lacking. A 2022 small retrospective

study by Su et al. reported on 29 patients with advanced HCC

(Child-Pugh A) who were treated with proton beam radiotherapy,

as well as anti-PD1 or anti-PD-L1 therapy. The authors reported a

median progression free survival of 27.2 months and concluded that

combination therapy with RT and ICI was safe and effective for

treatment of advanced HCC (95). There are other clinical trials

investigating the use of RT and ICI. For example, a phase 2 trial by

Tai et al. evaluated the safety and efficacy of sequential RE followed

by nivolumab among patients with advanced HCC. Forty patients

with unresectable HCC and Child-Pugh A cirrhosis were treated

with RE with Y90, with nivolumab started 3 weeks later. The

primary outcome was ORR, which was 30.6%. Serious adverse

effects (14%) including Steven-Johns syndrome, hepatitis, fever,

liver abscess, and ascites (96). Similarly, another phase 2 trial from

2022 assessed SBRT and camrelizumab, an anti-PD1 monoclonal

antibody among patients with unresectable HCC. The study

enrolled 21 patients with advanced HCC and Child-Pugh A/B

liver function and reported an ORR, PFS, and OS of 52.4%, 5.8

months, and 14.2 months, respectively. No severe adverse events

were noted (97). The START-FIT trial another single arm phase 2

study treated patients with advanced HCC with sequential

transarterial chemoembolization (TACE) then SBRT followed by

avelumab, an anti-PD-L1 monoclonal antibody. In this study, 33

patients were enrolled; 4 (12%) subsequently qualified for resection

or ablation, and 14 (42%) had complete radiographic response.

Adverse events included transaminitis, as well as hepatitis and

dermatitis. TACE has been compared with combination RT and

immunotherapy; of note, combined therapy with RT and
Frontiers in Oncology 06
immunotherapy has been noted to have an improved 1- and 2-

year PFS and OS (98). Two recent clinical trials are focused on

investigating nivolumab and RT for advanced HCC. NASIR-HCC is

a single arm phase 2 trial that investigated patients with advanced

HCC who underwent RE followed by nivolumab treatment; ORR

was 41.5% and OS was 20.9%. A separate phase 1 trial compared

SBRT plus nivolumab and ipilimumab versus SBRT and nivolumab

alone. Preliminary data have suggested a favorable ORR, PFS and

median OS in the SBRT plus nivolumab and ipilimumab; however

the trial was stopped prematurely due to poor accural (99). A

prospective study from Yu et al. demonstrated that concurrent

application of RT during nivolumab treatment resulted in

prolonged PFS and OS versus nivolumab alone in a cohort of 76

patient with advanced HCC (100). Smith et al. reported on

combination nivolumab and upfront RT among patients with

advanced HCC and demonstrated an ORR 35%, which was

higher than nivolumab alone. Of note, there is an ongoing phase

Ib clinical trial assessing the safety and tolerability of neoadjuvant

SBRT and tislelizumab, a PD-1 inhibitor, prior to hepatic resection

in patients with resectable HCC (101). There are several other

ongoing clinical trials currently enrolling; a summary of these trials

is provided (Tables 1, 2).
Future directions and challenges
to progress

ICI and RT in combination can be effective for the treatment of

advanced HCC. The main targets for ICI, which are also impacted

by RT, are PD-1/PD-L1 and CTLA-4. Combined ICI and RT may

not be effective in all patients with HCC. The reasons for this may

be related to the heterogeneity associated with HCC tumors and

underlying etiology driving changes at the molecular level affecting

the tumor microenvironment. As a result, identifying novel targets

for therapy is paramount. Radiation damage to tumor cells induces

apoptosis which releases numerous antigens that present potential

targets for intervention. Among these are T-cell immunoglobulin

mucin-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and B
TABLE 1 Recently published clinical trials using combined RT and ICI for treatment of advanced hepatocellular carcinoma.

Trial Name Year
Published

Phase Treatment Patient Population Primary End Point

CA 209-678
NCT03033446

2021 II RE + Nivolumab Advanced HCC, Child-Pugh
A

ORR

NCT04193696 2022 II SBRT + Camrelizumab Advanced HCC, Child-Pugh
A/B

ORR and Safety

START-FIT
NCT03817736

2023 II TACE + SBRT + Avelumab Advanced HCC, Child-Pugh
A/B

Patients able to undergo curative
treatment

NASIR-HCC
NCT03380130

2022 II SIRT + Nivolumab BCLC B2 tumors Safety, ORR, and OS

NCT03203304* 2023 I SBRT + Nivolumab or Nivolumab +
ipilimumab

Advanced HCC Dose-limiting toxicity, ORR, PFS, OS
RE, Radioembolization; HCC, Hepatocellular Carcinoma; ORR, Objective Response Rate; SBRT, Stereotactic Body Radiation Therapy; TACE, Trans arterial Chemoembolization; SIRT, Selective
Internal Radiation Therapy; OS, Overall Survival; PFS, Progression Free Survival.
*Trial stopped due to poor accrual.
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and T lymphocyte attenuator (BTLA). There are several ongoing

clinical trials looking at inhibitors of these antigens including

cobolimab (anti-TIM-3) and dostarlimab (anti-PD-1) as well as

relatlimab (anti-LAG-3) (NCT03680508, NCT04567615,

NCT05337137, NCT04658147) (102).

Recent study has demonstrated that erythroid progenitor cells

(EPCs) in the spleen play a role in tumor progression and the

subsequent immune response. The proposed mechanism involves

creation of reactive oxygen species, and expression of PD-L1

leading to T-cell suppression (103). Among patients with HCC,

EPCs produce artemin, a glia cell derived neurotrophic factor

that stimulates HCC growth in animal models (104, 105).

Combination RT and ICI therapy, particularly anti-PD-L1 could

disrupt this pathway by inhibiting accumulation of splenic EPCs.

Future research should focus on EPCs as a mechanism by which

combination RT and ICI therapy may work.

Chimeric Antigen Receptor T Cell (CAR-T) has also been

studied in the treatment of HCC. This technique takes T cells

from the patient and engineers the cells to attack certain tumor cells

and antigens. A number of potential antigens have been identified

as targets for CAR-T therapy, including AFP, GPC-3, MAGE, NY-

ESO-1, hTERT, NKG2DL, EpCAM, CD133, CD147, and MUC1

(106). As RT causes the release of innumerable tumor antigens, the

combined use of RT and CAR-T therapy may hold promise for the

future. Given the number of antigens released from HCC cells,

biomarkers to predict which patients may benefit from certain

therapies has also been an emerging researched field. Unfortunately,

to date, studies have not been able to identify reliable predictive

biomarkers for HCC. Markers that have been studied are PD-L1,
Frontiers in Oncology 07
PD-1, TIM-3, and cytolytic T cell infiltrates, as well as radiosensitive

gene signatures (14, 107–110).

Further emerging areas in the treatment of HCC are use of

anti-vascular endothelial growth factor (VEGF) therapy. VEGF

overexpression can occur in patients with HCC and be responsible

for angiogenesis and hypervascularity of HCC tumors, as well as be

associated with poor prognosis (111–114). Angiogenesis has long

been known to potentiate tumor formation and provides a novel

target for drug therapy (115). The landmark IMbrave 150 trial

demonstrated that anti-VEGF therapy increased OS and PFS when

used with atezolizumab versus sorafenib (9). The mechanisms by

which anti-VEGF therapy work has been studied in animal models.

Mice treated with VEGF inhibitors had augmented PD-1 targets on

T-cells. Combining anti-VEGF and anti-PD-1 therapy allowed for

T-cells to function properly and decrease inhibitor immune cells

such as Tregs (116). Radiation increases VEGF expression in HCC

cells and thus RT may play a role in strengthening the effect of anti-

VEGF therapy, similar to ICI therapy (114). A multicenter

prospective study of 30 patients from China assessed the efficacy

and safety of intensity modulated RT and systemic atezolizumab and

bevacizumab in patients with HCC and extrahepatic portal vein

tumor thrombus. The authors reported an ORR and median OS of

76.6% and 9.8 months, respectively, with an acceptable safety profile

(117). An ongoing phase II trials is currently assessing atezolizumab

and bevacizumab plus RT in patients with unresectable HCC and

portal vein tumor thrombus with the results expected in the

upcoming years (118). Currently, combination therapy with RT

and anti-VEGF should be used with caution, however, as adverse

effects with anti-VEGF after RT can be severe (119).
TABLE 2 Ongoing clinical trials using combined RT and ICI for treatment of advanced hepatocellular carcinoma.

Trial Name Start
Date

Phase Treatment Patient Population Primary End Point

NCT04167293 2019 III SRBT + Sintilimab vs SBRT alone Advanced HCC with portal vein invasion PFS at 24 weeks

NCT04913480 2020 II SBRT + Durvalumab Advanced HCC PFS at 1 year

NCT05488522 2022 I SBRT + Atezolizumab + Bevacizumab Advanced HCC Safety and efficacy

NCT04541173 2020 II Y90 TARE + Atezolizumab +
Bevacizumab

Advanced HCC PFS at 12 months

NCT05377034 2022 II SIRT-Y90 + Atzezolizumab +
Bevacizumab

Locally Advanced HCC Best Overall Response Rate at 12
months

NCT05701488 2023 I SIRT + Durvalumab + Tremelimumab Resectable HCC Adverse Events

NCT04169399 2019 II SBRT + Toripalimab Advanced HCC with portal vein invasion PFS at 6 months

NCT04988945 2020 II TACE + SBRT + durvalumab +
tremelimumab

Advanced HCC Downstaging to resection

NCT03857815 2019 II SBRT + Sintilimab Advanced HCC PFS at 2 years

ChiCTR
210049831

2022 II IMRT + atezolizumab + bevocizumab Advanced HCC with portal vein tumor
thrombosis

ORR

NCT05185531 2022 I Neoadjuvant SBRT + tislelizumab Resectable HCC Tumor response, safety and
tolerability

NCT03316872 2018 II SBRT + Pembrolizumab Advanced HCC ORR
HCC, Hepatocellular Carcinoma; ORR, Objective Response Rate; SBRT, Stereotactic Body Radiation Therapy; TACE, Trans arterial Chemoembolization; TARE, Trans arterialradioembolization;
SIRT, Selective Internal Radiation Therapy; OS, Overall Survival; PFS, Progression Free Survival; IMRT, Intensity-modulated Radiotherapy.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1193762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shannon et al. 10.3389/fonc.2023.1193762
Using ICI and RT may help convert unresectable HCC into

resectable disease allowing for R1 or R0 resection, known as

conversion therapy. Although hepatectomy after conversion

therapy may be more challenging, it has been proven to be safe

and effective (120). Multiple studies have reported that combination

therapy with RT plus either locoregional therapy such as hepatic

artery infusion pump or targeted therapy can convert unresectable

disease with portal vein tumor thrombus into candidates for resection

(121, 122). The role of RT plus ICI in conversion therapy will be an

area of active future research. Despite these exciting future directions

and progress with ICI and RT, many challenges remain in the

treatment of patients with advanced HCC. Most studies on ICI and

RT involve Child-Pugh A patients with preserved liver function and

functional status. Applying data to patients with worse liver function

(i.e., Child-Pugh B/C patients) is challenging. To this point, there are

relatively few studies on patients with poor liver function. The

CELESTIAL trial did include patients with Child-Pugh B cirrhosis

who were treated with cabozantinib, a tyrosine kinase inhibitor (123).

Certain trials have advised caution, however, when using certain

ICI in patients with poor liver function (124). The data have

demonstrated modest efficacy and safety in select subsets of

patients with advanced HCC and compromised liver function.

Another challenge with combined RT and ICI is the development

of treatment resistance. HCC is a heterogenous tumor with a varied

tumor microenvironment, which complex including the extracellular

matrix, immune cells, cancer-associated fibroblasts, among others. This

heterogeneity makes development of treatment that universally covers

all tumors difficult and makes HCC relatively chemo-resistant (125–

127). Elucidating mechanisms of resistance in HCC will be crucial to

the development of future treatments. An additional challenge is

identification of patients who will benefit most from combination

therapy, as well as patient selection for combined RT and ICI. For

example, SBRT combined with ICI therapy may be of benefit to

patients with tumor thrombus in the portal vein, hepatic veins, or

vena cava (128–130). Patients with vascular invasion may benefit from

combination therapy, however further study is necessary. The timing

and sequence of ICI and RT (concurrent or sequential) to maximize

benefit is unclear and will also need to be defined in the future (131).
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Conclusion

Although HCC remains a leading cause of cancer death, great

strides have been made in recent years in the treatment of advanced

disease. Among these, ICI therapy has given the opportunity to

increase survival in patients who have failed standard first line

therapy. The addition of RT helps to augment the effects of ICI,

although the mechanisms behind this effect continue to be studied.

Despite this great progress, work remains to better identify which

tumors respond best to which drugs, given the heterogeneity of

HCC. Further research and progress into new drug therapy,

predictive biomarkers, and mechanisms of resistance to certain

drugs as well as patient selection and sequence of therapy will be

crucial as we move into the next generation of treatments for this

lethal disease.
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